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Ultrasound Plane Pose Regression: Assessing
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Abstract—In obstetric ultrasound (US) scanning, the learner’s
ability to mentally build a three-dimensional (3D) map of the fetus
from a two-dimensional (2D) US image represents a significant
challenge in skill acquisition. We aim to build a US plane
localization system for 3D visualization, training, and guidance
without integrating additional sensors. This work builds on top
of our previous work, which predicts the six-dimensional (6D)
pose of arbitrarily oriented US planes slicing the fetal brain with
respect to a normalized reference frame using a convolutional
neural network (CNN) regression network. Here, we analyze in
detail the assumptions of the normalized fetal brain reference
frame and quantify its accuracy with respect to the acquisition
of transventricular (TV) standard plane (SP) for fetal biometry.
We investigate the impact of registration quality in the training
and testing data and its subsequent effect on trained models.
Finally, we introduce data augmentations and larger training
sets that improve the results of our previous work, achieving
median errors of 2.97 mm and 6.63◦ for translation and rotation,
respectively.

Index Terms—Fetal ultrasound, convolutional neural network,
plane localization, alignment, fetal brain.

I. INTRODUCTION

FETAL US is a non-invasive, real-time, and cost-effective
diagnostic tool for monitoring fetal growth and anatomy

throughout gestation [1]. During routine mid-trimester fetal US
scan, the sonographer acquires the SP, predefined anatomical
planes defined by scientific committees to promote interna-
tional guidelines for fetal US images [2]. Specifically, the TV
SP needs to show the skull shape, the cavum septum pellu-
cidum (CSP), the posterior horn of the lower lateral ventricle,
and the anterior horns of the lateral ventricles [3] (Figure 1).
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Fig. 1. TV SP to evaluate fetal biometry in the brain. This plane needs
to show the skull shape, the CSP, the posterior horn of the lower lateral
ventricle, the anterior horns of the lateral ventricles, the skull shape, and the
falx midline.

This allows for reliable measurements of specific structures
and reduced inter- and intra-sonographer variability. The cor-
rect identification of SPs is essential in the second-trimester
fetal anatomic survey to investigate the morphological char-
acteristics of the fetus and detect abnormalities or deviations
from the expected growth patterns. Sonographers may struggle
to obtain good SPs for various reasons, including inexperience,
limited training, time limitations, and fetal movement [4], [5].
Most trainees learn to scan actual patients under the direct
supervision of an expert. Although US simulators have been
developed recently, trainee engagement has been limited due to
competing time priorities [6]. The primary training challenge
faced by all novice sonographers is not related to knowledge
of anatomy or familiarity with the US machine interface.
Rather, the manual navigation of the probe toward acquiring
SP requires the sonographer to build a 3D map of the fetus
from dynamic 2D sectional views while handling the probe.
Measurements of biometric parameters and assessments of the
fetal brain’s anatomy may be erroneous due to mistakes in
locating the 2D scan within the 3D volume.

At present, SPs recognition represents the main focus of
fetal US training. Due to the requirement to interpret variable
and complex images and their spatial relationship, autonomous
probe navigation toward a target plane remains challenging [7].
Our final aim is to develop a US navigation system that guides
the sonographer toward obtaining SPs with reference to fetal
anatomy.

In [8], we proposed a method to localize a US plane of
a fetal brain directly from its 2D US image. While this
is a promising result toward active guidance during fetal
scanning, a few aspects still require further investigation. First,
it assumes that brains from different fetuses can be mapped
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to the same normalized coordinate system, where each SP
always has the same pose coordinates. The accuracy of this
assumption has not been quantified, which limits the analysis
of experimental results. Secondly, the achieved pose accuracy
is still far from optimal due to a lack of variation in training
data.

In this work, we expand on this work with the following
contributions:

• We developed a tool for annotating poses of SPs in 3D US
volumes using the Unity engine and a gaming controller.1

We used this tool to obtain ground truth poses of TV SPs
(annotated by an obstetrician) of a publicly available fetal
brain dataset. This provides a novel way of assessing the
registration of fetal brain volumes from different fetuses.

• We evaluate to which extent the brains of different fetuses
can be registered to the same generalized coordinate
frame. While this is essential to assess training and
validation data for fetal brain pose regression models,
it has not been done in the previous literature on this
topic [8], [9], [10].

• We evaluate different volume registration techniques and
observe that manually annotating anatomical fiducials
within the fetal brain is fundamental for good registration
results. We demonstrate that this also contributes to
the effective training of pose regression models and
preserving their assumptions.

• We outperform the pose regression results obtained in [8]
by improving the volume registration procedure, introduc-
ing additional data augmentation, and increasing training
sets.

II. RELATED WORK

This section presents the related work for three related but
different tasks: extraction of SPs, slice-to-volume registration,
and localization of SPs.

A. Extraction of Standard Planes

Previous work proposed automating the extraction of SPs
from data acquired with a simplified protocol rather than
assisting operators in acquiring typical freehand 2D SPs. In
one of their initial works, Zhang et al. [11] developed a
system based on two AdaBoost classifiers placed in cascade to
automatically detect in a coarse-to-fine way early gestational
sac SP. Further early studies [12], [13], [14], [15] detect key
abdominal structures and landmarks in a sequence of 2D US
fetal images to classify the SPs in each frame of US videos
based on the presence and orientation of the landmarks using
various conventional machine learning (ML) algorithms like
AdaBoost, Random Forest as well as support vector machines.
These methods, however, are only applicable to a subset of
fetal SPs (brain and abdomen); besides, the quality of the
obtained SP cannot be compared with the one achieved with
typical freehand scanning.

Classification methods based on CNNs were used to detect
2D SPs because of their powerful ability to learn hierar-
chical representations automatically. To detect the fetal SPs,

1FetalUltrasoundSimulator-Unity - GitHub.

Chen et al. [16] fine-tuned a pre-trained classification CNN
based on transfer learning. Baumgartner et al. [17] proposed a
classification model to detect thirteen SPs with unsupervised
learning and then used weakly-supervised learning (SL) based
on image-level labels to locate anatomical structures in each
plane. The study employed extensive data, including videos
longer than those usually collected in clinical practice (roughly
30 minutes). The CNNs are fed with surrounding and addi-
tional information from each US video. To capture temporal
information in 2D US, some works added to the detection of
the three fetal SPs a recurrent neural network (RNN) [18].

All the methods mentioned above are effective in the
detection of SP images. Still, they can only determine whether
an image was captured at a SP, not where exactly it is in the
corresponding 3D space. Besides, the models require a high
amount of annotated data to be trained.

B. Slice-to-Volume Registration

One approach for US plane localization is to find its
alignment with respect to a pre-acquired 3D volume of the
same anatomy. This optimization problem is typically solved
with iterative numerical methods that minimize the distance
between specific landmarks or maximize intensity-based simi-
larity metrics [19]. Unfortunately, the cost functions associated
with these metrics are frequently non-convex, limiting the
capture range of these registration methods. Our task differs
from a classic slice-to-volume registration method, i.e., it does
not require a previously acquired 3D volume of the same
subject being scanned. Instead, we predict the pose relative to
a generalized brain center, i.e., a stable anatomical brain point
across the different, pre-aligned volumes, where training and
test data belong to different subjects.

C. Localization of Standard Planes

Predicting the pose of SPs in 3D volumes can be performed
without a patient-specific model and without using pre-
operative data. Various methods have been proposed for the
localization of US planes and US probe navigation using rein-
forcement learning [20], [21] or external sensors [22], [23].
In the context of fetal scanning, this has been primarily
approached as a classification problem, where the plane pose
space is discretized into bins, and the estimation boils down
to selecting one of the bins [24], [25]. In fetal magnetic
resonance imaging (MRI) [26], [27] and fetal US [28], the
prediction of slice locations has been previously improved
with learning-based methods. General purpose learning-based
methods for pose estimation approach this as a regression
of a 3D translation and a 3D rotation. 3D rotations can be
represented in conventional ways, such as quaternions, axis-
angle, or Euler angles. Zhou et al. pointed out in [29] that,
if the entire rotation space is required, these representations
are sub-optimal for specific angle ranges, and proposed a new
6D representation for rotations that does not suffer from these
issues. This rotation representation has been adopted for US
plane localization in [8], where a regression CNN is proposed
to predict the 6D pose of arbitrarily-oriented planes slicing the
fetal brain US volume without the need for real ground truth

https://github.com/surgical-vision/FetalUltrasoundSimulator-Unity.git
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Fig. 2. Pipeline to train and test the network. (A) The 3D fetal brain US volumes are registered in 3D Slicer using similarity registration; (B) The volumes
are reconstructed into Unity, and synthetic sectional (slice) image representations are generated and saved along with their 6D pose (translation and rotation)
relative to the center of the fetal brain US volume; (C) These images are fed into the network to output the estimated slice 6D pose (translation and rotation)
relative to the same point.

data in real-time or 3D volume scans of the patient beforehand.
The proposed network reliably localizes US planes within the
fetal brain in phantom data and successfully generalizes pose
regression for unseen fetal brains from a similar gestational
age (GA) as in training. The network was tested on real
fetal brain images with a GA ranging from 21 to 25 weeks.
Similarly, Yeung et al. [9] proposed a CNN that takes a set
of images as input and learns to compare them in pairs. The
model was tested on fetal brain volumes with a GA ranging
from 18 to 22 weeks. Then, in [10], the authors added an
unsupervised cycle consistency using the fact that the overall
displacement of a sequence of images in the 3D anatomical
atlas is equal to the displacement from the first image to the
last in that sequence.

III. MATERIALS AND METHODS

The development of our US pose regression system has been
divided into three main blocks, reported in Figure 2. First, we
align 3D US volumes for the training and validation of our
models. Secondly, we developed a Unity-based simulator to
visualize and manually annotate SPs in 3D US volumes. This
also enables the automated generation of supervised training
data for our pose regression models, i.e., 2D synthetic images,
and their ground truth 6D pose relative to the volume center.

Finally, we detail our deep learning (DL)-based plane pose
regression system.

A. Data Preparation

1) Dataset: We utilize a selection of 6 fetal brain US
volumes from a dataset of 188 volumes [30] (singleton
pregnancy with no abnormal findings).2 The criteria for our
selection is to test the generalization of a canonical frame to
different fetuses within a 20–25 weeks GA range, where key
anatomical landmarks can be clearly annotated for registration
and evaluation. In detail, we select volumes acquired at
the axial TV SP position (166 volumes); we only include
volumes within the 20–25 weeks GA range (46 volumes);
lastly, an experienced obstetrician excluded volumes where
key landmarks (such as optic nerve) were not clearly visible
along with multiple scans of the same fetus. This resulted in
six real fetal brain US volumes with a GA ranging from 21 to
25 obtained from different fetuses (fi, with i = 1, . . . , 6). All
volumes were processed to be isotropic with a voxel size of
0.5×0.5×0.5 mm and an average size of 249×174×155 mm
(coronal×axial×sagittal, actual size of the acquired volumes).

2) Volume Registration: Even though all scans were
acquired with a single protocol and in the position of the
TV SP, experiments show that the anatomy within those

2Refer to www.datavers.nl for details.

https://dataverse.nl/dataset.xhtml?persistentId=doi:10.34894/X0Z7U1


44 IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, VOL. 6, NO. 1, FEBRUARY 2024

Fig. 3. Registration procedure on real fetal brain US volumes. Workflow from pre-registration to post-registration: (a) Starting US fetal brain volumes before
registration, (b) Some of the fiducial points used to achieve an initial alignment of the volumes, (c) Contour mask of the brain used to avoid overfitting on
the shape of the US volume.

volumes is far from well aligned and requires further regis-
tration. We tested different registration methods and obtained
the best results with a fiducial-based approach utilizing 3D
Slicer [31], [32]. The method is depicted in Figure 3. Starting
from the initial volumes (Figure 3a), we proceed as follows:

• We annotated fiducial points to achieve an initial align-
ment of the volumes using the Fiducial Registration
Wizard module (Figure 3b);

• Defined a contour mask of the brain using the Segment
Editor module to avoid overfitting on the shape of the US
volume during registration;

• Used the general registration (BRAIN) module available
in 3D Slicer to register the volumes with a similarity
registration phase (rigid registration + scale for a total of
7 degrees of freedom), as shown in Figure 3c. We chose
the previously obtained masks as a Region of Interest
(ROI) so that the registration algorithm only considers a
specific image region for the registration (the fetal brain).

B. Unity Simulator for Standard Plane Annotations and
Synthetic Images Generation

Starting from an open-source project,3 we developed our
simulator using the game engine Unity [33]. The first step
is rendering the volume starting from RAW, PARCHG, or
Digital Imaging and Communications in Medicine (DICOM)
datasets. The simulator allows the user to render the volume
using three modes: Isosurface Rendering, Maximum Intensity
Projection, and Direct Volume Rendering. The latter is the
standard rendering mode; it uses transfer functions (1D or 2D)
to determine the color and opacity while projecting rays across
the dataset. Transfer functions translate density (and gradient
magnitude in case of 2D) to a color and opacity. The simulator
allows the user to set a custom transfer function.

• 1D Transfer Function: the density is represented on the
X-axis, whereas the opacity (alpha) is on the Y-axis. The
user can create a curve for opacity by density by shifting
the grey alpha knots. The bottom gradient-colored panel
maps color to density.

• 2D transfer function: the density is represented on the
X-axis, whereas the gradient magnitude is on the Y-axis.
Using the sliders, the user can define a rectangle shape,

3UnityVolumeRendering.

Fig. 4. Unity simulator for volume reconstruction, SP annotations, and
automatic supervised data generation. Using the suggested commands, the
clinician can visualize the slicing plane in an external window while
controlling the probe with the joystick. Once the desired plane is reached, it
can be saved using the “Save plane” button along with its 6D pose relative
to the volume center.

modify its size/position, and the minimum and maximum
values for alpha/opacity.

1) User Interface: After loading the DICOM dataset
extracted from 3D Slicer and setting the transfer function,
the clinician can add a plane slicing the reconstructed 3D
US volume (left-hand side of Figure 4) with an arbitrary
orientation and visualize the plane in an external window
(right-hand side, bottom). The plane can be controlled using
a joystick (right-hand side, top), simplifying the annotation
of the SPs. Hence, the clinician can modify the position and
rotation of the plane using the joystick while monitoring the
appearance in the external window. Once the clinicians are
satisfied with the pose of the SP, they can save it using the last
button in the external windows to get a picture of the slicing
plane and its 6D pose relative to the volume center.

2) Training and Testing Data Generation: To generate
training data for our models, we generated synthetic slices by
applying rotation and translation to a plane placed in the center
of the volume generated with a uniform random distribution
within a fixed range to avoid slices with poor overlap with
the volume. The synthetic images obtained by slicing the
volume were saved along with their pose with respect to the
volume center (fetal brain). This provides an automated way
of generating a high amount of training data with reliable
ground truth labels. An obstetrician annotated the position
of the TV SP by directly manipulating a slicing plane with

https://github.com/mlavik1/UnityVolumeRendering/
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the joystick and choosing the translation and angle sampling
intervals to avoid sampling planes at the edges of the volume
containing no information. The nearby planes were generated
by applying small random rotations and translations (uniform
distribution). Specifically, the acquisition interval between two
planes was decreased from 0.1 to 0.001 for translation (Unity
environment, with coordinates normalized between –1 and 1 so
that the pose regression works in a fixed, normalized range,
independent of the real brain size in mm) and from 7.9◦ to
1.9◦ for rotation compared to the acquisition of planes at
random coordinates. We acquired 20699 planes with random
orientation per volume and 1330 around the TV SP for a total
of 22029 images for each volume.

C. Deep Learning-Based Plane Pose Regression System

We base our 6D pose regression system on the network
proposed in [8] (Figure 2c). We used an 18-layer residual
CNN (ResNet-18) [35] as a backbone for feature extraction
with the pre-trained ImageNet weights [36]. We modified the
network by re-initializing the fully connected layer based on
the representation’s dimension (nine parameters) and adding
a regression head to directly output the rotation and trans-
lation representations. The network receives the US image I
(128×128) obtained by slicing the volume and its 6D pose
with respect to the center of the fetal brain US volume
θGT = (tx, ty, tz, αx, αy, αz). We use this information as
the ground truth label for network training and validation.
The CNN learns to predict the 6D pose with respect to
the same point θPred = (t′x, t′y, t′z, α′

x, α
′
y, α

′
z). Specifically, the

network first outputs a vector of nine parameters θOut =
(t1, t2, t3, r1, . . . , r6); the first three are used for the translation
and the last six for the rotation. Then, r1, . . . , r6 are used
internally by our CNN to reconstruct the rotation matrix R′
in the forward pass. Differently from [8], we also perform
image intensity augmentation. More specifically, we change
brightness, contrast, and saturation. The detailed parameters
of this augmentation are described in the next section.

IV. EXPERIMENTS AND RESULTS

In this section, we report the results of three main
experiments. First, in Section IV-A, we assess three differ-
ent US volume registration methods and investigate their
qualitative and quantitative impact in defining a gener-
alized inter-patient coordinate frame for the fetal brain
(Sections IV-A1 and IV-A2). Besides, we illustrate the effect
of these registration methods when training US plane pose
regression networks using a fetal US volume of a single 23-
week fetus to train the network and fetuses with a GA ranging
from 21 to 25 weeks for testing (Section IV-B). In our second
experiment, in Section IV-C, we investigate how consistent the
manual annotations of the TV SPs are both in terms of quality
(Section IV-C1) and variability (Section IV-C2) and assess
their role in evaluating the quality of volume registration and
pose regression. Lastly, Section IV-D reports final pose regres-
sion results with Leave One Out Cross-Validation (LOOCV)
when training data has the best registration alignment available
and intensity data augmentations are performed.

A. Volume Registration

Before training the pose regression models, we require a
set of well-aligned 3D US volumes to generate training and
validation data. Figure 5 reports the axial, coronal, and sagittal
views of the middle slice for each US volume after aligning
them with three different volume registration methods. The
first column shows the results obtained using direct similarity
registration on raw US volume data (rigid registration + scale
for a total of 7 degrees of freedom) performed only on a
manually annotated mask, a ROI that contours the fetal brain;
this registration uses the Mattes Mutual Information (MMI)
image comparison cost metric during fitting. We provide an
identity transformation for initialization. The second column
shows the results obtained with a point-based registration
with fiducial points annotated by an obstetrician, followed by
similarity registration with a fetal brain mask. The third column
shows the results obtained with a state-of-the-art intensity
registration approach called Direct Simultaneous Registration
(DSR). Since the method is iterative, we initialized it with
the fiducial approach and performed a mono-modal rigid
registration of multiple volumes [34].

Table I reports the evaluation of the different registration
methods and their effects on US plane pose regression. We
performed two different types of evaluation.

1) Registration Error: Registration accuracy is usually
evaluated by identifying matching pairs of landmarks anno-
tated by the clinician in the ROI. We report the error between
the volumes prior to registration with a GA ranging from 21
to 25 weeks and the one used for training (23 weeks); besides,
we report the Root Mean Square (RMS) error between the
landmarks in mm and an intensity-based RMS score for the
same volumes for the three registration methods;

2) Obstetrician’s Evaluation: We asked the obstetrician to
evaluate the registration outcome for the three registration
methods, shown in Figure 5, by assigning a score between 1
(bad) and 5 (good), without taking into account the quality of
the volumes;

B. Registration Impact on CNN Results

We measure the errors of our pose regression CNN accord-
ing to the different “ground truths” resulting from different
registration methods. We evaluate to which extent the different
volume registration methods affect the perceived US plane
pose regression results.

Implementation Details: Our framework is implemented in
PyTorch and trained using a single Tesla� A100-SXM4-40GB
hosted on the Computer Science network at University College
London. The network was trained for 50 epochs with a batch
size of K = 64 using Adam optimizer, with a learning rate of
0.0001 and exponential decay rates β1 and β2 of 0.9 and 0.999,
respectively. We choose the best model weights considering
mean square error (MSE) obtained on the validation set (20%
of the training set).

Experiments: The network was trained on phantom data
and fine-tuned on real ones [8]. Specifically, we fine-tuned
the network on planes extracted from a fetal brain US
volume with a GA of 23 weeks (f1, 22029 images). We
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Fig. 5. Axial, coronal, and sagittal views of the middle slices of each volume after registration on real fetal brain US volumes. First column: results obtained
by aligning the volumes using a mask to contour the brain used to avoid overfitting on the shape of the US volume and then applying the automatic similarity
registration (rigid registration + scale for a total of 7 degrees of freedom) provided by 3D Slicer. Second column: results obtained by aligning the volumes
with the automatic registration using the fiducial points annotated by the obstetrician, followed by similarity registration using the mask that contours the
brain. Third column: results obtained by aligning the volumes with DSR registration [34].

tested it on planes from five volumes obtained with a single
acquisition of different fetuses (f2, . . . , f6) ranging from a
GA of 21 to 25 weeks to understand how well the model
generalizes over different shapes and sizes. Images were
resized to 128×128, preserving the same aspect ratio, and
cropped and centered to avoid visible sharp edges that could
cause overfitting. We augmented the training set by randomly
changing the images’ brightness, contrast, and saturation
to a value between 0 and 1. To this aim, we used the
torchvision.transforms.ColorJitter class that
is available in Pytorch for transforming and augmenting
images. We employed the Euclidean distance between the
two planes to evaluate the translation results, reported in mm.
For rotation, we display errors as the geodesic distance to
ground truth in degrees, more suitable for the geometric
interpretation of the distance between two 3D rotations and
defined as ErrorRotation = arccos((R′′

00 + R′′
11 + R′′

22 − 1)/2),
where R′′ = R′−1. Table I reports the median errors for
translation and rotation obtained on the testing volumes for
the three registration methods. Figure 6 reports the translation

and rotation error distributions for fetal brain US volumes
ranging from a GA of 21 weeks to 25 weeks to analyze
the generalization capability of the network in the three
registration methods. Besides, we performed a sanity test using
the manually annotated TV SPs for the registration using
the fiducial points and the mask. The sectional images were
saved and fed into the network to estimate their pose. We
plotted the two planes within the volume in Unity to visually
evaluate the distance between the annotated TV SPs and the
predicted ones. The predicted planes were also fed into a
pre-trained4 SonoNet, a CNN that can automatically detect
13 fetal standard views in freehand 2D US data [17], in its
Pytorch implementation. Figure 6 reports the annotated TV
SPs (green edges) and the ones having the pose predicted by
the regression network in their sectional view and within the
volumes.

4https://github.com/baumgach/SonoNet-weights

https://github.com/baumgach/SonoNet-weights
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Fig. 6. CNN results for the different registration methods, trained on a single 23w volume. (a) Translation and rotation error distributions for both planes
acquired at random coordinates and planes acquired around the annotated TV SP to analyze the generalization capabilities of the network with the three
registration methods. (b) TV SP prediction performed by the regression CNN. The green and the colored boxes indicate the ground truths and the predictions,
respectively. An obstetrician within the Unity environment manually annotated the ground truth poses of the TV SPs.

C. Standard Planes Annotations

An obstetrician annotated the SPs for all the 3D US fetal
brain volumes previously registered using the Unity simulator
detailed above.

1) Quality of Annotations: To evaluate the quality of the
annotated TV SPs, we use SonoNet in its PyTorch implemen-
tation. We report the annotated TV SPs for the various volumes
and the registration methods in Figure 7. SonoNet was able
to classify all the annotated SPs as TV SPs, the brain view
at the posterior horn of the ventricle. We then applied the
coordinates of the TV SP annotated on the training volume
(23 w) to the other planes. The synthetic images obtained
for the different volumes were fed again into SonoNet to
understand if the network could still recognize the planes as
standard views. All the planes were recognized as TV SPs,
except for the volume with a GA of 25 weeks obtained using

the automatic registration. The confidence of the classification
(value between 0 and 1) is reported on top of each image
in Figure 7. For each registration approach, the first column
shows the TV SPs obtained from the annotations. In contrast,
the second column shows the TV SPs obtained by using the
coordinates of the TV SP annotated on the training volume.
An obstetrician evaluated the appearance of SPs shown in the
second column to ensure that the obtained planes follow the
relevant clinical guidelines [2]. In this context, some of the
planes are of poor quality due to the absence of the CSP,
shown in Figure 1, and are marked in orange; other planes
display the cerebellum which should not be visible and are
marked in red. At the bottom, we report the average score,
including the training volume (23 w).

2) Variability in SPs Annotations: We evaluate the vari-
ability in annotations by reporting the standard deviation



48 IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, VOL. 6, NO. 1, FEBRUARY 2024

Fig. 8. TV SPs annotated by the obstetrician for the three registration methods and variance in translation and rotation coordinates.

Fig. 7. Evaluation of different registration methods according to SP
alignment. For each method, the first column denotes manually annotated SPs
for each volume, and the second denotes a slice at fixed coordinates where
the SP is expected, assuming the same coordinates as the reference volume
(23 w). Colors denote whether the SP follows clinical guidelines [2]. Green
box: the SP is of good quality; Orange box: the SP does not contain the CSP,
which should be visible; Red box: the SP contains the cerebellum, which
should not be visible. The numbers denote SonoNet confidence in correctly
identifying the correct SP.

of the poses of the TV SPs annotated by the obstetrician
in the various volumes. The internal variance of the entire
set provides the quality of the data. We report the variance
in translation and rotation of the annotated TV SPs for
each registration approach. For translation, we computed the

coordinates of the centroid ctransl = xc, yc, zc for each group
made of the training volume and the five testing volumes (i =
1, . . . , 6) as the mean on of three coordinates:

xc =
∑6

i=1 xi

6
, yc =

∑6
i=1 yi

6
, zc =

∑6
i=1 zi

6
(1)

Then, we computed the Euclidean distance between each TV
SP and the centroid:

di,transl =
√

(xi − xc)
2 + (yi − yc)

2 + (zi − zc)
2 (2)

Lastly, we computed the RMS of these distances:

RMStransl =
√
√
√
√1

6

6∑

i=1

d2
i,transl (3)

We computed the Chordal L2-averaging of the rotation matri-
ces for rotation, following the approach presented in [37].
This is achieved by finding the rotation Rc that minimizes
the cost

∑
(i,j)∈N ‖RijRi − Rj‖2

F . The above model can be
solved without enforcing the orthogonality constraint as a
least squares problem through vectorization and singular value
decomposition. After that, all the orthogonal constraints are
enforced by finding the nearest orthogonal matrices through
polar decomposition. Then, we computed the geodesic dis-
tance between the rotation matrix of each TV SP and the
average rotation matrix (angle of residual rotation):

di,rot(Ri, Rc) = di,rot
(
RiR

T
c , I

) = ∥
∥log

(
RiR

T
c

)∥
∥

2 (4)

where the norm is the Euclidean norm in R
3. The angular

distance function di,rot(Ri, Rc) is equal to the rotation angle
∠(RiRT

c ). Starting from the quaternion representations, it is
possible to easily compute the angular distance between two
rotations. If ri and rc are quaternion representations of Ri and
Rc respectively, and θ = di,rot(Ri, Rc), then θ = 2arccos(|s|),
where (s, v) = r−1

c · ri. The absolute value sign in s is
required to account for the sign ambiguity in the quaternion
representation of the rotation RT

i Rc. The positive sign is chosen
so that the angle θ lies in the range 0 ≤ θ ≤ π , as required.
Hence, the distance di,rot(Ri, Rc) is equal to the angle θ
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TABLE I
EVALUATION OF THE DIFFERENT REGISTRATION METHODS. WE REPORT

THE ROOT MEAN SQUARE (RMS) ERROR FOR MANUALLY ANNOTATED

FIDUCIALS AND THE RMS ERROR OF RAW VOLUME INTENSITIES, BOTH

WITH RESPECT TO A REFERENCE 23 WEEK VOLUME. WE ALSO PROVIDE

THE OBSTETRICIAN’S ASSESSMENT OF SKULL ALIGNMENT BASED ON

AXIAL, CORONAL, AND SAGITTAL PLANES ON

A 1 (BAD) TO 5 (GOOD) SCALE

belonging to the rotation RiRT
c . As before, we computed the

root mean square of the distances:

RMSrot =
√
√
√
√1

6

6∑

i=1

di,rot(Ri, Rc)
2 (5)

The results are reported in Figure 8 along with the appearance
of the TV SPs annotated by the obstetrician for the three
registration methods.

D. Ablation Study on the Pose Regression CNN

We performed an ablation study on the volumes registered
using the combination of fiducial points and masks. First, we
present the results for the US plane pose regression with and
without data augmentation on the training set. Then, we extend
the training set and combine data augmentation with LOOCV.

1) Data Augmentation: Data augmentation artificially
boosts the size and variance of the training dataset by including
transformed copies of the training examples. This is especially
useful in medical imaging, where data augmentation is applied
to expand training data, address the class imbalance and
improve model generalization. To understand to which extent
data augmentation could benefit our training, and increase the
generalization over different shapes and sizes, we augmented
the training set, as detailed above.

2) Leave-One-Out Cross-Validation: The localization
errors increase when the training distribution differs from the
testing one. A better training and testing data distribution
design can accurately reflect the model’s performance during
application. Hence, to estimate the performance of our
algorithm in making predictions on data not used to train
the model, we performed LOOCV experiments using the
volumes with a GA ranging from 21 to 25 weeks, including
the one originally used for training (23 weeks), for a total
of six volumes (N = 6). LOOCV is a special case of k-fold
cross-validation with k = N, the number of volumes. LOOCV
involves one fold per volume, i.e., each volume plays the
role of the validation set. The (N − 1) volumes play the role
of the training set. With least-squares linear, a single model
performance cost is the same as a single model. The average
error on the test set is calculated by fitting on the volumes
not used in training and gives us an idea of how well the
model will perform on data it has not previously seen. We
then calculate the error on the test set Test Erravg to be the
average of all the errors on the six test sets Test Erri:

Test Erravg = 1

N

N∑

i=1

Test Erri (6)

Figures 9a-f show the translation and rotation error dis-
tributions for the LOOCV experiments for the different
trained models. Figure 9g reports the results for the sanity
test performed using the manually annotated TV SPs, as
previously detailed in Section IV-B. Table II reports the
median, mean ± standard deviation, maximum, and minimum
errors and the average error with and without data augmenta-
tion (Equation (6)).

V. DISCUSSION

First, we note that even though all the utilized volumes in
this study were acquired with the same protocol to capture the
TV SP plane, this does not mean the anatomies in different
volumes are well aligned. This is evident from pre/post-
registration results in Table I and Figure 8. The reasons can
include different fetus positions in the womb, different fetus
brain sizes, operator variability, and US machine settings.

Our volume registration results in Table I indicate that
Fiducials+Mask provides the best alignment in terms of
fiducial errors. We argue that the alignment of such anatomical
structures is of utmost importance in our application context.
The results in Figure 7 further support that Fiducials+Mask
provides the best alignment of clinically relevant anatomy
by assessing the expected location of the TV SP plane
across different fetuses, showing higher consistency than other
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Fig. 9. Results obtained for the experiments performed with the LOOCV. (a-f) Translation and rotation error distributions for the LOOCV experiments
for the six cases. (g) TV SP prediction performed by the regression CNNs. The green and the colored boxes indicate the ground truths and the predictions,
respectively. An obstetrician within the Unity environment manually annotated the ground truth poses of the TV SPs. 23T indicates the volume having a
GA of 23 weeks used for reference in the registration and training in the previous experiments. The consistency between the annotated and predicted SPs is
demonstrated by the fact that the planes show the same anatomical structures.

methods. On the other hand, DSR is the best performing in
terms of intensity errors (Table I). However, this may indicate
overfitting since the same anatomical landmarks in different
scans of different fetuses do not necessarily have the same
intensity values. Regarding the obstetrician evaluation, DSR
slightly outperforms Fiducials+Mask. This metric reflects
a qualitative skull alignment in axial/coronal/sagittal brain
views. Finally, the results from Figure 8 suggest that annotated
TV SPs on each fetus are the most consistent in translation
for Fiducials+Mask and the most consistent in rotation for
Mask. While rotation and translation alignment favor different
methods, we observe that the best translation alignment of

TV SPs (Fiducials+Mask) overlaps with the best alignment
of anatomical features overall. In summary, the metrics most
directly linked to the correct alignment of structures inside the
brain (fiducial errors and TV SP image assessment) suggest
that Fiducials+Mask provides the best registration results.
With this in mind, we believe this method provides the most
appropriate registration to validate the generalization of brain
structure locations across different fetuses and use it to train
and test our CNN. After this alignment, a set of SP from
different fetuses, manually annotated by an obstetrician, has a
variance of 0.007 mm and 2.357◦ in translation and rotation,
respectively. These values are indicative of the ground truth
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TABLE II
TRANSLATION AND ROTATION ERRORS OF OUR METHOD FOR THE LOOCV EXPERIMENTS ON INCLUDING DATA AUGMENTATION. NORM: EUCLIDEAN

DISTANCE, GE: GEODESIC ERROR, DA: DATA AUGMENTATION, SD: STANDARD DEVIATION, 23T INDICATES THE VOLUME HAVING A GA OF 23
WEEKS USED FOR REFERENCE IN THE REGISTRATION AND TRAINING IN THE PREVIOUS EXPERIMENTS

uncertainty and, therefore, provide an estimated lower bound
for our CNN pose regression accuracy.

The results in Figure 6a demonstrate that different volume
registrations significantly impact the interpretation of regres-
sion CNN results, simultaneously affecting the trained model’s
perceived quality and the ground truth. While this effect was
mentioned in [8] as a study limitation, here we quantify its
impact. We note that better CNN results do not necessarily
mean better registration quality due to variations in the ground
truth. We present these results to highlight that CNN results
alone are insufficient to assess registration quality and only
indicate how well the training and test data fit together.

After establishing Fiducials+Mask as the most trustworthy
ground truth alignment, we fully assess our CNN with our
LOOCV study (Figure 9). Table II shows that we outperform
the pose regression results obtained in [8] due to many factors.
These include the more rigorous volume registration process,
larger training sets that include various GAs, additional image
intensity data augmentation, and removal of a fully connected
layer before final regression. The proposed CNN success-
fully generalizes pose regression to an unseen fetal brain.
Specifically, data augmentation decreased median errors by
22.86% and 10.88% for translation and rotation, respectively.
Besides, by extending the training sets, we could further
decrease the median errors and obtain a better generalization.
Our model is designed to be size invariant by performing
pose regression in normalized coordinates with respect to the
brain limits. However, GA does not only affect size but also
shape. Indeed, including different GAs covers a wide range
of shapes and sizes, enabling us to understand our model’s
current generalizability and limitations.

Despite our promising results relative to the existing
literature [8], [9], [10], our regression network still produces
outlier predictions with large errors. This is to be expected,
given that we perform estimations based on single US scans,
which can be noisy. Our median results still suggest that
the large majority of predictions has a relatively small error;
hence, this is a promising backbone for any future work

aiming at pose regression from continuous US video where
sparse erroneous predictions could be filtered with temporal
models (e.g., sliding window filtering/regularization, LSTMs,
transformers).

VI. CONCLUSION

In the context of fetal US plane pose regression, our study
highlights the need for an application-specific registration
methodology to align training and test US volumes from
different fetuses. The algorithm design and its evaluation
should focus on the explicit alignment of anatomical features
rather than volume intensities.

The obtained registration results provide promising evidence
that assuming generalized coordinates for the fetal brain is a
valid assumption within a small tolerance, especially in the
context of anatomies present in the TV SP. However, our
data only includes 6 volumes, and further analysis will require
detailed annotation of additional volumes. Besides, in our
experiments, we make use of inter-patient volume-to-volume
US registration, a domain with limited tailored algorithms.
Intensity-based approaches such as DSR or accumulated
pairwise estimates (APE) [38] are not optimal for inter-
patient registration. Potential improvements could be achieved
with landmark-based registration approaches [39], [40], [41].
However, these are not off-the-shelf applicable to our inter-
fetus registration problem; thus, adapting them requires further
work and additional training data.

We fully re-assess the results of our CNN pose regression
network for localizing fetal brain US scans in light of the
improved registration methodology. We can estimate plane
poses within the brain with a median translation error of 2.97
mm and a median rotation error of 6.63◦. These results are
promising, given that we are localizing images of a previously
unseen fetus from a single frame. However, there are still
outlier predictions with large errors (refer to maximum errors
in Table II). We believe the key to address this challenge is
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to move away from single-frame estimation and take temporal
cues into account.

This work could potentially be generalized to other anatom-
ical regions of the fetus, such as the abdomen; however, the
definition of a generalized reference frame would still be
challenging due to increased deformations.

We will also assess the potential of the current work toward
active guidance of sonographers during SPs acquisition for
fetal biometry. This could include automated feedback signals
to guide a novice from an arbitrary US plane toward the
target SP.
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