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Abstract—Motion intent detection for shoulder actions may
allow the early decoding of upper limb motions, thus enhancing
the real-time usability of rehabilitative devices and prosthet-
ics. In this study we faced a motion intent detection problem
involving four shoulder movements by using transient epochs
of surface electromyographic (EMG) signals. Reliability of time
and frequency domain features was investigated through clusters
separability properties and classification performances. Those
features able to provide accuracy greater than 90% were selected
and further investigated by a holdout scheme, i.e., decreasing
the amount of data for training the learning models (60%, 50 %,
40%, and 30%). Key findings of the study are as follows. Firstly,
single-feature approach appeared suitable for early decoding
shoulder movements, thus supporting reduced recording setup.
Time domain features related to the instantaneous variations
of signal amplitude produced the best results but frequency
domain features showed comparable performances, suggesting
no favored domain for feature extraction. Eventually, autore-
gressive coefficients suffered from a reduced amount of data used
for training. Outcomes of this study can support the design of
myoelectric control schemes, based on transient EMG data, for
driving shoulder joint assistive devices.

Index Terms—Motion intent detection, myoelectric control,
human-machine interface, pattern recognition, shoulder joint.

I. INTRODUCTION

N RECENT years, the advances obtained in surface elec-

tromyography (EMG) and artificial intelligence permit-
ted to investigate their combined role in many different
applications, ranging from medicine to robotics and virtual
reality [1], [2], [3], in order to ease the diagnosis of neuro-
muscular disorders, and to develop neuroprosthetics or trigger
assistive devices [1], [4]. This should not be surprising since
EMG constitutes a non-invasive source of information for
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the development of human-machine interfaces with differ-
ent degrees of complexity [5]. Indeed, the intelligent system
supervising the interaction could require only muscle onset
information if the upper limb motion was predefined, as in end
effector rehabilitation robotics [6]. On the other hand, higher
quality information can be mined from EMG signals when
the robot has to predict the patient motion intent in terms of
direction and final configuration of the arm [7].

The latter problem can be faced through pattern recog-
nition or proportional (regression-based) control architec-
tures [7], [8]. In both cases, EMG signals were pre-processed
and used to train models that, in the former case, are able
to predict which class of movement the subject is going to
perform. In case of proportional control, EMG is used to fore-
cast the time course of joint kinematics [9], [10]. However,
regression-based architectures could present issues related to
the amount of data needed for training. This aspect is far to
be negligible, especially in clinical applications, where few
calibration data could be available [9]. A more challenging
case can be when patients are not able to follow a predefined
path with the upper limb, making unsuitable the use of EMG
regression based architectures [11]. Thus, pattern recogni-
tion approaches maintain their appeal in order to supervise
assistive devices such as end-effector robots or rehabilitation
exoskeletons [11], [12], [13], [14], [15].

In this framework, motion intent detection was relatively
less studied for the shoulder if compared to other upper
extremity joints using a pattern recognition paradigm. A pos-
sible reason could be found in the inherent complexity of the
shoulder, which embodies a high number of degrees of free-
dom to be decoded [16], [17]. Indeed, shoulder is composed
by four joints and the whole mobility is also enhanced by the
translation of the humeral head on the glenoid, with the con-
current activity of a high number of muscles [17]. Further,
flexion-extension synergies were also recognized between
shoulder and other arm joints, such as elbow, wrist, and
fingers [12]. Therefore, the role of the shoulder for upper
limb mobility is crucial, since proper hand function cannot
be developed without the proximal control of its position in
space, being the trajectories of upper limb joints strongly cou-
pled [18], [19]. Indeed, shoulder plays a key role in many
upper limb motor tasks, such as reaching or grasping, since
it is synergistically engaged by the central nervous system to
cooperate with the other proximal joints [20]. For all these
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aspects, decoding the intent of motion for the shoulder joint
is valuable for developing assistive technologies that allow a
full upper limb functional recovery, incorporating active user
information in the trajectory planning [12].

A further important aspect in studies that involved the upper
limb regards the feature extraction step. Features were in gen-
eral computed from static EMG signal epochs, i.e., during
sustained muscle contraction [12], [13], [16], as it happens in
hand gesture recognition problems [21]. However, when the
primary aim is the intent recognition, it is desirable to reduce
as much as possible the decision delays [22]. Hence, a plausi-
ble choice is to extract features upon signal epochs with a time
window centered at the movement onset [7]. This captures
a dynamic portion of the myoelectric activity, when muscle
are not yet fully contracted. Despite this could challenge the
design of pattern recognition schemes, since transient data tend
to be less prone to be easily classified [21], the importance of
including dynamic data in the design of EMG pattern recogni-
tion architectures was already stated [22]. However, shoulder
movements classification problem are often taken into account
considering only static EMG, excluding transient epochs [16].

In this work we aimed to investigate the feasibility of
approaching a shoulder motion intent detection problem
through myoelectric pattern recognition, transferring part of
the hand gesture recognition knowledge regarding EMG fea-
ture evaluation and selection [14], [16], [23], [24]. For
achieving this goal, we dealt with the shoulder motion intent
detection of four types of different movements, i.e., flex-
ion, hyperextension, abduction, and elevation, by relying only
on transient data [7], [14], [22]. We investigated multino-
mial logistic regression and support vector machine mod-
els for classification purposes, evaluating features in time
and frequency domain. Although time domain features are
generally preferred, due to their straightforward computa-
tion [11], [14], in this study we explored also possible advan-
tages of using frequency domain features for this specific
pattern recognition problem.

We hypothesized that, based on the non-stationary char-
acteristics of transient signal, time domain features would
provide higher classification performances with respect to the
frequency domain ones, also considering the limited frequency
resolution due to the short transient EMG epoch. We fur-
ther hypothesized that those time domain features computed
upon signal differentiation would carry the best information
content for transient-based motion identification, since they
highlight instantaneous changes in signal time course. In
order to test these hypotheses, we firstly evaluated the qual-
ity of clusters generated by features in both domains through
three different cluster quality indexes [25], [26]. Then, sin-
gle feature performances were verified through multinomial
logistic regression and support vector machine, progressively
decreasing the amount of data used for training.

II. MATERIALS AND METHODS
A. Dataset Presentation and Signal Segmentation

A public available dataset was taken into account [27].
The dataset contains EMG and kinematic data of eight
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Fig. 1. Shoulder angle (red line) was used for movement onset detection
and EMG transient window identification. Transient window was centered on
the onset of the movement, lasting 300 ms (blue box).

healthy and neurologically intact subjects (four males and four
females) aged 25 £ 1.8 years. The subjects were instrumented
with EMG electrodes (sampling frequency 1 kHz) to collect
the activity of the following muscles: clavicular and sternal
heads of pectoralis major, serratus anterior, trapezius descen-
dent, trapezius transversalis, trapezius ascendent, infraspinatus,
and latissimus dorsi [16]. Subjects performed eight shoulder
movements, each of them ten times. Such movements cov-
ered mainly two degrees of freedom: shoulder flexion by 45°,
90°, 110°; hyperextension by —30°; abduction by 45° and
90° and shoulder elevation by 45° and 90° in a 45° exter-
nally rotated plane [16]. Since we were interested in detecting
the movement intent, we selected the four basic movements,
i.e., shoulder flexion by 45°, hyperextension by —30°, abduc-
tion by 45°, and elevation by 45°. For each subject, all the
EMG signals were band-pass filtered between 30 and 450 Hz
with a fourth order zero-phase filter. For each movement repe-
tition, we considered a signal epoch that fell within a window
of 300 ms, centered at the movement onset, spanning 150 ms
before and after the beginning of the motion (Fig. 1) [7], [14].
Hence, for each subject, 4 (movement classes) x 8 (EMG
channels) x 10 (movement repetitions) transient EMG epochs
were available for features extraction.

B. Features Extraction and Class Separability Properties

Regarding the feature-set generation, we proceeded extract-
ing time domain and frequency domain features (Table I).
The EMG epochs were segmented through a sliding win-
dow of 150 ms with an overlap of 75% (time increment of
37.5 ms) in order to increase the pattern recognition deci-
sion density [23]. It deserves to be noted that the above
mentioned windowing fits the typical requirements for online
myoelectric control [28]. The extracted features were those
employed in [23]. However, based on our previous results [4],
we substituted sample entropy with permutation and fuzzy
entropy, since the latter seemed to be higher discrimina-
tive than the former in EMG pattern recognition problems.
Features were normalized through min-max normalization [24]
and then their clustering characteristics were quantified by
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TABLE I
FEATURES EXTRACTED FOR BOTH TIME AND FREQUENCY DOMAINS. MORE INFORMATION
REGARDING THEIR COMPUTATION CAN BE FOUND IN [4], [24], [29]
Type Feature Name Abbreviation
Mean Absolute Value MAV
Variance of EMG VAR
Root Mean Square RMS
Waveform Length WL
Difference Absolute Mean Value DAMV
Difference Absolute Standard Deviation Value DASDV
Time Domain features Zero Crossing z
Myopulse Percentage Rate MYOP
Willison Amplitude WAMP
Slope Sign Change SSC
Permutation Entropy PermEn
Fuzzy Entropy FuzEn
Histogram of EMG, 10-bins HIST
Auto-Regressive Coefficients, 4" Order AR
Mean Frequency MNF
Median Frequency MDF
Peak Frequency PKF
Total Power TTP
Frequency Domain features 1;; Spectral Moment SMI
2™% Spectral Moment SM2
374 Spectral Moment SM3
Frequency Ratio FR
Power Spectrum Ratio PSR
Variance of Central Frequency VCF
. . . . . . K
tc}tl)mputmg t.h.ree .1ndexes, i.e., the Davies Boulcpn (.DB) 1nde>'(, DB — l Z max ( Ri,‘) with i @)
e separability index (SI), and the mean-semi-principal axis K < - J
=

(MSA). Computation of each clustering index is reported in
the following.

The DB index can be used to quantify the overlapping
between clusters, representing a measure of class separabil-
ity [7], [23]. Following [25], to compute such index we can
proceed by defining the cluster similarity measure as:

Sty

L] — DI’J
where S; and S; represent the dispersion of the i, and j,, cluster
respectively, and Dj; is the distance between their mean val-
ues [25]. The dispersion of a general cluster k can be computed

as the standard deviation of the distance of cluster samples
with respect to their cluster center [7]. More formally:

(D

1 Ny 2
Sk=1— x; —m) (g —m 2
=N D 0 —m) " (x —my) 2)
=1

where Ny is the number of data points (vectors) in the cluster &,
x; is the I data point in the cluster, while my is the cluster
centroid. The last term quantifies the distance between two
cluster centroids k and p and can be computed through the

Euclidean distance:

Dy = {(m = my)” (mi—my) | G)

Now, we can define the DB index as the mean of the similarity
measures of each cluster with its most similar cluster [7]:

Thus, the lower is DB, the greater is the class separability
in a given feature space [23]. Although the DB represents a
useful metric for myoelectric pattern recognition applications,
it provides only a partial description of the data aggregation
properties. Indeed, for EMG based human-machine interfaces,
additional metrics can be used to assess the separability
properties of a feature space and its intra-class variability [26].

The SI index has been employed to quantify the distance
between different movement classes [26]. Such metric can be
computed as in [26]: given the covariance matrix of class j,
namely X;, and the covariance matrix of its most conflicting
class, X¢j, we can compute X as:

5 Ej + ECj
2
Then, the SI is obtained as follows:

SI= % XK;(%{(’WJ —mg)" =" (m; mcj')}%> ©)

where K indicates the cluster as in the DB formulation, m;
represents the mean of the j* cluster data points and mc;j is the
mean of the most conflicting cluster data points with respect
to the j’h cluster [26]. It deserves to be noticed that the SI
metric reflects the distances between classes in the feature
space. Hence, the greater is the SI, the better is the mapping

of the different movements in the given EMG feature space.

)
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TABLE 11
CLUSTERING METRICS AND ACCURACY (ACC) FOR ALL THE CONSIDERED FEATURES. ACCURACY IS PROVIDED AS MEDIAN AND INTERQUARTILE
RANGE (IQR). FEATURES THAT PRESENTED A MEDIAN ACCURACY GREATER THAN 90% ARE HIGHLIGHTED IN BOLD. CLUSTERING
METRICS ARE COMPUTED AS REPORTED IN SECTION II-B BY EQ. (4) FOR DB, EQ. (6) FOR SI, AND EQ. (7) FOR MSA

Feature Name DB SI MSA MLR (ACC%) SVM (ACC%)
median IQR median IQR median IQR median IQR median IQR
MAV 2.07 0.57 1.54 0.51 0.78 0.21 90.39 7.29 89.89 5.05
VAR 2.27 045 1.38 0.34 0.58 0.27 86.40 17.01 86.27 16.51
RMS 2.05 0.52 1.59 0.47 0.77 0.23 88.06 8.27 85.93 8.43
WL 2.02 0.52 1.72 0.40 0.77 0.28 88.96 5.62 90.73 9.00
DAMV 2.02 0.52 1.72 0.40 0.77 0.28 91.07 6.37 92.67 7.19
DASDV 2.05 0.52 1.73 0.39 0.76 0.27 94.38 6.94 93.64 11.23
7C 3.34 0.79 0.97 0.27 1.30 0.11 69.83 13.08 68.18 16.52
MYOP 2.48 0.88 0.78 0.25 0.12 0.02 72.84 18.82 72.04 12.06
WAMP 3.28 2.72 0.56 0.32 0.14 0.01 54.36 17.07 55.58 18.05
SSC 2.87 0.71 1.11 0.39 1.27 0.15 73.34 8.00 71.66 8.85
PermEn 2.92 0.49 1.01 0.35 1.27 0.17 70.69 12.31 69.24 12.20
FuzEn 2.84 0.71 1.10 0.41 1.24 0.10 70.48 18.10 71.36 15.60
HIST 5.70 0.99 342 2.17 0.97 0.11 65.11 6.58 64.87 5.21
AR 3.19 0.50 3.66 0.90 0.41 0.08 92.52 8.82 91.71 9.20
MNF 2.79 1.13 1.17 0.46 1.20 0.20 69.96 16.31 70.87 17.58
MDF 3.67 1.34 0.92 0.35 1.25 0.35 64.30 22.50 59.50 27.52
PKF 2.84 0.36 1.00 0.21 0.55 0.22 80.91 8.58 80.91 10.58
TTP 2.27 0.48 1.39 0.34 0.58 0.27 90.33 11.39 91.27 12.72
SM1 2.29 0.70 1.51 0.35 0.57 0.29 91.14 3.95 90.61 4.28
SM2 2.20 0.56 1.48 0.32 0.60 0.35 90.62 4.75 91.35 4.56
SM3 2.18 0.80 1.32 0.37 0.66 0.33 86.92 8.46 86.89 7.02
FR 4.56 2.44 0.67 0.27 1.26 0.07 54.69 22.47 53.20 20.38
PSR 4.61 1.24 0.66 0.18 1.33 0.13 46.68 14.92 46.41 15.85
VCF 2.73 0.53 1.25 0.35 1.30 0.14 75.43 791 75.43 12.28

The last metric we considered is the MSA, which was intro-
duced to quantify the intra-class variability [26]. Each cluster
is modeled as a hyper-ellipsoid in the feature space. Thus, the
size of the cluster can be approximated through the singular
value decomposition of the data within each cluster and then
averaged by the geometric mean of the singular values:

1
1 K P

MSA:E;

(7

P
jp
p=1
where aj, is the p™ singular value of cluster j and P is the
dimension of the feature space. The MSA mirrors the agglom-

eration properties of each cluster and by definition the lower
is MSA, the more the clusters are compact.

C. Pattern Recognition Architectures and Classification

Regarding the pattern recognition architectures employed
in this study, we selected those that demonstrated to be
adequate in myoelectric control problems, i.e., multino-
mial logistic regression and L1 regularized support vec-
tor machine [23], [30]. Then, we performed two different
experiments.

1) Experiment 1: In the first experiment, both architectures
were trained for each subject and for each same feature, con-
sidering all the eight channels. Feature-sets were split in 70%
of data for training and 30% for testing. Within-subject classi-
fication accuracy obtained in testing was used as a metric for
assessing the quality of the feature space [23], [24]. This first
experiment was conducted to observe which features better
identify the four different shoulder movements.

2) Experiment 2: In the second experiment, we selected
those features that presented a mean accuracy among the sub-
jects greater than 90% for both learning models. For such
features, we proceeded by training multiple models holding
out 40%, 50%, 60%, and 70% of the data for the testing phase.
We set this experiment to asses the robustness of the selected
features in order to train classifiers when few training data are
available. This mirrors cases that occur in real practice, when
patients cannot undergo to long lasting trials for the acquisition
of training data [7].

For both experiments, hyper-parameter tuning of multino-
mial logistic regression and support vector machine was per-
formed through Bayesian optimization, employing MATLAB
2020b [1], [23]. Kruskal-Wallis test was used to assess
whether differences among the accuracy between holdout
conditions, for the same learning model, were statistically
significant (o = 0.05).

ITII. RESULTS
A. Experiment 1: Features Clustering Properties

Among the time domain features, we observed good cluster-
ing properties in 6 out of 14 features (Table II). However, only
DAMYV and DASDV overcame the median accuracy threshold
(90%) for both pattern recognition models. Although auto-
regressive coefficients presented greater DB values among the
subjects, they revealed good performances, not lower than
91%, consistently with the SI and MSA (Table II).

Regarding the frequency domain features, SM2, SM1, and
TTP showed the best clustering properties, presenting the
lowest DB and the highest SI values and the best classifica-
tion accuracy for both learning models (Table II). In particular,
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Classification accuracy as a function of the holdout percentage of data retained for testing for the two pattern recognition architectures (PRA),

i.e., multinomial logistic regression (MLR) and support vector machine (SVM). Significant comparison obtained through Kruskal-Wallis are indicated with *
(0.01 <p< 0.05) and with ** (p< 0.01). A significant drop of accuracy is recognized only for AR coefficients.

SMI1 and SM2 presented the two lowest interquartile ranges
for the accuracy, also with respect to the time domain features,
thus indicating constant classification performances among all
the subjects.

B. Experiment 2: Holdout Testing for Single Feature
Evaluation

From experiment 1, the best six features were selected:
DAMYV, DASDV, AR, TTP, SM1, and SM2 (Fig. 2). We did
not detect any significant drop of accuracy, neither for time

domain nor frequency domain when reducing the amount of
data for training (Fig. 2). The only exception was represented
by the AR coefficients, for which the accuracy underwent to
a significant drop (p < 0.05) when the holdout is increased,
passing from about 90% to 80% (Fig. 2(e)).

IV. DISCUSSION

In this study we investigated the most suitable features in
both time and frequency domain for decoding intent of motion
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of shoulder joint by using transient EMG data. To this pur-
pose, we applied a two-step procedure: firstly, we considered
features clustering properties in order to identify those features
that provide the best movement class separability. In the sec-
ond step, we tested the importance of the information carried
out by each feature for developing highly predictive pattern
recognition models.

A. Frequency Domain Features

We hypothesized that time domain feature would show
superior performances with respect to frequency domain when
dealing with transient EMG data. Indeed, features computed
in frequency domain are less employed in motion intent prob-
lems [7], [11], [14] and time domain features are preferred
in such kind of problems due to the reduced computational
costs of changing the signal representation domain [24]. As
demonstrated for real time applications [14], time domain fea-
tures allow to reduce the global decision delay of the pattern
recognition architectures [23], permitting the entire system to
work on line. However, present outcomes showed compara-
ble performances for time and frequency domain in terms
of clustering (experiment 1) as well as predictive capabilities
(experiment 2). Thus, our first hypothesis has to be rejected
and a key finding of this study is that time domain features
should not be a priori favored over the frequency domain
ones when dealing with transient EMG data for recognizing
shoulder joint movements.

In particular, beyond their clustering proficiency (Table II),
the two spectral moments (SM1 and SM2) showed also the
lowest inter-quartile range for classification accuracy con-
sidering all the six selected features in experiment 2, thus
indicating consistent performances among different subjects
(Table II). Further, the three selected frequency domain fea-
tures preserved the same accuracy levels when the amount
of data for training is progressively reduced (Fig. 2). This
aspect points out that each frequency domain feature encom-
passes specific information regarding the intent of motion of
the shoulder joint, allowing the pattern recognition model to
be highly predictive also when less data are used for training
and the majority of them are preserved for testing (even more
than twice in the 70%-30% holdout scenario).

The holdout evaluation on the importance of the information
carried out by the frequency domain features has also key
practical implications. Present findings indicate that, by using
frequency domain features, the training of reliable pattern
recognition models for decoding motion intent requires a lim-
ited amount of data. Indeed, few repetitions of the same
shoulder movement are needed to be performed by the subject
for recording the training set: in the last holdout configuration
(70%-30%) only three repetitions of the same shoulder task
were used for training the learning models. This aspect is of
fundamental importance for practical scenarios, e.g., when
dealing with patients affected by diseases disrupting func-
tional capabilities like stroke, who cannot undergo to long
data acquisition sessions [7].

As mentioned in the previous, the on-line applicability of
myoelectric human-machine interfaces is paramount to spread
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their usage in actual operating scenarios [2]. In this view, the
usage of frequency domain features is generally discouraged
since their extraction requires to change the EMG representa-
tion domain [29], thus being more computationally demanding
with respect to time domain features. However, findings of
this study are still valuable also in a real-time usage sce-
nario, since it has been reported that spectral moments can be
retrieved directly in time domain, without the need for apply-
ing the Fourier transform and thus changing the representation
domain, by relying on the Parseval’s theorem [29].

All these aspects outline once more the suitability of
frequency domain features on transient data. However, for
the latter application, feature computation in time domain
still remains generally preferred [12], [22]. This can be likely
due to the fact that the few data samples within a tran-
sient EMG window can lead to unreliable computations of
frequency domain features, also due to the rapid change of
signal state since, within the transient window, the Ilatter
moves from a resting to a bursting phase (ref if possible).
Although this aspect merits further investigation, findings of
this study showed that frequency domain features extracted
from a 150 ms transient window are stable enough to high-
light the intention patterns behind the EMG signals, separating
synergistic muscle patterns elicited in correspondence of the
movement onset. In passing, the window size used in this work
for feature extraction was lower with respect to similar stud-
ies, e.g., 300 ms or 200 ms [12]. This further supports a key
point of this work, i.e., the reliability of frequency domain fea-
tures for decoding upper limb movement intent from transient
EMG.

B. Time Domain Features

For what concerns time domain features, present outcomes
indicate that overall they provided the best performances
in terms of classification accuracy (Table II). This was an
expected result that aligns with existing literature, since, for
upper limb movement recognition, time domain descriptors
found a widespread employment, also when transient EMG
epochs are taken into account [12], [22]. More in detail,
we hypothesized that those time domain features computed
upon signal differentiation would produce the best classifi-
cation performances. Our results support this hypothesis: the
highest accuracy (Table II) was showed by those features
whose computation relies on the discrete differentiation of
the EMG signal, i.e., DAMV and DASDV (Table I). The
capability of these descriptors in mapping transient data into
highly separable classes of movement is reflected also by
the high separability index (Table II), matching with previous
findings in the field of hand gesture recognition, where archi-
tectures trained with the DAMYV and DASDV showed high
classification results [23], [24].

The importance of the predictive information encompassed
by the above mentioned time domain features is confirmed
by the holdout evaluation carried on in experiment 2, where
DAMYV and DASDV alone maintain a stable accuracy of about
90% also when only 30% of data were used for training
(Fig. 2). Thus, a key finding of this study is that those time
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domain features, whose computation is based on the instanta-
neous variations of EMG signal amplitude, resulted the most
suitable for motion intent detection, being able to emphasize
the fast EMG changes, that likely represent a characteristic
signature of the transient epoch centered at the beginning of
the movement.

Additional discussion is deserved by the AR feature
(Table I). These coefficients found a widespread employment
for myoelectric pattern recognition and this is confirmed by
their remarkable clustering capabilities (Table II). However,
the AR resulted the only feature, among those selected for
experiment 2, with a significant drop in the classification
performances (Fig. 2), pointing out that the AR feature is
poorly insightful for the models to be predictive. A possi-
ble explanation can be found considering that the modelling
of a timeseries with an autoregressive model requires a cer-
tain degree of stationarity in the data [31], which lacks for a
transient EMG window where muscular activity moves from
a resting to a contraction phase. Hence, our findings indicate
that AR feature may not be suitable for myoelectric pattern
recognition using transient data. However, this aspect deserves
to be further investigated by a direct comparison between AR
identification of transient and static EMG signal epochs.

C. Additional Points and Limitations

It is worth noticing that in this study attention was devoted
to proposing solutions suitable for a rapid technological trans-
fer toward the design of myoelectric interfaces. Hence, in view
of a technical applicability of our results, remarkable findings
can be listed as follows. Firstly, we relied on pattern recog-
nition architectures, i.e., multinomial logistic regression and
support vector machine, that can be easily implemented in
micro-controllers [32], without requiring the high computa-
tional burden typically needed in practical contexts [33], [34].

Secondly, our results showed that a single feature approach
is reliable enough to obtain high and stable classification
accuracy (Fig. 2), thus allowing to reduce the computational
burden needed for extracting large feature sets. Therefore, a
multi-channel EMG probes setup emerges a viable solution for
real-time motion intent detection on shoulder joint, avoiding
the use of more cumbersome setup, as high-density EMG [28].
Finally, although the holdout procedure was valuable for eval-
uating the feature importance for the model to be predictive,
it showed also that the proposed solutions need few data for
calibrating reliable motion intent pattern recognition.

It deserves to be highlighted that the absence of a real-
time testing of the proposed methodological approach, that
was instead developed and evaluated off-line only, represents
a limitation of the present work that deserves to be faced,
since the pattern recognition solutions should be employed
for actual prosthetic upper limb control design. Although
in this study we considered four movement tasks only, this
represents a first attempt aimed at establishing appropriate
methods and solutions for shoulder motion intent detection.
Hence, we decided to limit the inherent complexity of this
joint by focusing on four functional movements potentially
useful for controlling prosthetic limbs [35], [36] or assistive
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rehabilitation devices [12], [14], [16]. However, a more com-
prehensive evaluation involving the full range of motion of the
shoulder still remains an open issue to be addressed.

Regarding the applicability of present results, it deserves to
be pointed out that here we dealt with intact subjects, whose
myoelectric patterns were not corrupted by neuromuscular
impairments. Even if a reduction in the classification perfor-
mances may be expected in pathological subjects [7], [11],
myoelectric activity was successfully used for decoding upper
limb intent of motion in robotic aided rehabilitation [11], [12].
In this context, the decoding of single degree of freedom
movements, as done in this study, showed quite stable perfor-
mances in healthy and impaired individuals [11], [14]. Further,
even on impaired subjects, EMG data resulted able to improve
the detection of the motion intent, with respect to using other
sources of information alone [12]. However, additional anal-
yses are required for assessing the applicability of present
findings to impaired patients [11].

Eventually, in this study we considered only EMG sig-
nal for intent detection of the shoulder but the use of load
cell and inertial data, in conjunction with myoelectric sig-
nal, has been yet reported [12], [37], [38], [39] and thus
fusing information coming from other sensors can represent
a viable solution for improving the overall performances of
the proposed architecture [40].

V. CONCLUSION

Time domain features, based on EMG signal differentia-
tion, showed the best performances in terms of classification
accuracy, indicating their suitability in emphasizing the fast
variations within a transient epoch of EMG signal. However,
spectral moments proved to be a viable alternative, also in
terms of clustering capabilities, although less used for transient
myoelectric pattern recognition. Hence, no favored domain can
be suggested for feature extraction when dealing with shoulder
joint intent of motion recognition. The selected features and
learning models proved to be reliable also when the amount of
data used for training is progressively reduced, thus outlining
their value for the model prediction. In this context, the only
exception were the autoregressive coefficients, that suffered
from reduced performances when few data are used for train-
ing. Finally, outcomes of this study suggest that a sparse spatial
covering of muscular activity, without the need for comput-
ing large feature sets, can be a proper solution for movement
intent detection. This provides advantages in terms of com-
putational burden, particularly important when the decision
epoch is small by necessity.
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