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Abstract—Surgeons cannot directly touch the patient’s tissue in
robot-assisted minimally invasive procedures. Instead, they must
palpate using instruments inserted into the body through trocars.
This way of operating largely prevents surgeons from using haptic
cues to localize visually undetectable structures such as tumors
and blood vessels, motivating research on direct and indirect
force sensing. We propose an indirect force-sensing method that
combines monocular images of the operating field with measure-
ments from IMUs attached externally to the instrument shafts.
Our method is thus suitable for various robotic surgery systems
as well as laparoscopic surgery. We collected a new dataset using
a da Vinci Si robot, a force sensor, and four different phantom
tissue samples. The dataset includes 230 one-minute-long record-
ings of repeated bimanual palpation tasks performed by four
lay operators. We evaluated several network architectures and
investigated the role of the network inputs. Using the DenseNet
vision model and including inertial data best-predicted palpation
forces (lowest average root-mean-square error and highest aver-
age coefficient of determination). Ablation studies revealed that
video frames carry significantly more information than inertial
signals. Finally, we demonstrated the model’s ability to generalize
to unseen tissue and predict shear contact forces.

Index Terms—Force estimation, indirect force sensing, robot-
assisted minimally invasive surgery, visual-inertial input, deep
learning.

I. INTRODUCTION

PALPATION of tissues and organs is crucial to localize
visually undetectable tumors and buried blood vessels in
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open surgery [1]. However, surgeons performing minimally
invasive surgery (MIS) and robot-assisted minimally invasive
surgery (RMIS) cannot contact patient tissue with their finger-
tips and therefore cannot leverage these valuable tactile and
kinesthetic cues [2]. In particular, the friction and transversal
moments imposed on the surgical instruments by the trocar
compromise the haptic cues in MIS [3], [4], [5], [6]. The situ-
ation is even worse in RMIS as no haptic feedback is provided
to the surgeon operating the robot from the console [7]. Hence,
surgeons must learn to adjust their applied forces by relying
on vision [8].

In particular, surgeons learn to translate visual cues into
artificial tactile cues subconsciously by using their experi-
ence in non-robotic surgery [8]; for example, a mental picture
of bowel being grasped is connected with the corresponding
haptic sensation [8]. Typical visual cues are the deforma-
tion and discoloration of the tissue and the appearance of
the suturing material [8]. However, visual cue compensation
alone highly depends on the surgeon’s experience [8], makes
tissue characterization via palpation immensely difficult [9],
increases the operation time, and leads to excessive contact
forces [10], [11]. Exerting excessive forces might cause tis-
sue damage and trauma [12], whereas applying forces that
are too low might lead to a delay or incomplete tasks [12].
Therefore, being able to exert the optimal force is essential
for accomplishing a surgical task efficiently and safely.

Prior work directly measured the exerted force and pro-
vided it as haptic cues (vibrotactile and/or force feedback)
during blunt dissection [13], needle insertion, suturing, palpa-
tion [14], [15], and surgical training tasks [16]. Across these
many examples, providing haptic feedback improved tissue
discrimination [15], shortened the operation time [15], [17],
and reduced the magnitude of contact forces [13], [18]. These
previous studies focused on one main application scenario: the
online estimation of forces for providing real-time haptic feed-
back. However, estimating the forces applied to the tissue can
also provide an objective metric for training and assessment
of surgical performance [12], [19], [20], [21].

To measure forces, novel force sensors have been inte-
grated into the shafts of surgical instruments [22]. However,
due to their position, these sensors need to be biocompat-
ible, sterilized, miniaturized, and robust [22]. Furthermore,
in RMIS, the cables required to drive the instrument’s dis-
tal degrees of freedom must typically act across such a
force sensor, making contact forces difficult to distinguish.
To overcome these limitations, recent research has emerged
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on indirect force-sensing methods. Some researchers have
investigated the use of motor current measurements [23],
[24], [25], [26], [27] or have mechanically modeled the
organs and tissues on which the force is exerted [28], [29].
Others have utilized visual information captured from the
endoscope, such as tissue deformation, to train deep-learning
architectures to estimate contact forces. Specifically, simi-
lar work used vision models (e.g., VGG [30], [31], [32],
ResNet [33], InceptionResNet [34]) either alone or with tem-
poral architectures (e.g., LSTM [31], [32], [34], RNN [33]).
Besides the tissue deformation, cameras can also see the
trajectory of each instrument tip. Its utility in the force esti-
mation problem has been previously demonstrated [31], but
this information can also be captured with other sensors.
Combining visual information with the instrument position
given by either the manipulators [35], [36] or the robotic
joints [37] has shown higher accuracy in predicting the contact
forces than using only vision and, more specifically, stereo-
scopic vision. However, while there is an upward trend in
using stereo endoscopes in MIS, 2D laparoscopy remains
the predominant technique due to its lower costs, widespread
accessibility, and familiarity to surgeons [38]. So far, only a
few works have combined kinematic information with monoc-
ular images [31], [33], [34]. Importantly, these efforts used
kinematic information from the robot, limiting their utility to
RMIS and the specific robotic platform used. In contrast, we
aim to develop a method whose kinematic information is not
obtained from a robot to facilitate transfer to other platforms
as well as traditional MIS.

Given the limitations of current direct and indirect force-
sensing methods, we propose a deep-learning architecture
that estimates tissue contact forces by combining monocu-
lar visual images with inertial information obtained with tiny
inertial measurement units (IMUs) attached to the shafts of
the instruments outside the patient’s body. This sensor suite is
commercially available, has high robustness, and avoids issues
with biocompatibility and sterilization.

We collected visual-inertial data of palpation actions per-
formed on phantom tissues with either the left or the right
instrument. The visual information captures the tissue defor-
mations and the motions of the instrument tips. The three-axis
accelerometer, three-axis gyroscope, and three-axis magne-
tometer in each IMU respond to the acceleration, angular
velocity, and orientation of each instrument during the pal-
pation. Since palpation is commonly performed to localize
tumors and blood vessels, we manufactured four different
phantom tissue samples whose average stiffnesses matched
those of healthy and cancerous tissues. We hypothesized that
knowing the average tissue stiffness, i.e., the Young’s modulus,
could facilitate the interpretation of tissue deformations and, in
turn, enable more accurate force prediction. Even though mea-
suring the stiffness intraoperatively is not straightforward, we
included this information to test our hypothesis in a controlled
lab setting.

We extensively analyzed several deep-learning architectures
for estimating palpation forces; in particular, we compared
seven pre-trained ImageNet models on the visual data and
investigated the effects of the temporal dimension in the

prediction. This comprehensive investigation offers valuable
insights that combine and expand prior related work. We then
performed an ablation study to analyze the contribution of
each network input (video frames, inertial data, and Young’s
modulus). Finally, we tested the capability of our network to
estimate normal forces on unseen tissue and also predict shear
contact forces.

II. MATERIALS AND METHODS

A. Experimental Setup

Fig. 1 shows the experimental setup. The palpation tasks
were executed on phantom tissue samples by four operators
who controlled an Intuitive Surgical da Vinci Si surgical robot.
The robot was equipped with two 8-mm-diameter needle-
driver instruments that passed through trocars without sealing
gaskets to reach the phantom tissue.

1) Stereo Endoscope: The robot is equipped with a 0◦
stereo endoscope. A laptop computer connected to the da Vinci
TilePro video output recorded the stereo images at 30 frames
per second and with a resolution of 1280×1024 pixels. The
screen annotations and day-to-day changes in camera mount-
ing prohibited us from obtaining good stereo calibration; thus,
we used only the left channel of the acquired stereo endoscope
to simulate a monocular setup.

2) Inertial Measurement Units: To obtain kinematic
information, we used two nine-axis IMU sensors (TDK-
Invensense ICM-20948); each IMU is inserted into a 3D-
printed bracket that is rigidly attached to the shaft of the left
or right robotic instrument close to the instrument housing.
This IMU contains a three-axis accelerometer, a three-axis
gyroscope, and a three-axis magnetometer. The output of the
accelerometer depends on the instrument’s orientation rela-
tive to gravity, its translational acceleration, and the vibrations
it experiences. The IMU’s three-axis gyroscope measures the
angular velocity vector of the instrument shaft, and its three-
axis magnetometer measures the orientation and strength of
the local magnetic field. These inertial data were recorded at
a sampling rate of 500 Hz for each robotic instrument using
the same laptop computer to achieve temporal synchronization
with the stereo images.

3) Phantom Tissue Samples: The surgical environment is
made of a custom laparoscopic box trainer containing a piece
of simulated tissue in the shape of a torus; the entire assembly
is attached to a tilting table [39]. Following Forte et al. [39],
we prepared four circular phantom tissues with a diameter of
11 cm and a thickness of 2 cm to be placed at the center
of the torus for palpation interactions. Each tissue sample is
fabricated on top of a rigid plate with a diameter of 11 cm to
allow the transfer of palpation forces to the force sensor below
independent of where the force is applied. Two tissue sam-
ples were prepared with Smooth-On Soma Foama 25 (T270
and T250) and two with Smooth-On Soma Foama 15 (T150
and T120). Smooth-On Soma Foama is a soft two-component
platinum-cure silicone casting foam; different stiffness values
were obtained by modifying the percentage of the two com-
ponents. Each sample has a different average stiffness and
significant variations in stiffness across its surface to simulate
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Fig. 1. Experimental setup. The patient cart of our da Vinci Si surgical system is composed of three robotic arms: one arm moves the stereo endoscope,
and the other two move the surgical instruments. Each IMU is inserted into a 3D-printed bracket that is rigidly attached to the instrument shaft close to the
instrument housing. The surgical environment consists of a phantom tissue sample placed on the force sensor at the center of a toroidal piece of simulated
tissue; these items are covered by a custom laparoscopic box trainer. The images at right depict the coordinate frames of the IMU and the force sensor.

healthy and cancerous human tissues [40], [41]. They also
have somewhat different colors and textures.

After fabrication, we measured the Young’s modulus of
each circular tissue sample at five locations: one in the cen-
ter and four at the extremities of axis-aligned diameters. In
each location, we manually indented the tissue at a range
of depths using a flat-bottomed 11-mm-diameter rod (cho-
sen to match the size of MIS and RMIS instruments), and
we recorded the applied force with a digital scale. This proce-
dure was performed three times for indentation depths ranging
from 1 mm to 10 mm at 1 mm increments, and the force
measurements at each depth were averaged. For each loca-
tion, we obtained the Young’s modulus E using the following
equation:

E = F̄/A

�l/L
, (1)

where F̄ denotes the average force measured by the digital
scale, A indicates the contact area between the rod and the
tissue sample (a circular area with a diameter of 11 mm), �l
corresponds to the indentation depth (change in tissue sam-
ple thickness), and L is the initial sample thickness (20 mm).
The ranges, means, and standard deviations of these Young’s
modulus measurements are reported in Table I.

4) Force Sensor: Below the sample and attached to the
tilted table, we placed a three-axis force sensor (ATI Mini40)
to obtain the ground-truth forces (Fx, Fy, Fz). The rigid
plastic plate of the tissue sample being palpated is fixed to
the upper surface of the force sensor. The data from the
force sensor were recorded using a data acquisition mod-
ule (National Instruments USB6361) sampling at 1000 Hz.
Table I shows the means and standard deviations of the

TABLE I
THE RANGES, MEANS, AND STANDARD DEVIATIONS (SDS) OF THE

YOUNG’S MODULUS MEASURED AT FIVE LOCATIONS ON EACH TISSUE

SAMPLE, ALONG WITH THE MEANS AND SDS OF THE MAXIMUM

FORCES EXERTED IN EACH DIRECTION ON EACH OF THE FOUR

PHANTOM TISSUE SAMPLES DURING DATA COLLECTION

maximum per-recording force magnitude in each orthogonal
direction.

B. Synchronization

We synchronized the endoscopic images with the measure-
ments from the IMUs and force sensor by aligning the start
times of all recordings. Inertial and force data were collected
with two MATLAB instances, and the videos were recorded
using the software program OBS Studio, all running on the
same computer. Synchronization between the two MATLAB
instances was achieved through serial communication, followed
by a command to initiate video recording via a key-press event.

C. Dataset

The dataset consists of three palpation tasks performed by
four operators. The tasks are:

• Right-hand palpation: the operator used the right instru-
ment to pressdown repeatedly on the phantom tissue,
while the left instrument was held in a mostly static
position not in contact with the tissue.
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Fig. 2. Data captured during a right-hand palpation task on T120. The first row shows the ground-truth forces collected from the three-axis force sensor.
The second row depicts sample frames captured by the left channel of the stereo endoscope. The other three rows depict the inertial data from the nine-axis
IMU attached to the right instrument. The x-, y-, and z-axes are colored in red, green, and blue, respectively. In all subplots, the solid thin gray line presents
the square root of the sum of squares of the three axes. The six gray dashed lines correspond to the six instants of the sample frames, temporally aligned
with the measurements; the first, fourth, and sixth points represent non-contact conditions, and the others capture interactions between the right instrument
and the phantom tissue sample. As instructed, the operator held the left instrument mostly static and not in contact with the tissue while the right instrument
moved to many positions to palpate the phantom tissue.

• Left-hand palpation: the operator used the left instrument
to press down repeatedly on the phantom tissue, while
the right instrument was held in a mostly static position
not in contact with the tissue.

• Bimanual palpation: The operator alternately used the
right and left instruments to press down on the phantom
tissue.

The supplemental video associated with this article shows a
sample recording of each of our three palpation tasks.

The four operators have no clinical background but are
familiar with controlling the da Vinci robot. They palpated
the presented sample tissue by repeatedly applying a force
approximately perpendicular to the surface. We did not give
any instructions about the number of palpations to perform,
the palpation force, or the locations to palpate. During each
60-second-long recording, the operator palpated the sample
multiple times, with different force levels (each peak of Fig. 2
represents a palpation event), and in different locations. Each
recording contains repetitions of only one of our three palpa-
tion tasks, and each operator performed multiple 60-second-
long recordings for the same tissue. In total, we collected 20
recordings of each palpation task on each tissue sample, with

the only exception being T150, on which we collected only
10 bimanual-palpation recordings. Thus, in total, our dataset
encompasses 80 recordings of right-hand palpation, 80 of left-
hand palpation, and 70 of bimanual palpation. We plan to
publicly share this full dataset upon publication.

We downsampled the input data using the Fourier method to
decrease the computational time required to train our network
and, thus, facilitate the evaluation of multiple architectures,
different inputs, and generalization ability. We explored var-
ious sampling-rate reductions from the video’s raw rate of
30 Hz, ultimately selecting 6 Hz as it demonstrated minimal
performance degradation. Consequently, in every recording,
we have 360 data points for each input.

Figure 2 shows sample data collected during a right-hand
palpation task. Among the six temporal points highlighted with
gray dashed lines, the first, fourth, and sixth points represent
non-contact conditions, while the other three points correspond
to timestamps with instrument-tissue interactions.

D. Network Architecture

Figure 3 displays the network architecture used to predict
the palpation forces. Our full architecture has three inputs
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Fig. 3. Network architecture. The inputs of the network are the video frames obtained from the left channel of the stereo endoscope, the left and right
inertial data captured by the IMUs, and the average value of the Young’s modulus measured on the tissue sample. The green block represents the vision
model. The input size of the video frame (row×cols×3) follows each vision model, e.g., 224×224×3 for VGG, DenseNet, and ViT. T refers to the number
of time points in a recording, i.e., 360, and D represents the output dimension of the second-to-last layer of each vision model. The blue blocks are the fully
connected layers. The orange block is the temporal model, and d refers to its output dimension.

(left-channel video frames, inertial data, Young’s modulus)
added at different stages of the network.

For the visual input, as a pre-processing step, we resized
the RGB video frames obtained from the left channel of the
stereo endoscope to match the different input sizes of the
pre-trained models, e.g., 224×224×3 for VGG, DenseNet,
and ViT. The resized frames were then fed into a pre-
trained ImageNet model. Since the last two layers of a
pre-trained ImageNet model are designed for object clas-
sification, we removed them and used only the portion of
the architecture that extracts image features. Keeping in
mind that the performance of vision models greatly depends
on the task, we performed a comprehensive evaluation of
widely used image-classification methods, i.e., VGG16 [42],
ResNet-v2 [43], Inception-v3 [44], InceptionResNet-v2 [45],
NASNet [46], [47], ViT-Large [48], DenseNet-201 [49],
MobileNet [50], and EfficientNet [51]. From this initial study,
we chose to continue investigating models that either had a
foundation in prior related research, i.e., VGG [30], [31], [32],
ResNet [33], and InceptionResNet [34] or achieved supe-
rior performance in our preliminary analysis, i.e., DenseNet,
Inception, NASNet, and ViT.

The eighteen channels of inertial data (nine for the right
instrument and nine for the left instrument) are passed through
a two-layer neural network to increase the non-linearity of
the inertial data, allowing our system to model more complex
input-output relationships. Furthermore, this step projects the
inertial measurements and the visual features into a common
feature space where they are then concatenated.

This concatenated vector is fed into a temporal model, e.g.,
gated recurrent units (GRU), long short-term memory network

(LSTM). Considering the limited size of our dataset, we eval-
uated GRU but found that they under-performed compared
to LSTMs. Furthermore, the selection of the temporal model
depends on the application scenario; whereas LSTM relies
only on past data and can be thus used for the real-time appli-
cation scenario, offline force estimation can also benefit from
future data and thus use BiLSTM. Our implementations of
LSTM and BiLSTM consist of six units, each containing one
second of data; thus, they both output six dimensions from past
data, and BiLSTM also outputs six dimensions from future
data.

Finally, the tissue’s average Young’s modulus is concate-
nated and fed into the last layer before predicting the palpation
forces. To localize tumors and buried blood vessels, the pal-
pation direction is defined as perpendicular to the tissue
surface [52], which in our case is the z-axis of the force sensor
(see Fig. 1). The standard version of our network thus seeks
to use the camera images, IMU measurements, and Young’s
modulus to predict the force applied to the tissue along the
z-axis, i.e., Fz.

E. Training Details and Evaluation Metrics

The model loss function was defined as the mean squared
error between the predicted forces and the ground-truth forces.
We used the Adam optimizer with a learning rate of 10−4 and
a weight decay of 10−4 to minimize the model loss and train
our network. We trained the network for 104 epochs.

To thoroughly evaluate our model, we used a five-fold cross-
validation method. The dataset was split into five subsets that
contain 46 recordings each. The subsets are balanced with
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respect to the three palpation tasks, the four phantom tissue
samples, and the four operators.

We then used two evaluation metrics: the root-mean-squared
error (RMSE) and the coefficient of determination (R2). The
RMSE represents the square root of the average squared differ-
ence between the predicted and actual force values; it is com-
monly used for evaluating force estimation [31], [32], [33].
The R2 value shows the percentage of the variation in the pre-
dicted force values that can be explained by the ground-truth
force values; this metric is often used to evaluate nonlinear
regression models in many fields [53]. Low RMSE and high
R2 represent different aspects of good performance.

F. Ablation Study

We performed an ablation study to analyze the importance
of each of the three input modalities, i.e., the video frames, the
inertial data of the left and right instruments, and the average
Young’s modulus of the phantom tissue being palpated. The
training parameters, validation method, and evaluation metrics
are the same as described in Section II-E.

G. Model Generalization

To establish how well our learned network generalizes, we
first evaluated its ability to predict palpation forces on an
unseen tissue sample; an unseen sample has a different aver-
age Young’s modulus and, in turn, different instrument-tissue
interactions. A leave-one-out validation was used; we split the
dataset into four subsets, each containing all the recordings
from the same phantom tissue. For each of the four different
phantom tissues, we then trained the force-estimation model
using the three subsets from the other three tissue samples
and tested it on the data from the left-out sample. The train-
ing parameters and evaluation metrics are the same as in
Section II-E.

Second, we investigated the performance of our model at
estimating the contact forces along all three axes, i.e., Fx, Fy,
and Fz, since palpating the tissue also generated small con-
tact forces in the shear directions, which might be clinically
relevant for some applications.

III. RESULTS

A. Comparison of Network Architectures

We first focused on the visual input and investigated the
performance of seven different vision models: six convolu-
tional neural networks, i.e., VGG, ResNet, Inception, NASNet,
DenseNet, and one transformer, i.e., ViT. As a temporal
model, we used BiLSTM for all architectures. The results are
reported in Table II as the means and standard deviations of
the two evaluation metrics across the five-fold cross-validation:
Dense-BiLSTM showed the best performance, i.e., the lowest
RMSE and the highest R2 for almost all tissue samples in
all three palpation tasks, followed by InceptionRes-BiLSTM.
ViT-BiLSTM consistently showed the worst results. Figure 4
shows sample prediction results for each model compared with
the ground truth; it is possible to qualitatively observe that
Dense-BiLSTM follows the ground truth most accurately.

Fig. 4. Sample force signals from our comparison of network architec-
tures. Ground-truth palpation forces (gt) and palpation forces predicted from
the tested architectures, i.e., Dense-BiLSTM, DenseNet, Dense-LSTM, VGG-
BiLSTM, Res-BiLSTM, Inception-BiLSTM, InceptionRes-BiLSTM, NAS-
BiLSTM, and ViT-BiLSTM. Row 1 shows a ten-second right-hand palpation
task performed on sample T270 by Operator 1; Row 2 shows a left-hand
palpation task performed on sample T250 by Operator 1; Row 3 shows a
bimanual palpation task performed on sample T120 by Operator 2. These
ten-second force signals were cropped from 60-second recordings.

We then investigated the effect of the temporal dimension
(time and sequence order) applied to the visual-inertial fea-
ture vector. We used DenseNet as the vision model since it
proved to be the best among the seven tested. In particular,
we compared BiLSTM against LSTM and the vanilla version
of DenseNet. Unlike BiLSTM, LSTM does not rely on future
information and can thus provide real-time predictions. The
inference time further decreases when no past information is
used (vanilla DenseNet). The last three rows of each section
of Table II compare Dense-BiLSTM, vanilla DenseNet, and
Dense-LSTM. As expected, Dense-BiLSTM has the lowest
RMSE and the highest R2, followed by Dense-LSTM, showing
that the temporal information improves predictions.

Using SPSS, we performed a repeated-measures analysis of
variance (ANOVA) with a Bonferroni post-hoc correction for
pairwise comparisons to statistically compare the six lower-
performing model architectures, i.e., VGG-BiLSTM, Res-
BiLSTM Inception-BiLSTM, InceptionRes-BiLSTM NAS-
BiLSTM, ViT-BiLSTM, Dense-BiLSTM, and DenseNet, with
the overall winning model, i.e., Dense-BiLSTM. Results with
p < 0.05 were regarded as statistically significant. As reported
in Table II, among the different model architectures, ViT-
BiLSTM had, overall, a significantly higher RMSE and lower
R2 compared to Dense-BiLSTM for all tissues in all tasks.

For the temporal model, the analysis revealed an overall
significantly higher RMSE and lower R2 of vanilla DenseNet
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TABLE II
RMSE AND R2 OF THE PREDICTED PALPATION FORCES (MEANS AND STANDARD DEVIATIONS OF THE FIVE-FOLD CROSS-VALIDATION) ACROSS

DIFFERENT DEEP-LEARNING ARCHITECTURES. LOW RMSE (↓) REPRESENTS BETTER PERFORMANCE, WHILE HIGHER R2 (↑) INDICATES

SUPERIOR PERFORMANCE. BOLD FONT DENOTES THE BEST PERFORMANCE FOR EACH PALPATION TASK, WHILE THE ASTERISKS

INDICATE STATISTICALLY SIGNIFICANT DIFFERENCES FROM THE OVERALL BEST MODEL, I.E., DENSE-BILSTM

compared to Dense-BiLSTM, while only a few significant
differences were found for the RMSE and R2 of Dense-
LSTM compared with the Dense-BiLSTM across all tasks.
Independent of the vision model used, on average, the right-
and left-hand palpation tasks obtained better results than the
bimanual palpation task, and the estimation of Fz in the right-
hand palpation task outperformed the estimation of Fz in the
left-hand palpation task.

B. Ablation Study

We investigated the importance of each network input (video
frames, inertial data, and Young’s modulus). As reported in
Table III with the means and standard deviations of the two
evaluation metrics across the five-fold cross-validation, remov-
ing either the inertial data or the Young’s modulus did not
impact the model performance; overall, the RMSE slightly
increased, and the R2 decreased moderately. In some cases,
removing them produced the best results. On the contrary,
removing the video frames greatly deteriorated the predictions.
Nonetheless, as visible in Fig. 5, the network could still predict
forces reasonably well even when the video frames were not
provided.

Similar to the previous analysis, we used a repeated-
measures ANOVA with a Bonferroni correction to compare a
model using all three inputs (“All”) with the model’s ablated
versions. The repeated-measures ANOVA showed a signifi-
cant main effect of the network inputs on the RMSE and R2

for all tissue samples across tasks. A paired t-test revealed a
significantly higher RMSE and lower R2 of the model without
the video compared to “All” (RMSE: p < 0.01, R2: p < 0.01).
No other comparisons were significant.

C. Predictions on Unseen Tissue and of Three-Axis Forces

Table IV presents the means and standard deviations of
both performance metrics for our generalization experiments.
We conducted paired t-tests to investigate the model’s ability
to predict forces on unseen tissues. As expected, estimating
forces on a new tissue usually showed significantly worse
performance than our baseline method that trained and tested
on all tissue samples. Furthermore, unlike the previous anal-
yses, no differences were observed among the palpation tasks
for this more challenging test.

In addition, we report the results of Dense-BiLSTM when
estimating the three-axis contact forces, recalling that the
x and y shear forces were much smaller than the normal
forces (Tab. I). Fx and Fy showed both a lower RMSE (better
performance) and a lower R2 (worse performance) than Fz.

We then performed a paired t-test to compare the prediction
of Fz when it was estimated independently (“Fz baseline”
in Table IV) with the prediction of Fz when it was inferred
together with Fx and Fy (“Fz combined”). As reported in
Table IV, the RMSE and R2 values were significantly different
between the two predictions for only about one third of the
tested palpation tasks and sample tissues, with some instances
of each prediction performing better.

IV. DISCUSSION

Palpation allows surgeons to localize visually undetectable
tumors and buried blood vessels. Motivated by the increas-
ing number of surgeries performed in a minimally invasive
manner, research has focused on predicting the forces sur-
geons apply to the patient’s tissues with surgical instruments
using either direct or indirect sensing methods. This paper used
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TABLE III
ABLATION STUDY FOR PREDICTION OF PALPATION FORCES (MEANS AND STANDARD DEVIATIONS OF THE FIVE-FOLD CROSS-VALIDATION) USING

THE BEST MODEL, I.E., DENSE-BILSTM. BOLD FONT DENOTES THE BEST PERFORMANCE FOR EACH PALPATION TASK, WHILE THE ASTERISKS

INDICATE STATISTICALLY SIGNIFICANT DIFFERENCES FROM THE PERFORMANCE USING ALL FEATURES, I.E., “ALL”

Fig. 5. Sample force signals from the ablation study. Ground-truth palpation
forces (gt) and palpation forces predicted when each of the three inputs has
been removed, i.e., without Young’s modulus (w/o YM), without inertial data
(w/o IMU), and without video frames (w/o Video). “All” represents the model
when all inputs are used. Row 1 shows a ten-second right-hand palpation task
performed on sample T270 by Operator 1; Row 2 shows a left-hand palpation
task performed on sample T250 by Operator 1; Row 3 shows a bimanual
palpation task performed on sample T120 by Operator 2. These ten-second
force signals were cropped from 60-second recordings.

visual-inertial data and deep learning to indirectly estimate
the palpation forces exerted on four different phantom tis-
sues during three palpation tasks. We evaluated the prediction
performance based on the RMSE and R2 metrics. However, it
is important to note that defining whether the force prediction
is good enough for real applications is challenging, as, to the
best of our knowledge, there are no quantitative metrics that
correlate the force prediction to the surgeon’s perception or to
the quality of the skill assessment.

Among the tested state-of-the-art vision architectures, we
found that DenseNet was the most promising vision model
for estimating palpation forces. The higher performance of
DenseNet could be explained by its high generalization during
pre-training; DenseNet consists of deep residual modules and
has a relatively small number of parameters, which can prevent
overfitting and facilitate adaptation to images from other fields,
such as surgery.

Furthermore, including past temporal information in the
vanilla model increased the R2 value by 10.3% (0.61 DenseNet
vs. 0.68 Dense-LSTM), and also adding future information
led to an additional 7.4% improvement (0.68 Dense-LSTM vs.
0.73 Dense-BiLSTM). However, the use of future information,
i.e., Dense-BiLSTM, is limited to offline force-estimation
applications. For real-time force estimation, Dense-LSTM or
vanilla DenseNet should be used; importantly, overall, Dense-
LSTM did not show significantly worse results compared with
Dense-BiLSTM and could thus be used to estimate the forces
needed to provide real-time haptic feedback to surgeons.

The results of the ablation study highlighted the impor-
tance of visual information in learning the palpation forces.
In contrast, removing the inertial data of the robotic instru-
ments or the average tissue stiffness did not significantly
affect the results. Vision alone might then suffice to capture
changes in the instrument position (which we instead pro-
vided using IMUs) and deformations of the tissue (which we
hinted through the Young’s modulus). However, when vision
is used alone, the choice of a powerful vision model is cru-
cial. Interestingly, when we removed the video frames, the
network trained on only inertial data and the Young’s mod-
ulus was still able to predict the ground-truth force to some
extent. Examination of sample predictions like those shown
in Fig. 5 revealed that the predicted force peaks were some-
what smoothed. Furthermore, this force prediction never went
to zero; during no-contact situations, this network tended to
estimate a force in the opposite direction. These observations
could indicate that tracking only the movement of the instru-
ments might enable a system to estimate when an instrument
approaches, touches, and retreats from the tissue but not the
intensity of the resulting contact forces.

We expected the results on the unseen phantom tissue sam-
ples to be worse than those on phantom tissues that were
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TABLE IV
PREDICTION OF THE PALPATION FORCES (MEANS AND STANDARD DEVIATIONS OF THE LEAVE-ONE-OUT VALIDATION) ON AN UNSEEN TISSUE

SAMPLE AND PREDICTION OF THE THREE-AXIS FORCES (MEANS AND STANDARD DEVIATIONS OF THE FIVE-FOLD CROSS-VALIDATION). THE

ASTERISKS INDICATE STATISTICALLY SIGNIFICANT DIFFERENCES IN PREDICTING Fz COMPARED TO THE OVERALL BEST MODEL, I.E., “Fz BASELINE”

used to generate the training data. However, although the
predictions were on average less accurate, the results were
promising; we even observed a few cases in which the unseen
tissue performed better. This result indicates that most but not
all of the extracted features are tissue-dependent. We attribute
this initially unexpected result to the fact that each tissue sam-
ple has a range of Young’s modulus values, and each operator
moved in somewhat different ways. Thus, it was sometimes
possible that the network had seen similar enough examples
to achieve good predictions on an interaction with a tissue
sample that was not seen in training.

The palpation task was mainly performed in the z-axis
direction. When estimating the three-axis forces, we observed
a lower RMSE in the x and y directions. We believe this
finding is due to the low range of forces applied in these
shear directions compared to those exerted along the z-axis.
Overall, we did not find significant differences between esti-
mating Fz independently or together with Fx and Fy, indicating
that these prediction tasks may be relatively independent from
one another, or that the benefits and drawbacks of the more
complex model roughly cancel out.

Operators were instructed to perform three tasks: right-
hand palpation, left-hand palpation, and bimanual palpation.
Overall, one can observe that the right-hand palpation achieved
slightly better performance compared with the left-hand pal-
pation. The reason could be twofold. First, all four operators
were right-handed and thus might have palpated in more pre-
dictable ways with this hand. Second, we used the left channel
of the stereo endoscope, and since the two cameras are toed
in [39], the left camera captured more visual information on
the right side of the surgical field, where the right instru-
ment usually was. Using both channels of the stereo endoscope
could thus improve prediction performance. Our bimanual pal-
pation recordings are more similar to what happens during real
surgeries. This task created more-complex force signals and,
as expected, achieved the worst results of the three tasks.

Inspection of the results also reveals the systematic differ-
ences in performance across the four different tissue samples.

Overall, Dense-BiLSTM gave better predictions on tissues
with higher stiffnesses (T270 and T250). We hypothesize
that the higher forces applied to these tissue samples made
prediction easier.

Based on our results and insights, we believe that future
work should investigate the use of stereo images and explore
different IMU positioning. In particular, when each IMU is
attached to the instrument shaft (Fig. 1), the range of motion
of the instrument is slightly reduced in the insertion direction.
This choice did not impact our work in a dry-lab environ-
ment, but other positioning options should be investigated for
applications in real surgery. Furthermore, we downsampled our
input data due to the high computational cost; more efficient
algorithms, such as temporal convolutional networks, could
instead be investigated. While we considered only normal and
shear contact-force values for the studied palpation task, future
investigations of more-complex manipulation scenarios could
also seek to estimate the torques applied to the tissue. Finally,
our work is based on deep-learning techniques. At the current
stage, we offered our hypotheses and insights about which
features the network focuses on during learning. However,
in the future, it would be desirable to use explainable AI to
have a more profound understanding and interpretation of the
system’s predictions.

V. CONCLUSION

This article presented a deep-learning model that pre-
dicts palpation forces using visual and inertial data captured
through a sensor suite that can be applied to different surgi-
cal robots and traditional MIS. First, we collected a dataset
that includes different operators, tissue samples, and palpation
tasks. This novel dataset allowed us to create a model that
could generalize to a range of palpation conditions involv-
ing contact by either instrument at arbitrary locations on
the tissue surface. Second, we offered an extensive compar-
ative analysis of several network architectures; in particular,
we compared seven vision models, investigated the role of
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temporal information depending on the application scenario,
and investigated the role of each network input (video frames,
inertial data, and Young’s modulus). We then evaluated how
our model generalized to unseen tissues and shear forces.

Even though we tested our method with phantom tissues, we
enriched prior work [31], [33] by having multiple human oper-
ators palpating the tissues. Furthermore, operators interacted
with the tissue samples with both hands, as opposed to per-
forming only one-handed palpation [31], [33], [35]. Finally,
differently from prior studies, e.g., Marban et al. [31] and
Jung et al. [34], we compared several state-of-the-art vision
methods.

Nonetheless, several steps are still necessary to move closer
to the surgical environment. In particular, future datasets of this
type should include a wider range of tissue properties (Young’s
modulus and colors), various instruments, and a broader set
of more clinically relevant palpation motions. A further step
could include palpating animal tissues either ex vivo or in vivo,
though ground-truth force measurements will then become
more difficult to acquire. In a nutshell, our promising results
showed the feasibility of detecting palpation forces with an
indirect sensing method that could be applied to both RMIS
and traditional MIS.
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