IEEE NETWORKING LETTERS, VOL. 4, NO. 3, SEPTEMBER 2022

167

Robust Network Intrusion Detection Through Explainable
Artificial Intelligence (XAI)

Pieter Barnard™, Nicola Marchetti

Abstract—In this letter, we present a two-stage pipeline for
robust network intrusion detection. First, we implement an
extreme gradient boosting (XGBoost) model to perform super-
vised intrusion detection, and leverage the SHapley Additive
exPlanation (SHAP) framework to devise explanations of our
model. In the second stage, we use these explanations to train an
auto-encoder to distinguish between previously seen and unseen
attacks. Experiments conducted on the NSL-KDD dataset show
that our solution is able to accurately detect new attacks encoun-
tered during testing, while its overall performance is compara-
ble to numerous state-of-the-art works from the cybersecurity
literature.

Index Terms—Network intrusion detection system (NIDS),
anomaly detection, machine learning, explainable artificial
intelligence (XAI).

I. INTRODUCTION

N RECENT years, there has been an alarming increase in
Ithe number of cybersecurity threats witnessed around the
globe. As an effective tool to tackle these threats, network
intrusion detection systems (NIDSs) are designed to monitor
traffic flows within a network and alert cybersecurity per-
sonnel whenever potential attacks occur. At the forefront of
today’s state-of-the-art, machine learning (ML), and in partic-
ular deep learning methods for NIDSs, have allowed experts
to achieve high detection accuracy on a wide host of simulated
and real-world intrusion datasets [1]. However, in the realm
of cybersecurity, the emergence of new technologies and on-
going efforts by attackers means that new (zero-day) attacks
are constantly appearing across our networks, posing major
challenges to the design of NIDSs that can remain robust over
long periods of time.

In the cybersecurity literature, two main approaches domi-
nate the design of a NIDS [2]. In the first approach, the NIDS
is designed in a supervised manner to detect whenever a traffic
flow exhibits signatures which are similar to those appearing
alongside known attacks. In the second approach, unsupervised
ML methods are used to learn statistical or latent repre-
sentations of normal traffic, and anomaly detection methods

Manuscript received 28 February 2022; revised 18 May 2022; accepted
19 June 2022. Date of publication 27 June 2022; date of current version
26 August 2022. This work was supported in part by the Science Foundation
Ireland under Grant 18/CRT/6222 and Grant 13/RC/2077_P2, and in part by
the Commonwealth Cyber Initiative (CCI). The associate editor coordinating
the review of this article and approving it for publication was L. Foschini.
(Corresponding author: Pieter Barnard.)

Pieter Barnard and Nicola Marchetti are with the CONNECT Research
Centre, Trinity College Dublin, Dublin 2, D02 PN40 Ireland (e-mail:
barnardp @tcd.ie; nicola.marchetti @tcd.ie).

Luiz A. DaSilva is with the Commonwealth Cyber Initiative, Virginia Tech,
Arlington, VA 22203 USA (e-mail: ldasilva@vt.edu).

Digital Object Identifier 10.1109/LNET.2022.3186589

, Senior Member, IEEE, and Luiz A. DaSilva

, Fellow, IEEE

are subsequently employed to detect whenever a flow dif-
fers significantly from this baseline. Importantly, while NIDSs
based on the former approach have shown general success
against known attacks, they often fail when presented with
zero-day attacks [3]. On the other hand, recent works adopt-
ing deep learning solutions for anomaly-based NIDS, such
as deep autoencoders [4]-[6], have demonstrated promising
results against detecting new attacks.

In addition to high detection accuracy, many cybersecu-
rity experts now also consider interpretability as an essential
characteristic of a robust NIDS. This is particularly the case
for NIDSs based on deep learning models, as their inherent
‘black-box’ nature means that even once malicious traffic has
been successfully detected, considerable human effort is still
required to determine why the flow is malicious, and therefore,
how to best deal with the attack [7]. Recently, the emergence of
Explainable AI (XAI) techniques for post-hoc interpretability
has led to a new wave of cybersecurity works that now include
additional layers of explainability for a human-in-the-loop
[8]-[10]. For example, in [10], the authors demonstrate how
the SHapley Additive exPlanation (SHAP) framework [11] can
be used to gain insights into the features of their model which
contribute the most to different types of attacks.

In this letter, we combine the benefits of XAI alongside
the strengths of both supervised and unsupervised NIDSs,
and propose a two-stage pipeline for robust network intrusion
detection. In the first stage, we implement an extreme gradi-
ent boosting (XGBoost) model to perform supervised intrusion
detection, and leverage the prominent SHAP framework to
devise explanations of our model. In the second stage, we
pass these explanations as input to a deep autoencoder mod-
ule, whose primary purpose is to learn a latent representation
of our model’s ‘typical’ behaviour during training. Based on
the hypothesis that our model will deviate from this typical
baseline when trying to classify zero-day attacks, we then per-
form anomaly detection based on the reconstruction error of
the autoencoder to determine whether a traffic flow potentially
belongs to a new class of attacks during testing.! We note
that while the former stage of our pipeline bears similarity to
existing works for explainable intrusion detection, the use of
explanations for anomaly detection in the latter stage appears
to be completely unexplored in current research.

To the best of our knowledge, this letter is the first to expand
beyond the mere use of XAI as an end-to-end tool to aid
a human-in-the-loop understand why decisions are made by

Ut is important to note that traffic may still be deemed anomalous even if
it does not stem from a new class of attacks. Such cases, which we refer to
as new ‘normal’, may occur if the training data is incomplete or unable to
account for all conceivable input-output scenarios.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-2851-1470
https://orcid.org/0000-0003-3788-5845
https://orcid.org/0000-0001-6310-6150

168

Supervised NIDS
(XGBOOST)

l yseen
Al ¢

Anomaly-Based NIDS
(Deep Auto-Encoder)

(SHAP)

First Stage Second Stage

Fig. 1. Proposed pipeline for robust network intrusion detection.

the NIDS, but also to explore the feasibility of employing
additional ML mechanisms on these explanations to further
enhance the performance of the NIDS. Moreover, numerical
evaluations conducted on the NSL-KDD intrusion dataset [12]
show that our solution is able to outperform various state-
of-the-art works in terms of its overall accuracy, recall and
precision.

II. PROPOSED SOLUTION

This section presents the details of our proposed pipeline.
In Sections II-A and II-B, we outline our initial model for
supervised intrusion detection and use of SHAP to explain
its behaviour, respectively. In Section II-C, we describe our
anomaly-based NIDS and provide overall comments about our
solution. Sections II-D and II-E discuss the pre-processing and
implementation aspects of our solution, respectively. To foster
reproducibility, we also provide full access to the source code
used in our work.?

A. First Stage - Supervised Detection

Fig. 1 summarises the main stages of our proposed pipeline.
In the initial stage, relevant data from the network is collected
and pre-processed into an N-dimensional vector of features,
x = [z1,...,zy] € RN, For example, a typical flow-based
NIDS may include features related to the general statistics
of the flow, such as the amount of time the flow has been
active, the average packet payload size, and the number of
urgent packets sent across the flow, etc. Following the pre-
processing stage, the input features are then passed into an
XGBoost model and optimised to perform binary classifica-
tion, where the output of the model, yseen, € [0, 1], is a scalar
value corresponding to the probability of a certain flow being
malicious, with yseen, > 0.5 implying malicious traffic and
Yseen < 0.5 implying normal traffic.

B. First Stage - Explainable Al

As XGBoosts models are generally difficult to interpret
given their complex ensemble structures, we consider the use
of XAI techniques to construct post-hoc explanations of our
model in the next sub-block of our pipeline. Specifically, we
implement the SHAP method from [11], which has recently
been proposed as a state-of-the-art approach for obtaining
accurate explanations of tree-based models with polynomial
time complexity. Under this framework, an explanation for a
particular sample takes the form of a vector of “feature impor-
tance scores” which reflect the magnitude and direction by

2Source code: https://github.com/barnardp/Intrusion_Detection_XAI.

IEEE NETWORKING LETTERS, VOL. 4, NO. 3, SEPTEMBER 2022

fix)

src_bytes
protocol_type

dst_bytes +0.1

P
dst_host_count ' +0.03
service . 3
. +0.02
. +0.02

32 other features -0 (

dst_host_same_src_port_rate

dst_host_srv_diff_host_rate

dst_host_srv_count

logged_in

0.4 0.5 0.6 0.7 0.8 0.9 1.0
ETfiX)]

Fig. 2. Example SHAP explanation of a random sample taken from the
training set (Probe Attack).

which each feature impacts the decision of the model for that
sample.

For instance, in the example shown in Fig. 2, which corre-
sponds to an explanation of a training sample that our model
has previously classified as being malicious (in this case a
Probe attack is occurring), features which have a positive
impact on the model’s decision (i.e., that raise the probabil-
ity of a particular flow being malicious) are shown next to
red bars, while features that reduce the probability are shown
next to blue bars. From Fig. 2, we can see that the main fea-
tures considered by the model include the ‘src_bytes’ feature
(in this case a value of 18 bytes has raised the probability by
0.13%) and the ‘protocol_type’ (in this case UDP type traffic
has raised the probability by 0.12%). In addition, we see that
other features, such as the number of bytes received from the
destination or port rates also have small but positive impacts
on the model’s decision, while the remaining 32 features (not
shown due to space constraints) have a combined negative but
negligible impact towards the model’s decision.

Formally, given a specific output from our NIDS, yscen.,
SHAP produces an explanation in the form of a vec-
tor of importance scores or “SHAP values”, ¢(x) =
[01,...,b4,...,0N], Where ¢; denotes z;’s impact on the
observed output. Moreover, we note that SHAP takes its basis
from the Shapley value from game theory, and exhibits a
number of desirable properties in contrast to most other XAI
methods in the literature [11]. For example, one key prop-
erty of this approach, known as the “local accuracy” property,
ensures that the sum of all SHAP values for a specific instance
adds up to the difference between the model’s output for that
instance and a constant baseline, ¢g. L.e.,

N

Z ¢i = Yseen — ¢0- (h

i=1

In SHAP, the baseline value, ¢q, corresponds to the aver-
age or expected output of the model seen during training, and
can be interpreted as the initial output of the model before the
impact of any features are taken into account (i.e., in Fig. 2
the baseline value is found to be = 0.432). Moreover, we see

BARNARD et al.: ROBUST NETWORK INTRUSION DETECTION THROUGH XAI

Ynew

Decoder Reconstruction Loss

Fig. 3. Our Anomaly-Based NIDS.

from the right-hand side of equation (1), that the explana-
tion essentially decomposes the output of the model (ignoring
the constant baseline effect for emphasis) amongst each of
the input features. In the context of our NIDS, this means
that cybersecurity experts can easily understand the relative
importance of each feature as it increases or decreases the
probability of a flow being classified as malicious. This, in
turn, can shed much needed light on nature of the attack, as
well as how best to counteract it.

C. Second Stage - Anomaly Detection

In the first stage of our pipeline, the use of a supervised
ML model implies that we can generally expect our system to
achieve good performance on previously seen attacks, but still
face the likely possibility of performing poorly against unseen
attacks. In the second stage of our pipeline, we attempt to
address this shortcoming by exploring the hypothesis that our
model will behave differently when attempting to classify traf-
fic flows emanating from zero-day attacks, compared to how
it behaves when classifying traffic similar to that seen during
training. To test this hypothesis, we turn to the discrimina-
tory power provided by unsupervised learning techniques, such
deep autoencoders. Specifically, we design an anomaly-based
NIDS, where the aim in this case is to accurately differentiate
between previously seen behaviours (i.e., explanations based
on the training data), and new behaviours (i.e., arising from
zero-day attacks, or possibly, from new ‘normal’ traffic).

Fig. 3 illustrates our anomaly-based NIDS. Here, expla-
nations from the first stage are passed to a deep autoen-
coder, which essentially consists of two deep neural networks
(DNNs) in which the output of the first network (the
‘encoder’), is fed directly into the input of the second network
(the ‘decoder’). Moreover, by purposely reducing the dimen-
sion of the encoder’s output, z, to well below that of its input,
the encoder is forced to learn a compressed latent representa-
tion of the original input using only the most salient aspects
encountered during its training. In the case of the decoder, the
network size is gradually increased across each each hidden
layer, up to the point where the final output, ¢’, has similar
dimension to the original explanation, ¢. The overall encoder-
decoder network can then be jointly optimised to reconstruct
explanations based on the training data.

Under the assumption that our original hypothesis holds
true, we can expect that the reconstruction error of our autoen-
coder will increase significantly whenever new attacks or new
‘normal’ flows are encountered. To test this hypothesis and
ensure such flows are reliably flagged at the output of the
NIDS, ynew, we calculate the absolute reconstruction error
(ARE) of each sample during testing and consider any flows
resulting in an ARE greater than the 957 percentile of that

169

seen during training as anomalous, where,

N /
ARE(¢,¢/)= Zl:l|¢l_¢l‘ (2)
N

In the final steps of our pipeline, the explanation and clas-
sification results from both our supervised and anomaly-based
NIDSs are presented to cybersecurity personnel for further
analysis. Although specific details around such analysis fall
outside the scope of this letter, we briefly highlight two edge
cases which may occur in a practical setting. For example, in
the case of a flow which has been deemed anomalous but not
malicious, an analyst may have to manually investigate the
flow and its explanation to determine whether it corresponds
to a new attack or a new ‘normal’ instance. However, if a flow
is found to be malicious but not anomalous, it is likely that
this flow stems from a known attack, implying that an auto-
mated response may be possible. Moreover, we stipulate that
the former case may find use in an online-learning scenario,
where the NIDS is continuously adapted over time to maintain
its accuracy, while the combination of both these cases may
have further consequences related to the ‘zero-touch’ paradigm
envisioned for 6G and next-generation networks [13].

D. Data Pre-Processing

As previously outlined, our XGBoost model for supervised
intrusion detection requires all inputs to the model to be of
numerical format. To ensure this requirement is met during
the training and testing of our solution, we apply label encod-
ing to all non-numerical features passed to our model using
the ‘LabelEncoder’ method from the Scikit-Learn [14] library
for Python. For the NSL-KDD dataset used in this letter,
this includes three features which are initially categorical in
format: ‘protocol_type’, ‘service’, and ‘flag’. In the case of
our autoencoder, we convert all input features into the range
(—1, 1) using the ‘MinMaxScaler’ method from Scikit-Learn.
Finally, as we only consider binary classification in our cur-
rent work, we merge all non-normal labels in the NSL-KDD
dataset into a single class of attacks.

E. Pipeline Implementation

We implement our XGBoost model using Scikit-Learn’s ML
API. To train our model, we use a binary logistic loss function
and keep all remaining parameters of the model at their default
values. In the case of our autoencoder model, we implement
both the encoder and decoder networks using the TensorFlow
API [15]. Before training each network, we split the original
training set into two subsets, and use roughly 80% of the orig-
inal data as a new training set, and the remaining 20% as a
validation set. We note that any samples used during the eval-
uation of our solution are kept separate from the training and
validation sets used at this stage.

For our encoder network, we use 4 neural layers, includ-
ing an input layer, two hidden layers, and an output layer.
For each layer, we use a ‘ReLu’ activation function with 41,
1456, 724, 14 neurons, respectively. In order to avoid over-
fitting during training, we also apply dropout with strength
0.2 on the first hidden layer. Similarly, our decoder consists

170

of 4 layers with 14, 632, 1644, 41 neurons, respectively, as
well as a ‘ReLu’ activation function at each layer, except for
the final output layer, which uses a ‘tanh’ function instead
to ensure all outputs fall within the range (—1, 1). We train
the encoder-decoder networks jointly for 1000 epochs using
Tensorflow’s default ‘Adam’ optimiser with a mean absolute
error loss function, and an early-stopping criteria based on the
validation loss during training. We also employ mini-batching
of size 512 to aid the convergence speed of our autoencoder
during training. In addition, we note that the final parameters
of our encoder-decoder network have been chosen based on
a mixture of empirical experiments, as well as a grid search
strategy.

Finally, we use an open-source implementation of
SHAP [11] to compute explanations our model. Specifically,
we use the ‘TreeExplainer’ method and set the feature per-
turbation option to ‘interventional’ to ensure the explanations
remain faithful to the model’s true behaviour [16].

III. EVALUATION

In this section, we provide a brief overview of the NSL-
KDD dataset and our evaluation strategy, followed by a
summary and discussion of our results.

A. NSL-KDD Dataset

Proposed by [12], the NSL-KDD dataset presents an
improved version of the KDD’99 dataset, originally released
by DARPA as one of the first publicly-available intrusion
datasets to contain a wide host of realistic attacks to a mili-
tary network. Similar to the KDD’99 dataset, the NSL-KDD
dataset contains 41 network-related features derived from
TCP/IP dumps, as well as offering examples of 23 different
attacks in its training set, with an additional 17 new attacks
across its test set. In comparison to KDD’99, the NSL-KDD
dataset offers a number of important improvements aimed at
promoting greater consistency and fairness when comparing
across different NIDSs, including the removal of duplicate
flows and the use of a proportional inclusion policy to min-
imise class-imbalance issues associated with rare attack types.
Although the NSL-KDD dataset has some limits in its ability
to capture examples of more modern attack types, it presents
one of the few publicly available intrusion datasets that can be
used to evaluate the performance of a NIDS where there is a
shift in the training and testing distributions; in this letter, we
use the ‘KDDTrain+’ and ‘KDDTest+’ datasets for training
and evaluating our solution, respectively.

B. Evaluation Strategy

For our evaluation, we consider separately the performance
of: 1) our supervised NIDS; ii) our anomaly-based NIDS;
as well as iii) the combination of both NIDS in our over-
all pipeline. For cases (i) and (iii), we calculate performance
metrics based on the general ability of our NIDSs to detect
attacks, new or old, while for case (ii) we calculate metrics
based solely on instances of new attacks. In our analysis, we
consider common network intrusion metrics, such as accu-
racy, recall, and precision. To benchmark our work, we also

IEEE NETWORKING LETTERS, VOL. 4, NO. 3, SEPTEMBER 2022

TABLE I
PERFORMANCE OF OUR PROPOSED NIDS PIPELINE

Method Accuracy (%) | Recall (%) | Precision (%) | Scope
Supervised NIDS 79.20 65.61 96.82 All
Anomaly-based NIDS 78.53 89.41 43.01 New
Overall Pipeline 93.28 97.81 91.05 All

v Attacks
> Normal

v Attacks
» Normal

Component 2
Component 2

0 p) T
Component 1 Component 1

(@ (®

Fig. 4. PCA applied to the training data (a), and the explanations (b).

compare our results against those reported in various state-of-
the-art works which also incorporate the NSL-KDD dataset in
their evaluations [6], [17], as well as any other works which
offer explainability in their solutions [8], [10]. We note that
the results reported in [9] are not included in this comparison,
as these only consider a portion of the NSL-KDD test set.

C. Results & Discussion

Table 1 summarises the performance of our supervised
NIDS, our anomaly-based NIDS, as well as our overall
pipeline, where for simplicity, we assume any instance flagged
as either malicious or anomalous to be an attack.> Here we
see that, on its own, our supervised NIDS achieves a rea-
sonable accuracy of 79% against general attacks, with an
additional high precision of 96% but low recall of 65%. On the
other hand, our anomaly-based NIDS achieves a relatively low
precision of 43% on new attacks* but high recall of 89%, with
an overall accuracy of 78%. Remarkably, when we combine
both NIDSs together, our overall pipeline performs strongly
across all three metrics, achieving an overall accuracy of 93%,
precision of 91% and recall of 97%. This significant jump in
performance supports our main hypothesis, that the explana-
tions from our supervised NIDS can in fact be used alongside
additional ML mechanisms to greatly enhance the performance
of our intrusion system.

To try and explain why this is the case, we apply principal
component analysis (PCA) to both the raw training data as
well as its explanations. As seen in Fig. 4a, plotting the first
2 PCA components of the raw training data reveals a strong
overlap between samples of normal and malicious traffic. On
the other hand, a plot of the first 2 PCA components based on
the training data’s explanations shows that the ‘explanation

3Since it is possible for an analyst to further validate each anomalous
instance as being either an attack or new ‘normal’ instance, the results
presented here constitute a lower bound on what may be achieved in practice.

4We believe this low precision can be largely attributed to the fact that all
anomalies are assumed to be attacks, i.e., the precision is reduced due to the
presence of new ‘normal’ instances being flagged as attacks.

BARNARD et al.: ROBUST NETWORK INTRUSION DETECTION THROUGH XAI

Cumulative Fraction of Variance explained by each PCA Component

10 W= PCA SHAP
PCA Raw Input

08

06

04

Fraction of Explained Variance

02

0.0

PCA Components

Fig. 5. Cumulative variance explained by each PCA component.
TABLE I
OVERALL PERFORMANCE AGAINST BENCHMARKS
Method Accuracy (%) | Recall (%) | Precision (%) | XAI
Proposed Solution 93.28 97.81 91.05 v
Yang et al. [6] 89.36 84.86 95.98 X
Javaid et al. [17] 88.39 95.95 85.44 X
‘Wang et al. [10] 80.6 80.6 82.8 v
Marino et al. [8] 95.5 - - v

domain’ is able to distinctively separate clusters of normal
flows from malicious ones. We believe one possible reason is
that the explanation model itself is formulated in terms of a
simplified linear model, i.e., in generating the SHAP values,
we inherently disentangle some of the non-linearities existing
throughout the decision space. Additionally, when we examine
the cumulative percentage of variance (PoV) explained by each
PCA component, as shown in Fig. 5, we find that only 32%
of the data variance is explained by the first 2 components
of the raw training data, compared to 88% in the case of the
explanations. As the PoV can be regarded as a measure of how
much of the original signal information is contained within
each component, this suggests that the explanation domain
is also capable of compressing greater amounts of important
information (i.e., salient aspects from the decision boundary
between normal and abnormal traffic) more efficiently than the
raw training data.

Table II compares the overall performance of our pipeline
against various state-of-the-art works from the literature. As
seen in Table II, our solution is able to outperform all but one
of the considered benchmarks in terms of its overall accu-
racy, falling short by only 2.2% compared to [8]. In addition,
our solution is able to outperform all benchmarks in terms of
its recall rate, while only slightly under-performing in terms
of its precision compared to the work in [6]. While these
results suggest that our solution is capable of achieving satis-
factory performance compared to the state-of-the-art for binary
classification, we hope to extend our analysis to the case of
multiclass classification in future work.

IV. CONCLUSION

In this letter, we have presented a two-staged pipeline for
robust network intrusion detection. Our proposed pipeline
consists of an initial XGBoost model to perform supervised
intrusion detection, followed by an autoencoder trained on
SHAP explanations representing the behaviour of our initial
model during training. By combining the detection capabilities

171

of both these NIDSs, our overall pipeline is able to outperform
numerous state-of-the-art works in terms of its accuracy, recall
and precision on the NSL-KDD dataset, as well as offering an
extra layer of explainability. In future work, we will extend
our pipeline in line with the goals and concepts envisioned
for future zero-touch networks. In particular, we envision this
will require additional stages within our pipeline which can
aid towards automating much of the manual tasks convention-
ally performed within the network management cycle, such as
detecting and adapting to new attacks, as one example. Finally,
we also plan to further investigate some of the findings of our
work, such as the effectiveness of the ‘explanation domain’
in separating clusters of attacks from normal traffic, as well
as to optimise the various stages our pipeline and to extend
its ability to support multiclass classification across additional
intrusion datasets, such as the more recent CIC-IDS2017 [18].

REFERENCES

[11 Y. Xin et al, “Machine learning and deep learning methods for
cybersecurity,” IEEE Access, vol. 6, pp. 35365-35381, 2018.

[2] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho,
“Deep learning approach for network intrusion detection in software
defined networking,” in Proc. Int. Conf. Wireless Netw. Mobile Commun.
(WINCOM), 2016, pp. 258-263.

[3] A. L. Buczak and E. Guven, “A survey of data mining and machine
learning methods for cyber security intrusion detection,” IEEE Commun.
Surveys Tuts., vol. 18, no. 2, pp. 1153-1176, 2nd Quart., 2016.

[4] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning approach
to network intrusion detection,” IEEE Trans. Emerg. Topics Comput.
Intell., vol. 2, no. 1, pp. 41-50, Feb. 2018.

[51 Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An
ensemble of autoencoders for online network intrusion detection,” 2018,
arXiv:1802.09089.

[6] Y. Yang, K. Zheng, B. Wu, Y. Yang, and X. Wang, “Network intrusion
detection based on supervised adversarial variational auto-encoder with
regularization,” IEEE Access, vol. 8, pp. 42169—42184, 2020.

[7] J. R. Goodall et al., “Situ: Identifying and explaining suspicious behav-
ior in networks,” IEEE Trans. Vis. Comput. Graph., vol. 25, no. 1,
pp. 204-214, Jan. 2019.

[8] D. L. Marino, C. S. Wickramasinghe, and M. Manic, “An adversarial
approach for explainable ai in intrusion detection systems,” in Proc. 44th
Ann. Conf. IEEE Ind. Electr. Soc., 2018, pp. 3237-3243.

[9]1 K. Amarasinghe, K. Kenney, and M. Manic, “Toward explainable deep

neural network based anomaly detection,” in Proc. 11th Int. Conf.

Human Syst. Inter. (HSI), 2018, pp. 311-317.

M. Wang, K. Zheng, Y. Yang, and X. Wang, “An explainable machine

learning framework for intrusion detection systems,” IEEE Access,

vol. 8, pp. 7312773141, 2020.

S. M. Lundberg et al., “From local explanations to global understand-

ing with explainable Al for trees,” Nat. Mach. Intell., vol. 2, no. 1,

pp. 56-67, 2020.

M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed anal-

ysis of the KDD CUP 99 data set,” in Proc. IEEE Symp. Comput. Intell.

Security Defense Appl., 2009, pp. 1-6.

C. Benzaid and T. Taleb, “Al-driven zero touch network and service

management in 5G and beyond: Challenges and research directions,”

IEEE Netw., vol. 34, no. 2, pp. 186-194, Mar./Apr. 2020.

F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach.

Learn. Res., vol. 12, no. 85, pp. 2825-2830, 2011.

M. Abadi et al. “TensorFlow: Large-Scale Machine Learning

on Heterogeneous Systems.” 2015. [Online]. Available:

https://www.tensorflow.org/

H. Chen, J. D. Janizek, S. Lundberg, and S.-1. Lee, “True to the model

or true to the data?” 2020, arXiv:2006.16234.

A. Javaid, Q. Niyaz, W. Sun, and M. Alam, “A deep learning approach

for network intrusion detection system,” EAI Endorsed Trans. Security

Safety, vol. 3, no. 9, p. €2, 2016.

I. Sharafaldin, A. H. Lashkari, and A. A. Ghorban, “Toward generating

a new intrusion detection dataset and intrusion traffic characterization,”

in Proc. ICISSP, vol. 1, 2018, pp. 108-116.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

