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Abstract—We propose a novel approach for estimating ground
reaction forces (GRFs) during walking in stroke patients using
a markerless motion capture (MMC) system, specifically the
Azure Kinect, and a long short-term memory (LSTM) network.
GRFs are crucial indicators of walking ability, but their mea-
surement typically requires force plates, which are not readily
available in clinical settings. Our study aimed to assess the fea-
sibility of applying artificial neural networks (ANNs) to estimate
GREFs in stroke patients using MMC. Our findings demonstrate
that the estimated GRFs can serve as reliable clinical indicators
of gait ability, with comparable estimation error in the verti-
cal direction for both healthy individuals and stroke patients
(L/R: 10.39/9.88% and P/H: 10.70/10.06 %). The proposed neural-
network-based approach to GRF estimation is more accessible
and cost-effective than traditional force plate measurements and
has the potential to enhance the development of personalized
rehabilitation programs for stroke patients. This research fills a
critical gap in the field of medical robotics, providing a practical
and innovative method for assessing gait quality, planning, and
monitoring rehabilitation in stroke patients.

Index Terms—Waking, stroke, rehabilitation, ground reaction
force (GRF), neural network (NN).

I. INTRODUCTION

ALKING is a crucial motor function that plays an
W essential role in maintaining independence and improv-
ing quality of life. Ground reaction forces (GRFs) are measur-
able indicators of walking ability, making it easier to identify
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gait abnormalities and create individualized rehabilitation pro-
grams [1], [2], [3], [4], [5], [6], [7], [8]. Three-dimensional
(3D) GRF information includes the load that supports the body
and the magnitude of the braking and propulsive forces, which
are delivered by the interaction between the body and the
ground. Typically, body kinematics and kinetic data obtained
from 3D motion capture and force plates are used together
in gait analysis [9], [10], [11], [12], [13]. However, force
plates are expensive and not readily available, which limits
their use in clinical settings. Therefore, alternative approaches
are necessary to obtain GRF data for developing individualized
rehabilitation programs [13], [14].

In previous studies, researchers have attempted to estimate
GRFs without using expensive force plates, with one com-
mon approach being the use of kinematics data obtained
from motion capture systems [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24], [25]. Optical motion capture
(OMCO) is frequently used for GRF estimation because of its
ability to accurately record kinematic data via multiple cam-
eras and reflective markers directly attached to the human
body [15], [16], [17]. However, OMC is limited to labora-
tory settings with specialized equipment, making it difficult to
apply in real-world scenarios, e.g., hospitals. Inertial motion
capture (IMC) is a more accessible solution for estimat-
ing GRFs because it can acquire kinematic data by IMU
sensors attached to the human body [18], [19], [20], [21].
IMC provides significant advantages in measuring human
movement and activity in diverse tasks [22], [23] and envi-
ronments [24], [25]. Furthermore, markerless motion capture
(MMC) systems, such as Azure Kinect (Microsoft, USA) and
Realsense (Intel, USA), offer the potential to estimate GRFs
without markers or specialized equipment. MMC is more
accessible and cost-effective and does not interfere with the
subject’s natural movements [26], [27]. The use of MMC for
estimating GRFs is expected to further improve accessibil-
ity because of its portable and stand-alone configuration [28],
[29], [30], [31], [32]. However, it is essential to investigate
the accuracy and reliability of these approaches compared to
the “gold standard” of force plate measurement, particularly
in clinical settings [14], [33], [34].

Advanced artificial neural networks (ANNSs), such as feed-
forward neural networks (FFNNs), recurrent neural networks
(RNNs), and long short-term memory (LSTM) networks [35],
enable GRF estimation from kinematic data. These ANNs can
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learn walking biomechanics from supervised data, including
the relationship between kinematics (input) and kinetics (out-
put) data, which enables GRF estimation for gait analysis.
Whereas an FFNN processes the entire gait cycle at once,
RNNs and LSTMs can learn the time dependencies of time-
series data, making them useful for the estimation of not only
GRFs but also biomechanical features. Previous studies have
demonstrated the feasibility of using ANNSs to estimate GRFs,
but the majority of these studies have focused on healthy
subjects [15], [16], [19], [25].

In contrast, the aim of our study was to apply ANNS to esti-
mate GRFs in stroke patients who often exhibit abnormal gait
patterns [1], [4], [5], [7], [8]. Additionally, whereas researchers
of previous studies used various types of motion capture
systems, such as optical and inertial systems (OMC/IMC), we
aimed to use an MMC system, specifically the Azure Kinect,
to enable the estimation of GRFs in a more accessible and
cost-effective manner [28]. To the best of our knowledge, no
previous studies have investigated the estimation of GRFs in
stroke patients using an MMC system and ANNs. Therefore,
our method provides a novel approach to estimating GRFs
in patients with gait disorders using cutting-edge technology
and has the potential to contribute to the development of
more effective clinical assessments and interventions for these
patients.

II. MATERIALS AND METHODS
A. Subjects

Sixteen healthy subjects (F/M: 7/9, age: 62.5 + 9.5 years,
height: 160.1 + 8.8 cm, weight: 58.5 £ 12.3 kg) and seven
hemiplegic patients (F/M: 2/5, age: 66.3 + 9.6 years, height:
165.1 + 11.0 cm, weight: 60.5 + 10.7 kg) were recruited from
Tohoku University Hospital. Subjects were excluded from the
study if they had a history of osteoarticular disease of the
lower extremity. The subjects recruited were of 20 years of
age and older and were required to be able to walk inde-
pendently for at least 7 m. We assessed hemiparetic patients
according to hemiparesis severity and the ability to perform
movements outside the extensor and flexor synergy patterns
using the Brunnstrom recovery stages [36]. The Brunnstrom
stage test is a standardized index employed by physical
therapists to track and measure a patient’s motor recovery pro-
gression following a stroke, ranging from initial paralysis to
regained fine motor control. Experienced physical therapists
(Y.S. and R.S.) performed these tests while applying standard-
ized protocols. All subjects provided signed informed consent,
and the protocol was approved by the Ethics Committee
of Tohoku University, Graduate School of Medicine
(2022-1-194).

B. Data Collection

In this study, we used an MMC device (Azure Kinect DK,
Microsoft Corp., Redmond, WA, USA) and four 90 cm x
60 cm force plates (Anima Corporation, Chofu, Tokyo, Japan).
We used the Azure Kinect Body Tracking SDK v1.1.0 (dis-
tributed by Microsoft, [37]) to acquire 32 joint positions. To
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Fig. 1. Experimental environment. Eight OMC cameras (blue dotted squares
are three of them), the four 90 cm x 60 cm force plates (red dotted square),
and the Azure Kinect (yellow dotted square). The Azure Kinect was placed
approximately 8 m away from the starting point of the walk. The three-axis
(mediolateral, anterior-posterior, and vertical direction) GRFs were obtained
from the force plates.

TABLE I
REFLECTIVE MARKER LOCATION ATTACHED AT SUBJECT
BoDY PARTS FOR THE OMC SYSTEM [38]

Segment Placement of Markers

Trunk

spinous process of the 7th cervical vertebrae,
spinous process of the 10th thoracic vertebrae,
deepest point of incisura jugularis,
most caudal point of the sternum,
xiphoid process of the sternum,
the position in the middle of the right scapula,

Upper arm both acromia,

Pelvis both anterior superior iliac spines,

both posterior superior iliac spines,

Thigh both prominence of the greater trochanters,
both the lower lateral 1/3 surface of the thigh,
both the lateral femoral epicondyles,

both the medial femoral epicondyles,

Shank both prominence of the lateral malleolus,
both prominence of the medial malleolus,
both the lower 1/3 of the shank,
both dorsal aspect of the second metatarsal heads,

both aspect of the achilles tendon insertion on the calcaneus,

Foot

verify the data accuracy from the Kinect, we used measure-
ment data from an OMC (MAC 3D System, Motion Analysis
Corporation, Santa Rosa, CA, USA) consisting of eight cam-
eras as a reference. Reflective markers were attached at the
body part locations of subjects shown in Table I [38]. The
Azure Kinect, force plate, and OMC sampling frequencies
were set to 30 Hz, 1200 Hz, and 120 Hz, respectively. Fig. 1
shows the experimental environment, in which the OMC cam-
era is highlighted with blue dotted squares, the force plates
with a red dotted square, and the Azure Kinect with a yellow
dotted square. The three-axis (mediolateral, anterior-posterior,
and vertical direction as shown in Fig. 1) ground reaction
forces (GRFs) were obtained from the force plates. The Azure
Kinect was placed approximately 8 m away from the starting
point of the walk. To synchronize the kinematic data of the
subjects, we started recording Azure Kinect and OMC data
simultaneously. Subjects were asked to walk at a comfortable
walking speed on a 7 m outward path with embedded force
plates (612 trials for each subject). We measured the walking
task so that each trial included data from at least one step on
both sides (for patients, the paretic and non-paretic sides).
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C. Signal Processing and Data Preparation

We applied fourth-order Butterworth low-pass filtering
to the measured data to remove noise effects. The cutoff
frequency was set to 6 Hz for the Azure Kinect and OMC,
and 10 Hz for the force plate. After resampling all data to
120 Hz, we synchronized the signals. A coordinate transfor-
mation was performed from a coordinate system fixed at the
position of the Azure Kinect (depth camera) to a coordinate
system defined at the subject’s pelvis.

In this study, the GRFs were normalized by the subject’s
body weight (BW) and gravitational acceleration:

—__ GRF
GRF = G

; (D

where the GRF units were converted from [N] to [BW]. The
acceleration of gravity g was set as 9.80665. The BW value 1.0
was the GRF value corresponding to gravity relative to body
weight. The GRFs during the swing phase were calculated as
Zero.

D. RNN: Long Short-Term Memory Network

Because the GRFs are time-series data, Recurent Neural
Networks (RNNs) were used as the neural network model for
estimation. RNN is a type of neural network that can transfer
information in time [39]. RNNs have a self-referential (self-
loop) structure, which allows them to retain past information
and carry it over to the next computational step. In particular,
RNNs exhibit excellent performance in predicting time-series
data, for example, in speech recognition and natural-language
processing [40]. In this study, we used LSTM [35], which is a
type of RNN. In RNNs, a longer series results in more weights
that are multiplied and more gradients that disappear, resulting
in difficulties associated with learning long-term dependence.
LSTM overcomes these difficulties by backpropagating the
error without applying weights. A schematic of an LSTM cell
is shown in Fig. 2.

LSTM follows an RNN architecture with added features,
namely the memory cell (cell state) and gate, which are not
found in the standard RNN model. The memory cell stores
and transfers past information, which enables the prediction of
long-term dependency data. Gates are categorized into three
types, namely the forget gate (f;), input gate (i;), and output
gate (o;). Each gate modifies the information stored in the
memory cell or determines the output from the LSTM layer.
The features of each gate are described as follows.

o Forget gate: deletes needless information from the

memory cell, according to (2)
« Input gate: controls how much new information is added
to the memory cell, according to (3) and (4)
« Output gate: assigns a weight to the modified information
and calculates the LSTM output, according to (5)
The computations carried out by these gates are expressed by

fi = U(XtWyl) + hHW;(,f) + b(’{)) ()
Z'[ = tanh(le;g) + hl*IW;(lg) + b(g)) (3)

=0 (x[W)gi) +h W b(i)) o
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Fig. 2. Schematic of a single LSTM cell. Memory cell (cell state, ¢;), which
stores and transfers past information, enabling the prediction of long-term
dependency data. Gates are categorized into three types: the forget gate (f7),
input gate (ir), and output gate (0;). Each gate modifies the information stored
in the memory cell or determines the output from the LSTM layer.

TABLE 11
INPUT JOINT POSITIONS AND OUTPUT GRF DATA
FOR THE LSTM MODEL

Iout NECK, SPINE_CHEST, SHOULDER(R/L), ELBOW(R/L),
npu WRIST(R/L), KNEE(R/L), ANKLE(R/L), FOOT(R/L)
Output 3-axis ground reaction forces on both legs

o= o (x W +h W +59), (5)

where o (-) is the sigmoid function, x is the input vector,
h is the output vector, W is the weight matrix for x and A,
and b is the bias at each gate computation. Each superscript
indicates the gate type, and each subscript indicates the time
step. The computation of the cell state (c¢;) and the output of
the LSTM model (hidden state /;) at times ¢ are determined
by (6) and (7), respectively.

G =f0c1+iOc, (6)
ht =00 tanh(c,), (7)

where © denotes Hadamard product.

E. Model Building and Optimization

Table II includes the joint positions acquired by the Azure
Kinect, which were used as input for the neural network. The
measured GRFs from force plates were used as the supervised
data to train the network. We optimized the LSTM model
architecture, such as the number of layers, number of units
for each layer, and dropout rate for each layer, and the hyper-
parameters, such as learning rate, batch size, window width,
and its optimizer, as shown in Table III, by using Optuna
(Preferred Networks, [41]), a python library capable of per-
forming Bayesian optimization. We calculated an evaluation
index of optimization using a 10-fold cross-validation with
the Mean Absolute Error (MAE) described by the following
equation:

1
MAEj = — 3 13p() = m(® | ®)
J
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TABLE III
HYPERPARAMETER RANGE OF LSTM MODEL ARCHITECTURE
FOR OPTIMIZATION WITH OPTUNA [41]

[ Hyperparameter [ Min [ Max | interval
Number of hidden layers 1 3 1
Number of hidden layer units 8 256 4
Dropout rate 0.2 0.5 0.05
Window width 1 50 1

[ Hyperparameter ‘ options |
Batch size 64, 128, 256, 512, 1024, 2048
Learning rate le-4, 5e-4, 1e-3, 5e-3, le-2, 5e-2, 0.1
Optimizer SGD, Adagrad, RMSprop, Adam

TABLE IV
OPTIMIZED PARAMETERS OF LSTM MODEL ARCHITECTURE

Hyperparameter optimized value
Number of hidden layers 2
Number of hidden layer units 1 216
Number of hidden layer units 2 76
Dropout rate 1 0.20
Dropout rate 2 0,25
Window width 27
Batch size 64
Learning rate 5e-3
Optimizer Adam

where Nj, y, (1), yu(f) represent the number of evaluation data
for a fold, the estimated GRFs, and measured GRFs, respec-
tively. We mixed a data set of healthy subjects and stroke
patients in the LSTM network training. In the 10-fold cross-
validation, we divided the dataset into ten subsets by subject,
and each subset contains data from one to three subjects to
avoid bias in the subject data. We used nine of the ten subsets
as training data to train the LSTM network and calculated the
evaluation value MAE; by using the remaining one subset as
validation data. This calculation for each fold was performed
ten times, changing the subset used as the validation data. We
finally calculated the average MAE of the ten times as the
evaluation value for one hyperparameter set. In this study, we
performed this optimization through 70 iterations.

FE. Performance Evaluation

We built the LSTM model with the hyperparameters with
the highest scores during the optimization. The hyperparam-
eters optimized using Optuna are shown in Table IV. The
dropout rates 1 and 2 represent the rates of the dropout layers
located after the hidden layers 1 and 2, respectively. Fig. 3
shows the LSTM neural network model constructed based on
these hyperparameters. Using the structure of this model, we
trained the neural network weights to estimate the GRFs of
healthy and stroke hemiplegic patients.

For evaluating model performance, we also used a 10-fold
cross-validation for a mixed data set of healthy subjects and
stroke patients. The correlation coefficient r and the normal-
ized root mean square error (nRMSE [%]) were employed as
evaluation metrics, expressed by

LS 5p ) = 5 (0) (@) — ¥ou0))

r = 9
JES 550 = 5 0) 25 T (5 — )
©)
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Input Hidden Hidden Output
layer Layer-1 Dropout Layer-2  Dropout Layer
T\‘ Layer-1 Layer-2

Xs52 — : : Ye
52%x27 216units 77 76 units 6x1
Fig. 3. Optimized LSTM neural network structure for GRF estimation.
o Mediolateral Anterior-posterior Vertical
: = = measuredéRF | o 15 N 1.2
0.08 predictedGRF n
Bt 0.10 ,' '| 1.0 ’l; 1'\| P\
— 0.06 N \ \7
= [t 1 oo A 0.8 [V
B o0 o F ] o00d - | ) [ ! %5
& | | I L A /A | 1 { 3
1 I 1 | 1
G 00 1 1 I 0.05 1 / ‘\Il 0.4 | | 1
~ I
- p— = / | I
0.00 i ] 0.10 '\, 0.2 '1 Ir
-0.02 -0.15 0olad _J
0 i 2 0 1 2 0 1 2
0.10
0.15 1 1.2
ST \ 0104 | 0 "
1\ 4 | h 1 Ve A
0067/} vt Fa /\ 7 AV
S v v 0.054 [} Vi 0.8 1 ) ‘] -
@om] | | 0.00 .y /- |
E [ 4 Vo 0.6 ] 1 &b
& 0.02 1 \ 0.05 | A 0.4 i i 9?4
0.00 le—yi =100 \/ 02 Lo i
v - ! 1
-0.15 v \ 1
oo T T 0.0 T - = T
0 1 2 0 1 2 0 1 2
Time [s] Time [s] Time [s]
Fig. 4. Comparison of estimated GRFs (orange solid lines) and measured

GRFs (blue dotted lines).

\/ N Op(0) = ym(®)?

nRMSE = .
max (Y (1))- min(ym(t))

x 100,

(10)

where y,(f) and y,,(¢) represent the estimated and measured
GRE, respectively. Hat symbols represent average values.

G. Statistical Analysis

We conducted statistical analysis using two-way ANOVA
with side (2 levels: right and left sides for healthy subjects;
paretic and non-paretic sides for hemiplegic patients) as a
within-subject factor and group (2 levels: healthy subjects and
hemiplegic patients for Fig. 5/ Tab. VI or 3 levels: Brunnstrom
stage IV, V, VI for Fig. 7) as an independent factor. When we
found a significant difference, we conducted Tukey’s Honestly
Significant Difference (HSD) test. The statistical significance
level was set at a p value of 0.05 for all analyses. We calcu-
lated the partial eta squared ('71%) and Cohen’s d as an estimate
of the effect size. Statistical analyzes were performed using a
statistical software package (R ver 4.3.0, The R Foundation).

III. RESULTS

Fig. 4 shows the estimated GRFs with the LSTM model
and the measured GRFs. We found that the vertical GRF was
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TABLE V
3-AXI1S GRF ESTIMATION ACCURACY r AND ESTIMATION ERROR NRSME FOR HEALTHY AND HEMIPLEGIC SUBJECTS

healthy subjects hemiplegic patients
left [ right paretic | non-paretic
Medio-lateral ; 0.920 0.919 0911 0.905
edio-latera (0.027) (0.031) (0.032) (0.034)
14.59 14.62 1454 13.70
nRMSE [%] (1.66) (2.69) (3.68) (3.01)
difference of nRMSE [%] 0.03 0.84
Anteriornosterior . 0.011 0916 0.877 0.899
1or-postert (0.055) (0.054) (0.068) (0.020)
9.15 9.30 12.64 10.81
nRMSE [%] 2.63) (3.34) (3.99) (1.82)
difference of nRMSE [%] 0.15 1.83
Vertical ; 0.965 0.967 0.963 0.967
ertica (0.018) (0.020) (0.013) (0.020)
10.39 9.88 10.70 10.06
nRMSE [%] (2.74) @.71) (1.37) (2.40)
difference of nRMSE [%] 0.51 0.64

The values in the table represent mean values. Values in parentheses represent standard deviations.

T

e
o

Correlation coefficient T

=
3

757 healthy-left
BN healthy-right
771 hemi-paretic
I hemi-non-paretic

Mediolateral Anterior-posterior Vertical

(a) Correlation coefficients r

30

| healthy-left
BN healthy-right

] hemi-paretic
B hemi-non-paretic

20

nRMSE [%]

-

Vertical

Mediolateral Anterior-posterior

(b) nRMSE [%]

Fig. 5. Distribution of correlation coefficients r and nRMSE for the left and
right legs for healthy subjects and the paretic and non-paretic sides for hemi-
plegic patients. Estimation errors (nRMSE) were comparable in the vertical
direction for both healthy individuals and stroke patients (L/R: 10.39/9.88%
and P/H: 10.70/10.06%). Black points indicate outliers.

able to reproduce the two peaks. The estimated GRF dur-
ing the swing phase was close to zero. Table V indicates the
accuracy and error for estimating the GRFs calculated by the
correlation coefficient » and nRMSE. The values in the table
represent mean values. Values in parentheses represent stan-
dard deviations. Fig. 5 shows the distribution of correlation
coefficients r and nRMSE for the left and right legs for healthy
subjects and the paretic and non-paretic sides for hemiplegic
patients.

The results in Tab. V indicates that the accuracy of the
paretic side was worse in all directions. Compared to healthy
subjects, hemiplegic patients show the largest change in esti-
mation error in the anterior—posterior direction, worsening
by approximately 3.5%. Hemiplegic patients have correla-
tion coefficients below 0.90 in the anterior—posterior direction,
0.877 (paretic side) and 0.899 (healthy side), indicating lower
estimation accuracy than in the other directions. In contrast,
the estimation errors in the mediolateral and vertical direc-
tions show no significant difference between healthy subjects
and hemiplegic patients.

Next, we performed a verification on the anterior-posterior
and vertical GRF peaks as shown in Fig. 6. The two peaks of
the anterior-posterior GRF are called the peak in breaking and
peak in propulsion, respectively. The two peaks of the vertical
GREF are called the 1* peak and 2"¢ peak, respectively. We
evaluated the estimation error of the peak value as the ratio
of the estimated value to the measured (true) value:

k
{) peak
Ypeak

Amplitude Ratio[%] 100, (11D

Table VI lists the estimation error of the peak values. We
found that the estimated vertical GRF peak was smaller than
the measured value. The ratio of the vertical peak values was
greater than 90% (92.22-99.85%), and the standard deviation
was less than 10% (4.57-7.95%). Peak values on the anterior—
posterior axis averaged 89-126%. The standard deviations
were approximately 20%, indicating a large variability in the
estimated values. Here, the mediolateral GRF was excluded
from this analysis because the nRMSE accuracy exceeded 13%
as shown in Tab. V.

We investigated the relationship between the degree of
paralysis and estimation accuracy. To evaluate the degree of
paralysis, we used the data from the Brunnstrom test that
was performed before the gait measurement. The Brunnstrom
test classifies the degree of paralysis recovery into six stages,
called Brunnstrom stages [42]. A higher number indicates less-
severe paralysis. In this study, two patients were in Stage IV,
three in Stage V, and two in Stage VI. Fig. 7 shows the com-
parison of estimation errors for each Brunnstrom stage. The
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TABLE VI
ANTERIOR-POSTERIOR AND VERTICAL PEAK GRF ESTIMATION ERROR FOR HEALTHY AND HEMIPLEGIC SUBJECTS

healthy subjects

hemiplegic patients

left

[

right

paretic

[ non-paretic

Anterior—posterior

Peak in propulsion [%]

841
(18.2)

93.0
(15.6)

1264
(53.7)

98.9
(16.4)

Peak in braking [%]

90.1
(18.3)

389
(27.8)

88.7
(22.9)

103.0
(29.2)

Vertical

15t peak [%]

95.43
(1.75)

95.81
(6.71)

92.22
(7.95)

96.68
(6.00)

274 peak [%]

97.32
(5.65)

97.97
(5.70)

9837
(4.57)

99.85
(6.18)

GRF [BW]

Peak in propulsion

= = measured_GRF l.
estimated_GRF 1 /N

\

\

7 \
\
\

GRF [BW]

Peak in braking

0 40 80 120
% Gait Cycle

Fig. 6. Definition of GRF peak. Upper: Schematic of vertical GRF; the two
peaks are called the 1% peak and 2"¢ peak, respectively. Lower: Schematic
of anterior-posterior GRF; the two peaks are called the peak in breaking and
peak in propulsion, respectively. The dotted blue and orange lines indicate the
measured and estimated GRFs, respectively.

results indicate that a lower Brunstrom stage, i.e., the more-
severe paralysis (Stage IV), tend to result in a larger estimation
error.

As results of statistical analysis on the sides (right and left
sides for healthy subjects; paretic and non-paretic sides for
hemiplegic patients) and group (healthy subjects and hemi-
plegic patients) related to Fig. 5, we found no significant
main effect of the sides on correlation coefficient r and
nRMSE for all three-axis GRFs. A significant main effect of
group on nRMSE for anterior-posterior GRF was observed
(F(1,28) = 5.21, p = 0.0302, »?> = 0.16), showing nRMSE
smaller for healthy subjects than for hemiplegic patients.

As results of statistical analysis related to Tab. VI, we
found significant main effects of the group (F(1,226) = 42.7,
p < 0.001, n? = 0.16) as well as the interaction between the
group and sides (F(1,226) = 23.387, p < 0.001, n> = 0.094)
on the peak amplitude of anterior-posterior GRF in propulsion.

The peak amplitude in propulsion in hemiplegic patients
was higher than in healthy subjects. Moreover, in hemiplegic
patients, the peak amplitude in propulsion on the paretic side
was higher than that on the non-paretic side. We found signif-
icant main effects of the group (F(1,226) = 6.87, p < 0.01,
n> = 0.030) and the interaction between the group and sides
(F(1,226) = 8.45, p < 0.001, 772 = 0.036) on the peak ampli-
tude of anterior-posterior GRF in breaking, showing the peak
amplitude in breaking on the non-paretic side was higher than
that on the paretic side. We found significant main effects of
the sides (F(1,225) = 4.13, p = 0.0432, > = 0.018) and the
interaction between the group and sides (F(1,225) = 4.01,
p = 0.0464 n?> = 0.018) on the 1* peak amplitude of vertical
GREF, showing the 1% peak amplitude of vertical GRF on the
non-paretic side higher than that on paretic side in hemiplegic
patients.

As results of statistical analysis on the sides (paretic and
non-paretic sides) and group (Brunnstrom stage IV, V, VI)
on hemiplegic patients related to Fig. 7, we found significant
main effects of the group on nRMSE for mediolateral GRF
(F(2,76) = 5.89, p = 0.00419, n2 = 0.13), anterior-posterior
GRF (F(2,76) = 4.45, p = 0.0149, »*> = 0.11), and verti-
cal GRF (F(2,76) = 4.70, p = 0.0119, n*> = 0.11), showing
nRMSE higher for lower Brunstrom stage patients (Stage IV).
A significant main effect of the sides on nRMSE for medi-
olateral GRF was observed (F(1,76) = 7.15, p = 0.00917,
n> = 0.086), showing nRMSE higher for mediolateral GRF
on the non-paretic side.

The results of Tukey’s Honestly Significant Difference
(HSD) test for the Brunnstrom stage group (IV, V, VI) are as
follows. nRMSE of mediolateral GRF for group IV was higher
than those for the V and VI groups (p = 0.0241, d = 0.80;
p = 0.00519,d = 0.89). nRMSE of anterior-posterior GRF
for group IV was higher than those for the V and VI groups
(p = 0.0431,d = 0.66; p = 0.0174, d = 0.86). nRMSE of
vertical GRF for group IV was higher than those for the VI
group (p = 0.00914,d = 1.2).

IV. DISCUSSION

This study was aimed at estimating 3D GRFs during walk-
ing in stroke patients with high accuracy by combining MMC
with a depth camera and RNNs. Because the estimation of
GRFs for healthy subjects only is not conducive to actual gait
analysis, we verified the estimation accuracies of the GRFs
for both healthy subjects and hemiplegic patients.
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Fig. 7. Comparison of estimation errors in the three directions for patients in
each Brunnstrom stage. A lower Brunnstrom stage, i.e., more-severe paralysis
Stage IV, resulted in a larger estimation error for all three-axis GRFs due to
their asymmetrical GRFs. Black points indicate outliers.

In the data for hemiparetic patients, we found that the GRF
in the anterior—posterior direction compared to the vertical
direction was not well estimated (Tab. V and Fig. 5). A pos-
sible cause is reduced muscle activity on the paretic side [10],
[43], [44], [45]. Chen and Patten [11] reported that hemiplegic
patients have little plantar muscle work on the paretic side
compared to healthy subjects. Jessica et al. [12] reported that
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the plantar flexion moment on the non-paretic side increased
to compensate for the reduced plantar muscle activity on the
paretic side, contributing to anterior propulsion. Another pos-
sible cause is that the learned neural network would not be
expressive enough. We assumed that the LSTM was unable
to sufficiently learn such GRF patterns, resulting in a larger
error. In this case, the information from the Kinect’s skeletal
model alone could not sufficiently account for muscle strength
and reduced propulsive force. The estimation may have been
influenced by the training data of healthy subjects with rel-
atively large peak values and stroke patients with relatively
lower plantar muscle work on the paretic side, thus deviated
from the actual measured values. We consider another possible
cause as the poor accuracy of the Kinect’s foot position estima-
tion. We could improve the estimation accuracy by increasing
the accuracy of position information by adding other sen-
sors, e.g., attaching IMU sensors [20], [22], [23], [24], [25]
to the feet or EMG sensors [46], [47] that measure mus-
cle activity, or by adding information from a musculoskeletal
model [30], [31], [32] that can simulate muscle activity. A fur-
ther possible approach to improve the prediction performance
of the LSTM itself is to extend the model to the Hammerstein
LSTM (H-LSTM) model [48], [49]. In time-series prediction,
the variables at time step ¢ depend nonlinearly on the vari-
ables in the past time series t — n,...,t — 2,t — 1. The
nonlinear relationship underlying time-series data limits the
prediction ability of the standard LSTM. To solve this problem,
the H-LSTM model was proposed [48], [49], which consists
of two components, a static nonlinear and a dynamic linear
module, which are responsible for handling nonlinear trans-
formations and time-series prediction, respectively. To apply
this model to the time-series prediction, we can use neural
networks as the static nonlinear and dynamic linear modules.
We have reported an accuracy improvement in cricket walking
motion prediction using the H-LSTM model [50].

The vertical GRF achieved the best estimation accuracy
among the three directions. The peak vertical GRF value was
related to the subject’s propulsive force [10], [51], [52], sug-
gesting that the estimated GRFs could be used as an indicator
of gait ability. Furthermore, we found that a higher Brunnstrom
stage (that is, less-severe paralysis) tended to result in a smaller
estimation error. The reason is that a lighter degree of paraly-
sis results in more-symmetrical GRFs on both legs. The GRF
patterns were similar to those of a healthy subject, which made
the prediction easier.

The mean absolute error (MAE), commonly used as a
method of training machine-learning models, carries inher-
ent limitations when addressing issues such as data dis-
tribution, hyperparameter overfitting, time dependency, and
generalization to different populations [53], [54]. Differences
in data distribution can cause significant discrepancies in
prediction accuracy between training data and data from a new
population. Models utilizing MAE as a loss function tend to
be susceptible to hyperparameter overfitting, making appro-
priate selection and adjustment of hyperparameters crucial.
Furthermore, MAE, by treating each data point independently,
may have limitations in predicting time-series data with tempo-
ral correlations. Moreover, because MAE treats all prediction
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errors equally, it can be challenging to adequately evaluate
errors with different impacts in a new population. To resolve
these issues, other approaches should be considered, such as
a combination of loss functions and evaluation metrics other
than MAE, tuning of hyperparameters, or cross-validation in
different populations.

In this study, the neural network was trained by a mixed data
set of healthy subjects and stroke patients, with the expec-
tation of improving the neural network’s expressive ability
and estimation performance for unknown subject data. Neural
networks could not estimate GRFs in the mediolateral direc-
tion with high accuracy, because GRFs in the mediolateral
direction vary widely from person to person. Moreover, we
also consider the reason as the small data set size. The small
data set size may have caused the neural network to overfit
the gait patterns of the subject data used for training, resulting
in a loss of generalization performance to unknown data. A
larger data set with more subjects would be required to train
a more generalized model.

For the measurements in this experiment, we instructed
the subjects to walk at a comfortable walking speed with-
out specifying a walking speed. Because the GRF pattern
varies with walking speed, a more general estimation model
should be trained by varying the speed condition step by step.
Furthermore, it is necessary to consider a wide variety of vari-
ables such as body weight, body height, gait patterns, foot
patterns, healthy subjects or hemiplegic patients, age groups,
and gait speeds. In our present model, we normalize the GRFs
of the supervised data according to the body weight of each
subject using (1). Thus, by measuring the subject weight
before the experiment and multiplying it by the output pre-
dicted GRF, the model can accommodate and estimate the
individual differences in body weight. The length information
of body segments related to body height was included in
the relative positional relationships of the joint position data
obtained from the Kinect. Thus, although we did not explic-
itly consider the relationship between height and input/output
data, as a result, we assumed that information about height was
included in the Kinect input data and that predictions related
to this information were implemented. By using body weight
and/or height as input data, we can develop an advanced
prediction model that accounts for body length and weight
information. LSTM is an RNN that can learn time-series
dependencies. Because the Kinect joint position time-series
data used as input includes information on gait and foot pat-
terns, we assumed that the prediction model incorporated these
patterns.

As discussed in the limitations, the accuracy of the
prediction depends on the accuracy of the distal segment posi-
tion; hence, how the input data accurately obtained the foot
patterns is an issue that needs to be improved. To consider the
wide variety of variables, we need more training data to con-
struct a model that accounts for these variables, which can be
a more challenging research issue from the viewpoint of data
collection efforts. In this study, as a first step, we built a model
to predict three-axis GRFs in healthy subjects and patients,
considering the extent to which the currently available data
on healthy subjects and hemiplegic patients can be effectively
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utilized. The authors would like to emphasize in this study that,
as a standard prediction model, we have shown that we can
successfully apply the prediction model to a diverse range of
subjects, including hemiplegic patients. We expect that adding
more data from various perspectives and constructing a GRF
prediction model that considers such variables as inputs will
inform a more accurate and personalized prediction model
construction [55]. We plan to address these issues as future
research topics. Finally, a limitation of the markerless motion
capture system (MMC) that we should mention here is that its
application is limited to a subgroup of post-stroke patients. In
other words, not all stroke patients can walk independently,
and an MMC system cannot obtain appropriate motion data
for patients who require assistive devices (such as crutches or
canes) or assistance from a clinician when walking.

V. CONCLUSION

Our study employed an Azure Kinect device, a depth cam-
era, and a recurrent neural network (RNN) to estimate ground
reaction forces (GRFs) during walking in both healthy indi-
viduals and hemiparetic stroke patients. By comparing the
accuracy of the estimation between these two groups, we
assessed the feasibility of applying this method to clinical gait
analysis. The findings demonstrate that the estimated GRF can
serve as a clinical indicator of gait ability. Although the errors
for both groups were largest in the mediolateral direction, the
estimation results for hemiplegic patients were comparable to
those of healthy subjects in the vertical direction, which is a
significant factor in clinical gait analysis. Improving the accu-
racy of the estimation will facilitate the application of the
proposed neural-network-based approach to GRF estimation
for personalized rehabilitation programs.
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