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Abstract—Humanoid robots are designed and expected to
resemble humans in structure and behavior, showing increasing
application potentials in various fields. Like their biological coun-
terparts, their environmental perception ability is fundamental.
In particular, the visual and tactile perception are the two main
sensory modes that humanoids use to understand and interact
with the environment. Vision-Tactile Fusion Perception (VTFP)
has shown multiple possibilities for better sensing understand-
ing in challenging conditions, causing new research interests and
questions. The overlap between visual and tactile perception
in humanoids is continually growing. This work has reviewed
the current state of the art of VTFP. It starts with the phys-
iological basis of biological vision and tactile systems as well
as the VTFP mechanisms as inspirations for humanoid per-
ception. Then, the bioinspired visual-tactile fusion systems for
humanoids are reviewed as the emphasis. After the survey on
the vision and tactile sensors of robots, seven currently pub-
licly available VTFP datasets are introduced. They are the
data sources for several studies on neural network-inspired
fusion algorithms. Furthermore, the applications of VTFP on
humanoids are summarized. Finally, the challenges and future
work are discussed. This review aims to provide several refer-
ences for further exploitation of VTFP and its applications on
humanoids.

Index Terms—Vision-tactile fusion perception, bioinspired sen-
sors, intelligent humanoids, environmental perception, sensor
data fusion.

I. INTRODUCTION

HUMANOIDS are robots that simulate the human
structure. Tremendous demand in application areas, for

example, elderly care, direct contact control during excep-
tional situations, such as the COVID-19 epidemic, and natural
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human-robot interactions [1], are accelerating their develop-
ment. Compared with traditional robots, humanoids should
have at least three indispensable elements: (1) sensing for envi-
ronment perception [2], (2) thinking for decision-making [3],
and (3) execution for environment interaction [4]. The envi-
ronmental perception is the most fundamental element of
humanoids. It is of the same importance to human beings.
Human beings apply five senses (sight, touch, hearing, smell,
and taste) to respond to environmental stimuli and to col-
lect perception information. These senses have also been
used for robots, especially for visual and tactile percep-
tion. Robot vision is a fast-advancing field that enables
robots to obtain vision information (including size, shape,
color, and brightness) for various tasks, such as Visual
Simultaneous Localization and Mapping (VSLAM) [5], [6],
visual servo grasping [7], and visual navigation [8], [9]. Robot
tactile perception is indispensable for tasks such as stable
grasping [10], item classification [11], [12], and contact force
control [13], [14], using interaction information of contact tex-
ture, object weight, material compliance and interface temper-
ature. Situations with poor/unstable light illumination or recog-
nition of large objects would require multiple-dimensional
information of the environment using both visual and tactile
perception [15], i.e., Vision-Tactile Fusion Perception (VTFP).
The overlap between visual perception, tactile perception,
and robotics is continually growing, and recent advances are
summarized in Fig. 1.

The hierarchical functional and structural block diagram of
the VTFP system is shown in Fig. 2, including the following:

(1) Sensors. The cores of sensors are sensitive elements that
respond to stimuli, which are transferred to electrical signals.

(2) Information fusion methods. Vision-Tactile
Fusion (VTF) applies various fusion algorithms to extract
multidimensional visual and tactile information. Meanwhile,
it is notable that datasets are important for fusion algorithms
that are inspired by neural networks.

(3) Action. Actions offer vivid demonstrations of the VTFP
results. On the other hand, actions influence the information
collection for active perceptions.

Extensive works reviewing robot vision
perception [31], [32] or tactile perception [33], [34] have
been offered. However, a review of robot VTFP has long been
absent until very recently. Shuo Gao and his colleagues [35]
published a review on this topic, introducing the working
mechanisms of tactile and visual sensing and their application
in intelligent humanoids and discussing current challenges
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Fig. 1. Trends in the intersections between visual perception, tactile per-
ception, and robotics. (Left) A range of tactile sensors, including traditional
resistive tactile sensors, tactile sensors based on optical principles and tribo-
electric tactile sensors, from top to bottom [16], [17], [18], [19], [20]. (Middle)
A range of applications based on visual-tactile fusion perception, including
object recognition, human-robot interaction, delicate manipulation and stable
grasping, from left to right and top to bottom [21], [22], [23], [24], [25],
[26], [27], [28], [29]. (Bottom) A range of visual sensors including cameras
based on biological principles, as well as depth cameras, from left to right
[21], [30]. Red boxes indicate the work that utilizes visual and tactile sensors
for visual-tactile fusion dataset acquisition.

and future trends. While some topics addressed in this text
overlap with the prior survey, the focus of this paper is dif-
ferent: it concentrates on additional topics, such as biological
sensing systems, biologically inspired or mimicked vision
and tactile sensors, and datasets and neural network-inspired
fusion algorithms. Biological systems are the inspiration
sources of various robotic engineering studies [36]. This
paper surveys the state of the art of VTFP in humanoids
regarding their natural counterparts. We limit our review of
visual sensors to cutting-edge biologically inspired sensors
and contrast tactile sensors with biological sensors. Humans
use their neural system and the brain to fuse multimodal sens-
ing information for decision-making [37], [38], [39], [40].
Artificial intelligent algorithms are studied to learn such
functions via neural networks [41], [42]. Thus, the sensing
datasets and the fusing algorithms are obviously important for
VTFP. Efficient VTFP algorithms would undoubtedly advance
the studies and applications of robot cognition, collaboration,
and interactions.

As humanoids mimic the nature of humans, a survey con-
sidering their biological prototypes would be necessary for
a systematic review study of the VTFP. On the other hand,
revisiting their biological inspirations would certainly be ben-
eficial for the development of vision-tactile fusion systems,
which are progressing slowly.

In the Web of Science, Google Scholar, and IEEE Digital
Library databases, a collection of 534 publications was found
by the keyword searching of VTFP. The abstracts of these
publications were read to exclude irrelevant works. Repeated
counts were also excluded because some works were included
by more than one database, and some works were included

Fig. 2. Hierarchical functional and structural block diagram of the VTFP
system.

Fig. 3. Diagram of the publication filtering process.

more than once for both conference and journal publications.
Meanwhile, survey papers and book chapters that focused on
the review of relevant work were further excluded. Therefore,
86 publications were read in detail. During the reading,
21 publications that were referenced by some of these 86 pub-
lications were also found to fit the topic of this review.
Therefore, 107 publications in total were carefully studied in
this work. Fig. 3 shows an overview of the publication fil-
tering process. The number of papers published in the field
of VTFP generally increases every year. A total of 67.3% of
these works (72 out of 107) are reported in the field of robotics,
while 32.7% (35 out of 107) are in the biology area. VTFP is
of interest to both robotic and biological scientists.

The paper is organized as follows: Section II introduces
the physiological basis of biological vision and the tactile
systems. This is followed by the biological VTFP mechanism.
Section III surveys robot vision and tactile sensors with respect
to biological systems. Neural network-inspired VTFP algo-
rithms and datasets are surveyed in Section III. Challenges and
future works appear in Section IV. Section V gives a summary
of this work.

II. BIOLOGICAL VISUAL AND TACTILE SENSING SYSTEMS

Vision and touch are the two main sensing modalities that
humans utilize to collect environmental information. Studies
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on the biological sensing mechanisms of humans have inspired
that of humanoids.

A. Visual and Tactile Perception

Vision plays an important role in human perception, by
obtaining more than 80% of the total amount of information
that humans receive from the environment [43]. The human
vision system collects environmental information through the
eyes. This biological vision system is mainly composed of the
retina [44], optic nerve [45], lateral geniculate nucleus [46],
visual cortex [47] and middle temporal region [48]. One
of the main functions of the retina is the conversion of
light signals into nerve signals [49]. The lateral geniculate
nucleus (LGN) [50] is located on the diencephalon and
metathalamus and has brightness and color information pro-
cessing abilities. The visual cortex [51] is a koniocortex
located in the occipital lobe at the back of the brain. It is
responsible for the recognition and motion control of objects
with the ventral and dorsal streams.

For the human body, tactile perception is the response of
various tactile receptors in the epidermis and dermis caused
by mechanical stimulations. Human skin mainly includes
four kinds of mechanical stimulation receptors with dif-
ferent structural feature and morphology [52]: Meissner’s
corpuscle, Pacinian corpuscle, Merkel cells, and Ruffini
corpuscle [53], [54]. Their functions are summarized in
Table I. RA and SA represent rapidly and slowly adapting
receptors, respectively. Type 1 and type 2 indicate small and
large sensing area of the receptors, respectively. The tactile
receptors in skin tissue encode information about the object
that is touching the skin and then transmit it to the brain.
In other words, tactile perception is the feeling produced by
the human cerebral cortex when the skin is stimulated by the
external environment.

B. Vision-Tactile Fusion Mechanism

The human brain autonomously integrates information from
a variety of senses to accurately judge and estimate the
properties of the surrounding environment. The fusion of
visual and tactile information is conducive to the percep-
tion and interaction of humans with the environment. Thus,
complicated tasks can be completed more efficiently. For
example, visual and tactile attention mechanisms are spatially
dependent [55]. The detection time of a target by tactile per-
ception can be reduced with the aid of visual information [56].
For texture detection, the combination of eye observation and
finger touch works better than a single modal perception [57].

Human tactile perception plays an auxiliary role in the reg-
ulation of the visual cortex [37]. Visual modal information
can improve the spatial resolution of tactile perception [39].
The visual motion information influences the final position
perception of tactile stimuli [38]. The fusion of visual and
tactile information can improve the human perception capa-
bilities of the external environment [40]. The above views are
also presented by the studies in the following texts.

Macaluso et al. [37] reported that when the left and right
parts of the human brain are stimulated by the visual stimuli,

the left hemifield visual stimulation activates the right posterior
part of the lingual gyrus and vice versa. Their bimodal stimula-
tion experiment showed that the right tactile stimuli enhanced
the activation of the right visual stimuli while inhibiting the
activation of the left visual stimuli. At the same time, exper-
iments also showed that tactile sensation could regulate the
visual cortex through the back-projection of the association
region in the parietal lobe. This back-projection mechanism
might play an important role in the cross-modal association
of spatial attention.

Kennett et al. [39] also conducted a verification experiment
to observe the direct influence of the human body under pas-
sive touch. When a participant kept his gaze direction of eyes
unchanged, the tactile spatial resolution was better when the
arm was visible than otherwise. The tactile performance was
further improved when the line-of-sight region of the arm was
broadened. For human beings, the eyes use binocular disparity
and perspective projection to estimate the shape of the object,
while the hands judge the shape of an object through touch
and proprioceptive cues. Hills et al. [40] demonstrated that
the fusion of visual and tactile information could improve the
estimation accuracy of object shapes. The fusion of different
information from a single perception modality (for example,
texture gradients and disparity from vision) weakened the
overall information. However, this was not the case when this
information was from the different visual and tactile modality.

Studies have been carried out on the multimodal sen-
sory interactions that occur in the primary sensory cortices.
Lunghi and Alais [58] attempted to establish visual competi-
tion between monocular inputs in the primary visual cortex
of binocular fusion, by presenting incompatible visual sig-
nals (orthogonal grating signals) to each eye. This caused the
ambiguous perceptual responses of the eyes. In the binocular
competition, a tactile signal of visual choice was matched. The
tactile signal input would affect the visual signals outside the
visual awareness. Their experimental results showed that when
there was a tactile signal input, the invisible stimulus caused
by the suppression of binocular competition would return to
awareness sooner. Verhaar et al. [59] conducted a visual-tactile
stimulus localization experiment among different age groups.
Their results showed that responses were biased toward the
location of visual stimulus in all age groups. These findings
suggested that the human brain had inferred the possibility
that tactile and visual cues had the same cause at a very early
age, and used this possibility as a weighting factor in visual
orientation. Yang and Lu [60] conducted a judgment exper-
iment on features such as object size by fusing visual and
tactile information. They used functional magnetic resonance
imaging (fMRI) to perform visual and tactile matching tests
on volunteers and observed brain activities at the same time.
Their study showed that there were compatible or incompatible
senses between visual and tactile sensation. Saito et al. [61]
used fMRI to study the neural representation of visual and
tactile cross-modal matching of shape information in test sub-
jects in order to explore the location of information fusion
with different sensory modalities. They conducted four exper-
iments of tactile-tactile with eyes closed, tactile-tactile with
visual input, visual-visual with tactile input, and tactile-visual.
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TABLE I
DETAILS OF HUMAN TACTILE SENSORY RECEPTORS

The results showed that shape information from different
sensory modalities might be fused in the posterior intra-
parietal sulcus during the visual and tactile matching tasks.
Thurlings et al. [62] used event-related potential (ERP)-based
brain-computer interfaces (BCIs) to observe the differences in
the brain’s responses for appraising and ignoring visual, tac-
tile, and visual-tactile bimodal stimuli. They suggested that
bimodal stimulus was more likely to lead to the enhancement
of ERP components than visual or tactile stimulus alone, thus
improving the performance of BCIs.

III. BIOINSPIRED VISUAL-TACTILE FUSION

SYSTEMS FOR HUMANOIDS

Like their biological counterparts, visual and tactile per-
ception play an important role in the sensing of humanoids.
This section covers the sensors, datasets, and algorithms for
information fusion.

A. Sensors and Systems

Sensors and systems convert physical stimuli into electric
signals. Various types of sensors have been developed. Here,
we focus particularly on biologically inspired ones.

1) Visual Sensors: In robot vision, image sensors such
as the charge-coupled devices (CCDs) [63] and the comple-
mentary metal-oxide silicon (CMOS) [64], [65] that produce
video frames have been applied to visual tracking, localization,
and navigation [66], [67], [68], [69], [70], [71], [72], [73] of
robots. They have the advantages of low cost and high res-
olution of small pixels. Traditionally, they use clock-driven
sampling for information collection. Such method causes great
information redundancy, affecting the real-time functions of
robots.

Kramer of ETH Zurich [74] and Zaghloul and Boahen of the
University of Pennsylvania [75] proposed the concept of the
dynamic vision sensor (DVS) in 2002. Lichtsteiner et al. [76]
from the Institute of Neuroinformatics in Zurich proposed
the first improved DVS. Its working mechanism was simi-
lar to that of the human retina. This type of visual sensor
was event-driven rather than clock-driven. They responded
to events that occured within the visual range to achieve
more uniform event outputs and effectively improving the
dynamic range. Lichtsteiner et al. [76] developed the first
commercial DVS128 with a sampling frequency of 106 Hz
and a spatial resolution of 128 × 128 for target recognition
and tracking. IBM’s brain-inspired chip TrueNorth [77] used
a DVS128 vision sensor for gesture recognition tasks [78]. In
2017, Samsung [79] developed a DVS-G2 vision sensor with
a spatial resolution of 640 × 480 and a data rate of 300 Meps
for unmanned aerial vehicles and automatic vehicles.

The asynchronous time-based image sensor (ATIS) [80]
introduced the light intensity measurement mechanism to the
basic structure of DVS to realize image reconstruction. Its light
intensity measurement circuit started to work upon an event
generated by the DVS circuit. Posch et al. [81] developed
a commercial ATIS in 2011. This ATIS had a sampling
frequency of 106 Hz and a spatial resolution of 304 × 240.
Prophessee and Intel [82] further developed a self-driving car
based on ATIS.

Brandli et al. [83], [84] developed a dynamic and active
pixel vision sensor (DAVIS) in 2014. It was designed
by adding the active pixel vision sensor to the DVS for
texture imaging. Therefore, it had all the advantages of
DVS and Active Pixel Sensors (APSs) at the pixel level.
Moeys et al. [84] developed a DAVIS346 sensor with a sam-
pling frequency of 106 Hz and a spatial resolution of
346 × 260 in 2018. At present, DAVIS is a mainstream
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TABLE II
DETAILS OF VARIOUS BIOINSPIRED VISION SENSORS

bioinspired vision sensor used in many commercial prod-
ucts and academic research, mainly including the DAVIS240,
DAVIS346 and color DAVIS346 models [83].

Dong et al. [85] from Peking University developed the first
Vidar vision sensor in 2017. It outputted 476.3 MB of data per
second with a sampling frequency of 4 × 104 Hz and a spa-
tial resolution of 400 × 250. Vidar [85], [86] consisted of an
integrator circuit, a comparator circuit, and a photoelectric
conversion circuit, which were corresponding to the bipolar
cells, ganglion cells, and photoreceptors of the retina in the
biological vision system. Since Vidar used an integral visual
sampling model to convert the light intensity signals into pulse
signals, it could better reconstruct the details than differential
sensors such as DVS, ATIS, and DAVIS. Vidar generated pulse
outputs regardless of the visual scene, causing redundancy in
the amount of sampled data. The details of above bioinspired
vision sensors are summarized in Table II.

2) Tactile Sensors: Tactile perception has been a focus of
robotic studies due to its physical contact sensing capabilities.
The current robot tactile sensors generally include two cate-
gories of flexible and modular hard tactile sensors, focusing
particularly on material flexibility and multi-stimuli sensing
capability, respectively. Similar to that of the biological skin,
the soft and flexible characteristics of flexible tactile sensors
enable compliant attachments of them on various robot sur-
faces. They would hardly affect the robots’ movements. They
also offer a soft interface between the robot and the environ-
ment, protecting robots from abrupt collisions. Modular hard
tactile sensors adopt the advantages of signal stability and easy
access by integrating many types of sensors, mimicking the
presence of many mechanical stimulation receptors of human
tactile sensing skin.

The most widely used flexible tactile sensors are capacitive
[87], [88], [89], [90], resistive [91], [92], [93], piezoelectric
[94], [95], [96], [97] and triboelectric [98], [99], [100], [101]
tactile sensors. In order to achieve material flexibility, spe-
cific soft and flexible materials are selected. Materials, such
as metal NWs [102], graphene [103], carbon nanotubes [88],

and hydrogels [104], are commonly used for electrodes,
while nanomaterials [105] are used to adjust conduc-
tivity. The dielectric layers are often made with the
elastic materials of polydimethylsiloxane (PDMS) [106],
Ecoflex [107] and polyurethane [90]. Full body skin sensors
were further designed to equip a robot with human-like full
body tactile sensing abilities. In [108], Gbouna et al. demon-
strated a 6 × 6 capacitive sensor array with a total area of
106 mm × 106 mm for approach and contact measurements
with large area scalability. In [109], Ohmura et al. demon-
strated a “cut-and-paste tactile sensor” network consisting of
120 sensing elements on a humanoid arm for tactile perception.

The human skin structure has been an inspiration for a vast
amount of tactile skin designs. Multiple layers are often
adopted to achieve the desired sensing capability, performance
and application. In [110], Nassar et al. built a 6 × 6 artificial
paper skin through the superposition of three layers of sen-
sor networks with pressure, temperature, humidity, proximity,
pH, and flow sensing abilities. In [105], Lee et al. designed
a 10 × 10 stretchable cross-reactive sensor matrix. This skin
showed high sensitivities and fast responses to diverse stim-
uli, such as strain, pressure, flexion, and temperature. In [111],
Lei et al. proposed a multifunctional and mechanically com-
pliant artificial intelligence skin by adding stimuli-responsive
hydrogels to a capacitive circuit. This skin had high pres-
sure sensitivity and a stable capacitance temperature response.
It thus could perceive gentle finger touches and bending
motion. In [112], Li et al. proposed four tactile sensors com-
posed of multilayer microstructures inspired by the human
skin. The robot hand integrated with this skin could inde-
pendently perceive the environment temperature and object
temperature to realize accurate object recognition. In [113],
Zhang et al. designed a multifunctional tactile sensor by inte-
grating a hair sensor and a skin sensor through co-based
ferromagnetic microwire arrays. This sensor was inspired by
the structure of human hairy skin, and could be adjusted
autonomously in the face of external stimuli. Inspired by the
epidermal and outer microstructures of the human fingerprint,
Cao et al. [114] integrated materials such as polyethylene,
single-walled carbon nanotubes and polydimethylsiloxane to
construct a flexible tactile sensor. Chen et al. [115] also built
a novel electronic skin system inspired by the tactile properties
of human fingertip. It consisted of a subcutaneous fat-inspired
fabric-based porous supercapacitor, a fingerprint-inspired tri-
boelectric generator, and an epidermal-dermal inspired hybrid
porous microstructure pressure sensor. This sensor had high
sensitivity and could detect pressure, sliding speed and direc-
tion simultaneously. In [116], Lee et al. designed a flexible
electronic skin with very high piezoresistive sensitivity at
low power. This skin was inspired by the hierarchical and
gradient mechanical structure of the biological skin system,
enabling acoustic detection and subtle tactile manipulation of
objects.

With the increasing of sensor numbers, the data process-
ing becomes a challenge for large-scale tactile skins. The
sensory receptors in human skin encode tactile information
as a time interval between voltage spikes of action poten-
tials. Bioinspired data processing studies have been conducted
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on artificial receptors. Chun et al. [117] introduced a self-
powered mechanoreceptor, which integrated a piezoelectric
film and an artificial ion channel with high sensitivity and
a broadband stimulus detection function. Such mechanorecep-
tors could simultaneously realize fast adaptive (FA) and slow
adaptive (SA) pulses similar to the human skin. Tee et al. [118]
proposed a tactile sensor integrated with a pressure-sensitive
foil and a printed ring oscillator. This sensor could convert
pressure into a digital signal with a sensing range compa-
rable to that of human skin. Furthermore, Lee et al. [119]
introduced human neuromimetic architecture to an electronic
skin, inspired by the asynchronous coding. This skin achieved
fine spatiotemporal feature addressing for the fast tactile
perception of an array size of more than 10,000 sensors.
Li et al. [120] proposed an artificial mechanoreceptor with
tactile signal coding capability. This skin was composed of
a polypyrrole-based resistive pressure sensor with a volatile
NbOx memristor to simulate the tactile perception of human
skin. Chun et al. [121] proposed an artificial neural tactile
skin system using particle-based polymer composite sensors
and signal conversion systems. This skin could simulate the
human tactile recognition process. It was similar to the SA and
FA mechanoreceptors in human skin and could be used for tex-
ture prediction. Zhu et al. [122] proposed a pressure sensing
device, that could retain relevant information after removing
external pressure, imitating the tactile memory of human skin.
In [123], Kim et al. proposed a bioinspired wearable elec-
tronic device. It consisted of a stretchable capacitive pressure
sensor, a resistive random-access memory, and a quantum dot
light-emitting diode, corresponding to an artificial mechanore-
ceptor, artificial synapse, and epidermal photonic actuator of
biological system.

The modular configuration is an acceptable solution to cover
the entire irregular surface of robots, similar to the skin of the
human body. The early electronic skins for robots [124], [125]
were large-area sensor arrays with data processing capabilities
covering the large surface of a robot. Someya et al. [126]
proposed a flexible, stretchable and bendable sensor array with
pressure and temperature sensors for the tactile perception
of robot. Asfour et al. [127] applied modular force sensors
to cover the shoulders and arms of the ARMAR-III robot.
Maiolino and his colleagues [128], [129] utilized the RoboSkin
with 200 force sensors to cover the surface of a Nao robot.
In [24], Mukai et al. successfully established a modular tactile
sensing system on the RI-MAN robot, enabling human-robot
interaction, such as lifting a dummy. In [130], Iwata and Sugano
developed a TWENDY-ONE robot distributed with an electronic
skin of tactile sensors on its arms, palms and body. In [22],
Cheng et al. proposed a modular robot skin system, which
provided human-like skin cells to cover the robot’s surface and
could effectively process environmental perception data and
make corresponding actions.

Event-based signaling was also adopted by the mod-
ular tactile skins, like the biological mechanoreceptors.
Bergner et al. [131] developed an event generation algorithm
for multimodal skin cells and introduced the implementa-
tion of event-based signaling for the robotic skin. In [132],
Bergner et al. also proposed a multimodal event-driven

electronic skin system for robots, which was a large-scale
modular tactile sensor system. It enabled robots to achieve
efficient tactile perception. Therefore, the skin could be fully
integrated with a robot without additional external power or
data processing.

There is also a special type of tactile sensor using optical or
visual means to achieve tactile perception. Their force sens-
ing is mediated by the deformation of soft materials, which is
similar to the human skin’s deformation under force. Adelson
and his colleagues from MIT proposed Gelsight [16], [133],
which obtained the contact surface information by a piece of
transparent rubber with a metal coating on one side and then
reconstructed the 3D image of a object. In [134], Facebook
proposed a tactile sensor called DIGIT, which was inex-
pensive in price, compact in size and high in resolution.
It was miniaturized based on the Gelsight and was mount-
able on multi-fingered hands. Duong and Ho [135] from the
Japan Advanced Institute of Science and Technology proposed
TacLINK with a similar sensing mechanism. They installed
two coaxial cameras at each end of a robot arm to form
a stereo camera, which enabled the 3D position calculation
of all marks on the global coordinate system. They also con-
structed IoTouch [18] using fish-eye cameras to track the white
markers on the inner wall of the skin. Winstone et al. [19]
from the University of Bristol introduced TACTIP. It repli-
cated the papillae of human skin through visual observation
of the biomimetic subdermal structure [136]. The function of
the internal camera was similar to that of the mechanorecep-
tors in human skin, which could be activated by the movement
of the papillae pins.

B. Datasets

With the advent of the era of artificial intelligence and big
data, an increasing number of studies show great dependence
on datasets. Publicly available datasets are favored by many
researchers since they facilitate the evaluation and compari-
son of theoretical research. The visual-tactile data acquisition
process is shown in Fig. 4. This paper reviews seven most
used public visual-tactile joint datasets, including BiGS [137],
ViTac [138], PHAC-2 [139], Multimodal Grasp Dataset [140],
TUM Haptic Texture Database [141], GelFabric [142] and
ObjectFolder 2.0 [143]. The summaries of these datasets are
shown in Table III.

1) BiGS: Chebotar et al. [137] from the University of
Southern California, USA, established a grasp stability dataset
based on the Vicon system and the BioTac tactile sen-
sor provided by the SynTouch LLC. The dataset contains
1,000 records of grasping experiments on three types of
objects: balls, boxes, and cylinders. The successful and failed
tags are 54% and 46%, respectively. Bednarek et al. [144] con-
ducted grasp classification experiments on the BiGS dataset
to compare the performance of four multimodal fusion algo-
rithms of late fusion, MoE, intermediate fusion and LMF.
Rouhafzay et al. [145] retrained the convolutional neural
network on the successful cases of the BiGS dataset and
proposed a hybrid framework MobileNetV2. Results proved
that their pretrained deep convolutional neural network on
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Fig. 4. Data acquisition for the VTFP dataset.

TABLE III
THE DETAILS OF PUBLICLY AVAILABLE DATASETS

[144]

[145]

[137]

[145]
[156]

[140] [141]
[142]

[143]

[145]

[138]

[146]

[144]

[139]

[154]

[140]
[150] [154] [155]

[143]

visual images could be effectively transferred to the tactile
dataset for classification tasks.

2) ViTac: Luo et al. [138] at MIT built the ViTac Cloth
Dataset. It contains visual and tactile images of 100 daily
clothes. One thousand fabric images and a total of 96,536 fab-
ric tactile images were collected by a Canon T2i SLR
camera and a GelSight tactile sensor, respectively. The
dataset was established to first fuse and share the visual
and tactile characteristics of different fabrics and then to
improve the accuracy of fabric texture recognition tasks.
Rouhafzay et al. [145] selected 12 kinds of tactile data from
the ViTac dataset to retrain and fine-tune their pretrained
deep convolutional neural network to ensure the quality of
transfer learning. Lee et al. [146] proposed a cross-modal

sensory data generating framework using a conditional gener-
ative adversarial network to generate pseudovisual data from
tactile data or to generate pseudotactile data from visual data.

3) PHAC-2: Researchers [139] from the University of
Pennsylvania and the University of California, Berkeley jointly
established this haptic adjective dataset. The dataset contains
visual images and tactile signals of 53 common household
items. The tactile signals of each object were collected by
a pair of BioTac sensors mounted on a PR2 gripper. The visual
images were captured by a camera from eight different direc-
tions. Each object has 24 tactile adjective tags (for example,
soft or rough). Chu et al. [139] developed several machine
learning algorithms for human-robot interaction studies on this
dataset to understand the meaning of tactile adjectives from the
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perspective of a robot. Similarly, Bednarek et al. [144] per-
formed the tactile adjective label classification task based on
the dataset to compare the performance of four multimodal
fusion algorithms of late fusion, MoE, intermediate fusion
and LMF.

4) Multimodal Grasp Dataset: Robot dexterous hand
manipulation has always been a research hotspot in the
field of artificial intelligence. In order to further study
the stable grasping method of robots, Intel Labs China
and Tsinghua University constructed a multimodal grasping
dataset [140] of 10 different objects based on the Eagle Shoal
robot hand. The dataset consists of 2550 groups of valid
data. The visual data of the object were collected by the
RealSense depth camera, while the tactile data were collected
by a 16-channel tactile sensor. Sejdić et al. [147] performed
the short-time Fourier transform to evaluate the quality of
the dataset. Hochreiter and Schmidhuber [148] conducted slid-
ing detection experiments based on this dataset, using the
long short-term memory (LSTM) network and the traditional
classifiers.

5) TUM Haptic Texture Database: Strese et al. [141] from
the Technical University of Munich established the haptic tex-
ture database. The TUM dataset collects texture images and
tactile acceleration trajectories of surface materials from foam,
fiber, rubber, stone, wood, net, light, textile, paper and fabric.
Each material sample has 10 texture images and 10 tactile
acceleration trajectories [149]. Each category basically con-
tains 5 to 17 samples. Each training and test set includes
108 surface material texture samples. Zheng et al. [150]
used this dataset to compare their proposed framework
with seven state-of-the-art frameworks, such as CCA [151],
KCCA, Cluster-CCA [152], WMCA, DCCA, DCCAE and
DAML [153], in order to verify the visual-tactile cross-modal
retrieval framework based on the discriminant adversarial
learning. Zheng et al. [154] also proposed a cross-modal learn-
ing algorithm for material perception based on a deep extreme
learning machine on this dataset. Deep ELM was an algorithm
that could efficiently learn high-level features from the input
raw data as well as low-level features.

6) GelFabric: Yuan et al. from MIT [142] established
another fabric perception dataset called GelFabric. It contains
119 kinds of fabrics, such as polyester, satin, knit, curtain
cloth, terry cloth, burlap, oilcloth, and other functional fab-
rics. Ten color images and 10 tactile images for each fabric
were collected by the Canon T2i SLR and Gelsight tactile
sensor. The size of the visual and tactile images was manu-
ally adjusted to 224 × 224. Zhang et al. [155] proposed and
verified a local visual-tactile fusion algorithm for the object
recognition of robot on this dataset.

7) ObjectFolder 2.0: Gao et al. [143] from the Stanford
University and CMU built a multisensory dataset ObjectFolder
2.0. It was augmented based on ObjectFolder 1.0. ObjectFolder
2.0 consists of visual, tactile, and auditory data of a large-
scale of common household objects. It contains 1000 implicitly
represented objects, each of which contains a complete multi-
sensory profile of the real object. Gao et al. [143] virtualized
each object by encoding its intrinsic properties (texture, mate-
rial type and 3D shape) with an Object File implicit neural
representation. Furthermore, they conducted experiments with

this dataset on tasks of object scale estimation, contact local-
ization and shape reconstruction. Results demonstrated that
the employment of this dataset could effectively reduce the
differences between simulation and reality.

C. Algorithms

Many studies [157], [158], [159], [160], [161] have shown
that when humans recognize physical information from the
external environment, the brain will share and merge the
information collected by different sensory organs. Many
researchers at home [15], [21], [28], [140], [150] and
abroad [16], [138], [142], [162], [163] have also carried out
a series of studies on the fusion effect of visual and tac-
tile information, regarding the fusion algorithms. Visual and
tactile fusion algorithms can be roughly divided into two cate-
gories based on their data fusing strategies: indirect and direct
fusion methods. The former is a generalized fusion of visual
and tactile information on the basis of previous unimodal per-
ception information. The information of these two modalities
exists independently and only play a mutually complementary
role. The latter fuses the information of the two modalities by
means of data fusion, especially with neural network-inspired
algorithms.

1) Indirect Fusion Methods: The indirect fusion first uses
one of the visual or tactile modal information to make
a preliminary decision before introducing that of the other
modality as a supplementary explanation, thereby improving
the performance. Yamada et al. [164] proposed a visual and
tactile fusion algorithm that first described the visible part of
a 3D object globally through visual data and then improved
the detailed features through the local deformable mechanism
of the tactile perception model. Ilonen et al. [165] proposed an
optimal estimation algorithm for visual and tactile fusion based
on the constraint of object symmetry. The visual model was
captured in the form of a three-dimensional point cloud. The
visual and tactile data were fused by the Iterated Extended
Kalman Filter (IEKF). Prats et al. [166] proposed a vision-
tactile-force fusion algorithm based on virtual visual servoing.
This algorithm used the visual servoing method to estimate
the initial pose of the object before utilizing the tactile sen-
sor to feed the estimation error back. This fusion algorithm
could provide accurate position information for the robot to
complete the sliding door pushing task. Yuan et al. [162]
proposed an active tactile perception algorithm to identify
clothing properties. They used a convolutional neural network
VGG16 to select the location to be explored. Then they
used another convolutional neural network VGG19 to identify
clothing properties from the tactile data.

2) Direct Fusion Methods: Neural network-based methods
have been continuously applied to the research of visual tac-
tile perception fusion, promoting the development of direct
fusion methods. Liu et al. [15] proposed a joint group kernel
sparse coding (JGKSC) fusion algorithm based on the weak
pairing problem of the visual and tactile modal data for
object recognitions. Compared with the kNN classification
algorithm, it had a performance with an accuracy of up
to 90%. Luo et al. [138] proposed a fabric texture recogni-
tion algorithm for visual and tactile images based on Deep
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Maximum Covariance Analysis (DMCA). This algorithm used
deep neural networks to learn the visual and tactile modal data,
obtaining an accuracy up to 90%. Li et al. [163] proposed
a fusion method based on a deep neural network to deter-
mine the sliding of grasped objects. They used a convolutional
neural network (CNN) [167], [168] of pretrained model on
ImageNet to extract the features of visual and tactile images.
They applied the LSTM network to compare the feature
sequences of these two modalities and make corresponding
decisions. Cui et al. [169] proposed a 3D convolution-based
visual-tactile fusion deep neural network (C3D-VTFN) frame-
work to evaluate the grasping state of various deformable
objects with an accuracy of 99.97%. Zhang et al. [170]
proposed a fusion clustering algorithm based on the deep
autoencoder-like nonnegative matrix factorization framework.
It used the depth matrix factorization method under the con-
straints of the autoencoder-like structure to learn the visual and
tactile fusion data. Takahashi and Tan [171] proposed a deep
visual-tactile learning algorithm based on an encoder-decoder
network and latent variables.

The learning and prediction capabilities of the algorithms
are also of interest. Cui et al. [172] proposed a visual tactile
fusion learning algorithm based on the self-attention mecha-
nism (VTFSA) to predict whether a robot can perform a stable
grasping task. Calandra et al. [173] proposed a visual and tac-
tile fusion algorithm based on a deep multimodal convolutional
neural network to adjust the robot’s grasping actions. The
algorithm model was an end-to-end network that could learn
regrasping strategies from the original visual and tactile data.
Lee et al. [174] proposed a multimodal representation model
based on self-supervised learning to provide rich feedback
information for robots to perform complicated manipulation
tasks in an unstructured environment. Yang et al. [28] proposed
a visual-tactile multimodal fusion model for grasp stabil-
ity prediction. Before grasping, RGB images collected by
the camera were input into the pretrained convolutional neu-
ral network. The data collected by the tactile sensor were
input into the LSTM network during grasping. The grasping
success rate was up to 94%, which was much higher than
that of the visual-only algorithms (84%). Dong et al. [175]
proposed a lifelong visual-tactile learning (LVTL) framework,
which constructed a modal invariant space based on the sparse
constraints to capture the internal mapping differences of
visual and tactile modalities. Experimental results showed
that the performance of LVTL was better than other algo-
rithms, such as ELLA [176], lslMTMV [177], rLM2L [178]
and L2HMT [179].

D. Applications

The applications of visual and tactile fusion perception on
robots roughly contain two categories: algorithms for envi-
ronment perception and algorithms helping robots perform
complex tasks. Detailed information related to the applications
and algorithms is shown in Table IV.

1) Algorithms for Environment Perception: In the human
perceptual system, the information collected by the vision
system and the tactile system can complement each other for
fused perception. It is the same to robots.

The implementation of tactile information facilitates the
3D reconstruction of objects. Björkman et al. [180] used
a depth camera to capture objects in a fixed direction to ini-
tially construct an incomplete 3D model. Then, they used
the Gaussian process regression to estimate the uncertainties
of each position. Finally, they applied the tactile perception
on areas with the highest uncertainty to construct the 3D
construction. Allen [181] proposed a method for the recon-
struction of irregular objects. They firstly determined the
shape, size and position of an example hole by vision. Then,
they modelled the information by tactile sensors. The work
in [164], [165] also proposed fusion algorithm for 3D object
reconstruction.

VTFP enhances the object recognition accuracy compared
with a single modal perception. Studies of Heller [57] showed
that the accuracy of the texture recognition task based on
visual-only or tactile-only information was not better than
70%, while it increased by approximately 12% based on
visual-tactile fusion. The methods proposed in [138], [162]
also obtained higher object recognition scores based on visual-
tactile modal information fusion.

Delicate manipulation is another application of VTFP on
robotics. It takes both advantages of the object and force recog-
nition capabilities of this algorithm and the motion execution
capability of robot. Cui et al. [169] presented a stable grasping
adjustment strategy for deformable objects achieving an accu-
racy up to 99.97%. Moreover, the VTFP can aid object pose
identification for grasping when it is obscured. Lee et al. [174]
used the one-dimensional force signal from the tactile sensor
and the RGB image to train a CCN network and to evaluate
the alignment state of different wedges and grooves, obtaining
an average success of 78.7%.

2) Algorithms Helping Robots Perform Complex Tasks:
Many researchers have recently applied visual-tactile fusion
methods to conduct a series of complicated robot tasks.
Agravante et al. applied a fusion algorithm [182], [183] to aid
the human-robot collaboration, allowing humans and robots to
cooperate in the task of moving a table while avoiding objects
from falling. The robot used the visual and tactile sensors to
obtain the pose of the table and the objects on the table and
human action intention, respectively. Dong et al. [175] applied
the VTFP to complete the stability control of square objects
and spheres, which could be applied in daily life and work-
ing scenarios. Prats et al. [184] developed a librarian robot. It
used a CCD camera to obtain the label of a required book, and
then could be guided to remove the book without affecting the
surrounding books through a combination of visual and tactile
sensor information feedback.

Kudoh et al. [185] developed a painting robot by using
a visual-tactile fusion control method to realize the control
of the pen by robot fingers, including the tilt angle of the pen
tip and the friction between the pen tip and the drawing paper.
This robot successfully depicted the two-dimensional contours
of a man and an apple.

IV. CHALLENGES AND FUTURE WORKS

As discussed above, the application of VTFP has pro-
moted the environment perception capability and com-
plex task performance of robots. However, it also faces
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TABLE IV
CLASSIFICATION OF APPLICATIONS

[164]

[165]

[162]

[15]

[138]

[163]

[169]

[172]

[174]

[175]

[183]

[184]

[173]

[176]

[28]

[166]

[171]

several challenges, ranging from sensors to algorithms and
applications.

A. Sensors and Systems

Currently, the types of sensors used for VTFP are limited.
Among the publications, that specified visual sensor types,
more than half of them applied traditional CCD and CMOS
sensors. Only one study [186] used the DVS neuromorphic
camera to improve the accuracy of the external information
judgments. Similarly, commercially available resistive tactile
sensors are the most widely used tactile sensors, account-
ing for more than one-third of the publications. Increasing
sensor diversity, especially bioinspired sensors, may bring
new possibilities to related research due to their special
characteristics.

B. Datasets

The current datasets were collected mainly from fabrics,
household items and geometric objects, which are few in num-
ber and small in size. The datasets can be enriched by increas-
ing the number of objects or through artificial intelligence
methods such as the Generative Adversarial Network (GAN),
which has been widely studied and used in visual-based
research. Most of the visual and tactile data were collected sep-
arately. The studies, that collected visual and tactile data simul-
taneously, only used sensors on robot hands or end-effectors.

It is quite different from their biological counterparts that use
eyes and tactile sensors for real-time fusion.

C. Applications of VTPF

Tactile perception of human organisms includes
three-dimensional forces, stretch, temperature and vibra-
tion. Various tactile sensors are spread all over human body.
Therefore, the organism can perceive the environment through
the fusion of tactile and visual information of the whole body.
In contrast, the VTPFs of robots rely largely on pressure
sensors (accounting for more than half of the literature).
Moreover, the number of tactile sensors for robotic VTPF
is small. More than 50% of the studies used fewer than
10 tactile sensors, which were mainly installed on the grippers.
Therefore, the current applications of robotic VTPF are mostly
in relatively simple tasks, such as delicate manipulation and
object recognition. Nevertheless, the number of tactile sensors
on robots are increasing. For example, the number of tactile
sensors covering the H1 robot surface proposed by TUM has
reached 1260 [22].

D. Multiperception Fusion

Robot perception in complex environments for complicated
tasks may require fusion of multimodal sensing, such as
visual, tactile, auditory, olfactory and gustatory. When sen-
sors and application scenarios are different, the choice of
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fusion strategy is a challenge. The performance of machine
learning-based fusion algorithms suffers from poor transfer
capabilities.

V. CONCLUSION

This paper first reviews the physiological basis of biologi-
cal vision and tactile systems and the biological vision-tactile
fusion mechanism. After that, the relevant principles of typi-
cal bioinspired vision and tactile sensors are surveyed. Several
vision-tactile fusion algorithms and publicly available datasets
are reported. Compared with the single vision- or tactile-based
methods, the algorithms based on visual and tactile fusion
show better performance. In addition, this paper classifies and
summarizes the applications of VTFP to robots. The chal-
lenges and future works of the VTFP and its applications to
robots are discussed at the end of this review. This paper pro-
vides a systematic review of the VTFP, including the biological
mechanisms and inspirations, robot sensors, fusion algorithms
and datasets, as well as its applications to robots. Hopefully,
this survey will be of use to practitioners designing VTFP
systems and to researchers working on humanoid robotics.
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