
Seamless In-App Ad Blocking on Stock Android

Michael Backes
CISPA, Saarland University & MPI-SWS

Saarland Informatics Campus

Sven Bugiel, Philipp von Styp-Rekowsky, Marvin Wißfeld
CISPA, Saarland University

Saarland Informatics Campus

Abstract—Advertisements in mobile applications have been
shown to be a true danger to the users’ privacy and security.
Unfortunately, all existing solutions for protecting users from this
threat are not simultaneously satisfying in terms of effectiveness
or deployability. Leveraging recent advances in app virtualization
on Android, we present in this paper a solution for in-app ad-
blocking that provides a high level of effectiveness in blocking ads
while at the same time being favorable for end-user deployment
by abstaining from OS modifications or any elevated privileges.
We discuss the technical challenges and their solutions for
robustly stripping ads from apps while preserving the apps’
functionality.

I. INTRODUCTION

In-app advertising is a common monetization strategy for

free mobile applications. Yet, various studies have raised [6],

[7], [15] and re-raised [12], [5], [9] severe privacy concerns

about in-app advertisements (ads). First of all, in-app ads

are not subject to the same level of privilege separation as

advertisements in browsers, e.g., in-app ads inherit the same

privilege as their host app for communicating with the system

and other apps, giving them access to a plethora of detailed

user information. This privilege is being actively exploited by

in-app ads to exfiltrate sensitive user information [7], [15],

[5], [9] that allow tracking of the user and drawing a pretty

accurate user profile. Second, as for in-browser advertisements,

in-app ads are an efficient channel for “malwaretisement” and

phishing to lure users into malware and scam campaigns [12].

Status quo of in-app ad-blocking: To help mobile users

to defend themselves against those threats of in-app advertise-

ments, it would be highly desirable to have ad-blockers as in

the browser domain, which remove a potentially harmful adver-

tisement in order to protect the user. However, crucial technical

differences exist between the distribution and presentation of

in-browser and in-app advertisements, most importantly that

in-app ads’ bytecode is merged with that of the app displaying

the ad and thus is protected by the system’s app-sandboxing

as part of its host app from tampering (such as ad-blocking)

by other installed apps. To tackle this challenge, the research

community has proposed different solutions based on app
rewriting [16], [8], network-based [14], [1] filters, or operating
system support [13], [10], [17] to remove or constrain in-app

ads. Unfortunately, none of those existing approaches to in-app

ad-blocking is simultaneously satisfying for the end-user in

terms of effectiveness or accessibility, which has yet prevented

a wide-spread proliferation of efficient and usable in-app ad-

blockers.

App virtualization for ad-blocking: With the advent of

app virtualization on Android [4] a new, powerful tool has

been created that in principle allows effective, highly efficient

ad-blocking without adversely affecting the deployability of the

solution. In this paper, we report on the technical challenges

and their solutions in creating an ad-blocker for in-app ads

on Android. While app virtualization inherently provides great

benefits for deployability of security solutions, the primary

challenges for this work were a) effectively identifying the

advertisement code in application packages and b) robustly

stripping that code from applications without breaking the

app’s functionality (e.g., breaking control flows that involve

advertisement code).

II. BACKGROUND ON IN-APP ADS

App developers that want to monetize their app with in-app

ads have to add advertisement libraries to their apps in the form

of separate code packages and link those libraries’ lifecycles

with that of their app, e.g., to load and display ads. This linking

is done via well-documented public interfaces of the ad library.

A. Types of in-app advertisement

By studying various popular advertisement libraries, we

found two basic types of advertisements used on the Android

platform: Banner ads and interstitial ads.

Banner ads are part of the program UI design and always

occupy a certain dedicated screen region of the app’s UI (e.g.,

the bottom quarter of the screen). Banner ads are usually

implemented by providing an implementation of the View
class1 that the app developers have to include in their apps’

UI declarations.

Interstitial ads are best compared to pop-up advertisements

on the web: On certain navigation actions, instead of the desired

screen, a full-screen ad is shown. After closing the fullscreen

ad, the user is sent back to the application. To trigger displaying

interstitial ads and resuming the host application’s control flow

after closing the ad, host app and ad library have to be linked

through a simple event-driven protocol. Commonly, the app

will call the ad lib to display the ad after the library has signaled

that the ad has been loaded and the ad lib will issue a callback

to the host app to inform it that it can continue execution.

1View is the base class for all visible content on Android.

2017 IEEE Symposium on Security and Privacy Workshops

© 2017, Michael Backes. Under license to IEEE.

DOI 10.1109/SPW.2017.24

163

B. Advertisement library inclusion

Advertisement libraries are usually provided in one of the

two formats supported by the official Android SDK: JAR-files

and Android Archives (AAR). While JAR-files are just a bundle

of Java classes, AAR-files may also provide native code and

Android specific entrypoint annotations, which is a requirement

to add new a Activity2 or background service to an app. When

JAR-files are provided, the developer is often required to add

relevant metadata to the App’s sources, because it’s impossible

to inject these from JAR-files.

All Java classes from external libraries that are specified to

the build process in the Android SDK, will be bundled together

with the application logic code into a single classes.dex-file

containing the compiled code of both app code and all included

library code. Similarly metadata and resources from the libraries

will be merged into the app’s original definitions and this will

be bundled together with the classes.dex into a single APK-

package-file, which is then published for installation on the

device. This means that the ad libraries cannot be detected

trivially after the compilation step, especially as the Android

SDK tries to minimize the size of the resulting file by removing

metadata not required for execution.

III. EXISTING SOLUTIONS

A. Challenges in comparison to in-browser ad-blockers

Ad-blockers for browsers operate by filtering content from

the web content when this content is being loaded (e.g., based

on blacklisting advertisement network domains) or removing

undesired elements from the loaded web content (e.g., Java-

applets or Flash content). Such in-browser ad-blockers require

the necessary privileges to observe and modify the web content

loaded into the tabs of the browser program, usually in form of

browser extensions and plug-ins that request those privileges

from the user. In contrast, as explained in Section II, in-

app ads’ bytecode is merged with that of the app displaying

the ad. Since mobile operating systems, such as Android,

sandbox applications and isolate them from each other, an ad-

blocker app cannot acquire the necessary privileges to tamper

with another application, including removing ad content from

another application.

B. Blocking or isolating in-app ads on Android

To tackle the challenge of removing or privilege-separating

advertisements on Android, the research community has

proposed different techniques that will be compared according

to functional requirements in the following.

Functional requirements: While blocking or privilege sepa-

rating advertisements is highly desirable for protecting the users’

privacy, an effective solution should also consider different

functional requirements that affect the deployability (and hence

widespread adoption) as well as minimal required ad-blocking

in light of non-malicious applications. We summarize those

requirements in Table 1 as follows:

2Android’s interactive user interface base class, similar to a window on a
desktop

O1 No system modification: The solution should abstain

from customized Android firmwares, such as extensions to

Android’s middleware, and is able to run on stock Android

versions.

O2 No application modification: The solution does not rely

on or require any modifications to the applications from the

advertisement is blocked or separated, such as rewriting existing

code.

O3 Blocking cached/pre-packaged ads: The solution is able

to block (or separate) advertisements that were already pre-

packaged with or cached by the application and thus does not

solely depend on monitoring and modifying the applications

network I/O.

OS extensions: Different security extensions to the Android

software stack for isolating and privilege separating advertise-

ment libraries have been proposed, such as [13], [10], [17] to

name a few. Generally, those approaches build on privilege

separating the advertisement library into a separate process

with a distinct UID and hence different privileges from the app

showing advertisements, but focusing on different re-integration

techniques of the separated app, such as introducing a new

advertisement API [10], authenticating user input and visual

fidelity [13], or iframe-styled display and input isolation [17].

As such, those solution form a robust solution to isolating

advertisements (O3: �) and are mostly backwards compatible

for apps (O2: �). However, operating system support for

isolating advertisements (O1: �) is highly unlikely to be

adopted by vendors (e.g., Google, Samsung, etc.), thus forcing

the user to resort to aftermarket firmwares, whose installation

forms a technical barrier for most end-users.

App rewriting: To be independent from operating system

support (O1: �), alternative solutions, such as [16], [8], build

on top of app rewriting techniques. Usually, those solutions

identify the ad lib code within the application packages and

then, for instance, remove this code and its call-sites within

the app code from the application package [16] or inline a

reference monitor that enforces separate privileges on access

to the application framework API by ad lib code [8]. Thus,

like OS extensions, those approaches can block or privilege

separate advertisements efficiently (O3: �), however, rewriting

applications (O2: �) breaks the same-origin of the application

package and prevents the default update mechanisms, forcing

the user to rely on “out-of-band” updates for rewritten apps.

Network-based filters: Lastly, network-based filters have

proposed, which do not rely on any OS security extension (O1:

�) or application modification (O2: �), but instead rely on

removing advertisements from the applications’ network I/O

streams, thus preventing them from being loaded and displayed.

Usually, those solutions make use of Android’s VPN API [3]

to act as man-in-the-middle that can monitor and filter the apps’

network traffic. However, filtering network traffic is inefficient

in light of cached or pre-packaged ads (O3: �) and additionally

has to surrender (or compromise) encrypted connections to be

able to filter traffic. In particular encrypted network connections

are a limitation of those solutions, since advertisements should

164

Fucntional Objectives O
S

ex
te

ns
io

n

A
pp

re
w

ri
tin

g

N
et

w
or

k
fil

te
r

A
pp

vi
rt

ua
liz

at
io

n

O1: No system modification � � � �

O2: No application modification � � � �

O3: Blocking cached/pre-packaged ads � � � �

�= applies; �= does not apply.

Table 1: Comparison of deployment options for Android

advertisement blockers/containers based on desired functional

objectives.

be and are loaded over secure channels in order to prevent easy

code injection attacks against the ad libraries’ host apps [11].

IV. STRIPPING IN-APP ADS

For our solution to strip in-app advertisements from Android

applications, we leverage our observations on how in-app

advertisements are deployed. We use the fact that ad libraries

are exclusively used via public interfaces to strip ad libraries—

and potentially any library that is integrated into host apps in a

similar way—by replacing on-device the bytecode implementa-

tions of these public interfaces with dummy code. By preserving

the callsites in applications to valid but dummy call targets in

the libraries, we ensure that we do not interrupt control flows

between host app and library, which could adversely affect

the app’s functionality and stability. Moreover, a particular

benefit of limiting ourselves to the well-documented public

APIs of the advertisement libraries is that we abstract from the

libraries’ internals, easing the task of identifying and stripping

the relevant code fragments.

A. Identifying Call Targets

The first step in our solution is identifying the call targets

within advertisement libraries that have to be replaced with

dummy logic. This identification predominantly depends on

the type of advertisement that is included in the app and hence

the interface between the library and the host app. Moreover,

dead code elimination and code obfuscation can complicate

robust identification of the call targets.
1) Technical challenges: Apps are more and more commonly

obfuscated with the ProGuard tool of the Android SDK. Apps

that have been processed with ProGuard impose two additional

challenges for identifying call targets in ad libraries:

Identifier obfuscation: To obfuscate the app’s code, Pro-

Guard renames identifiers, e.g., of methods and classes, with

short strings like a() or b.a.c. In its default configuration,

ProGuard will also apply this renaming to external libraries.

Thus, when identifying ad libraries or modifying their code

we cannot rely on those identifiers.

Dead code elimination: In addition to obfuscating the

code, ProGuard also optimizes the resulting bytecode size by

eliminating classes and methods that are unreachable from any

of the entry points. This removal of dead code makes proper

identification of advertisement libraries more challenging when

parts of the library have been removed.

2) Class fingerprinting and filtering rules: To ensure that

we only block components belonging to advertisements and

not those of the host applications or other 3rd party libs, we

need to create filter rules that clearly define the content to be

stripped from an application’s codebase. Clearer filter rules

directly result in a lower false positive rate. This problem of

defining clear filter rules is already known for browser-based

ad blockers where rules define HTTP requests and HTML

elements to be blocked, but is a lot more complex for in-app

advertisements where the rules have to refer to classes and

methods instead, which can be subject to dead code elimination

and obfuscation. In presence of code elimination or obfuscated

identifiers, the public API of advertisement libraries becomes

unreliable as an identifier, since there is no guarantee that it is

present in the code in the same form as in the API specification.

Thus, our approach instead relies on a set of class structure

information (e.g., class hierarchy and method signatures) of the

API classes including their cross-references to fingerprint ad

libraries more robustly. This set of API classes consists of the

smallest set of classes that has to be always present for the ad

library to be functional, while the classes outside this set can

be subject to code elimination. Using the class structure for

fingerprinting ad libraries removes the need to rely on method

and class identifiers and increases robustness against simple

obfuscation techniques. In rare conditions, it is also required

to add non-API classes to the set to draw the line between API

classes with extremely similar structure and hence uniquely

identify all relevant classes.

To further reduce the risk of false positives of our class

fingerprint, we additionally use the Java package name as a

criteria for fingerprinting. We found that ProGuard and other

obfuscation tools often refuse to fully obfuscate the package

name. We discovered this to be particularly the case when

ProGuard detects references to the package name that are used

in reflection calls or in references from XML resources of the

application (e.g., referencing Views). Moreover, the package

name tree structure is preserved by some obfuscation tools and

can be leveraged for fingerprinting ad library code within the

application code.

The package name, class structure information as well as

annotations on how to further proceed with the class and

methods are then written down in a domain specific language in

a structured filter definition file. Listing 1 presents an example

excerpt from such a filter file, which defines a final class

in package “com.google.android.gms.ads” that has the class

“android.view.ViewGroup” in its inheritance tree, defines a

one-argument, void-returning “loadAd” method, and should be

filtered such that it becomes an empty View. The method’s

argument type “.AdRequest” of said method as well as other

names starting with a dot are cross-references to other classes

defined in the same package.

165

1 package com.google.android.gms.ads
2 [...]
3 class .AdView extends* android.view.ViewGroup
4 set filter−action empty−view
5 flag final
6 property define .AdListener listener
7 method exists,replace void loadAd .AdRequest
8 end class
9 [...]

10 end package

Listing 1: Example excerpt of filter definition file

B. Applying Filter Rules

We manually created a set of filter rules for various libraries.

With the class fingerprint from the filter definitions we are now

able to identify ad library classes that match the fingerprint

and define criteria on how to filter those classes.

Although automatic creation of filter rules would be desirable,

this forms a technical challenge for future work and is also an

open problem in other ad blocking domains such as in-browser

ad blockers.

1) Stripping advertisements: After we identified the ad

library code, we need to strip it in a way that the API

functionality is preserved. If stripping would lead to a non-

functional library API implementation, this would result in

applications crashing or being rendered unusable for the

user. However, we noticed that most apps only use a small

fraction of the functionality provided by ad libraries or sanitize

return values by the ad library to ensure proper functionality.

It is therefore not necessarily required to provide perfect

compatibility of a library for keeping the app functional after

stripping relevant public methods.

To avoid the highly involved case of having to handle cross-

references and undocumented private methods inside classes

that we want to strip from the library, we rewrite all public

methods and abandon private methods in all classes we decided

to strip and classes along the inheritance path of those. As this

removes all of the original code of said class, we can be sure

that the part of the class that caused the ad to be shown to the

user is no longer present.

We distinguish different tactics of rewriting: For simple

getter/setter method pairs we use a heuristic approach to always

return the last set value (or a default value) in the get method.

Functions that necessarily require an implementation can be

redirected to any public method including those of custom,

injected methods. Lastly, if neither of those two tactics applies,

we simply return values defined in the corresponding filtering

rule (or a type-dependant default value like empty string, 0, or

false).

2) Type-specific behaviour: Banner ads: To ensure that we

do not violate the visual fidelity of the app after removing

banner ads, we inject a custom implementation of View’s

onMeasure method3 and constructor for layout inflation4.

Our implementation will force the View to not take up any

3Called to determine the View’s size on screen.
4Instantiating actual View classes from XML definitions.

Table 2: Stability and effectiveness of our solution for different

in-app advertisement types.

Classes

App S
ta

b
le

B
an

n
er

s

In
te

rs
ti

ti
al

s

T
o
ta

l

P
at

ch
ed

T
im

e
(m

s)

2048 � � � 4,661 2 656

4 Pics 1 Word � � � 1,997 5 611

Color Switch � � � 7,377 3 651

wetter.com � � � 7,998 2 601

Flashlight � � � 7,951 4 577

QR & Barcode Scanner � � � 4,084 2 379

Plague Inc. � � � 7,842 2 630

RegenRadar � � � 7,759 4 497

Solitaire � � � 7,457 5 556

Stack � � � 7,127 5 715

Unblock Me FREE � � � 5,639 2 586

Accuweather � � � 7,226 1 406

Alarm Clock � � � 8,303 4 510

LED Flashlight � � � 1,329 3 384

Glow Hockey � � � 3,424 2 427

ZigZag � � � 8,104 3 687

AndroZip File Manager � � � 2,709 2 368

Calories in Food � � � 4,016 2 449

Notes � � � 2,959 2 383

File Commander � � � 8,611 3 532

Alarm Clock Xtreme � � � 4,489 2 426

TV Remote � � � 6,985 2 687

� Blocked; � Not blocked; � Type not present

space on screen, thus avoiding “holes” in the app’s UI where

the banner ad was previously placed.

Interstitial ads: Removing interstitial ads may require

invoking an appropriate callback method to not block the

host app (cf. Section II-A). By analyzing the Binder IPC

interfaces defined for the host application, we can identify the

methods of the application that match the required signature

for the callback method and then rewrite the ad library such

that it always immediately invokes the callback methods, thus

mimicking the behavior of a finished and closed interstitial ad.

C. Deployment

We implemented a prototype of our approach using the

Boxify [4] app virtualization solution. While installing an

application into the virtual environment, we analyze the app to

identify the library and call targets, create a new bytecode file

containing the relevant stripped classes and custom method

implementations for stripping this library, and inject this file

into the application by prepending the class path with this

new file. This way we can overwrite the original library

implementation without any operating system support and

without modifying the application code, i.e., we do not break

the original application signature as done by other rewriting

based approaches [16], [8].

V. EVALUATION AND DISCUSSION

We evaluate the prototypical implementation of our system

in terms of effectiveness and efficiency and discuss ethical

considerations and limitations of our approach. For our

166

evaluation, we randomly selected 22 apps from the Google

Play Store that display advertisements according to the store

description (Table 2). Our filter ruleset contained 29 rules

covering 7 different advertisement libraries. All tests described

in the following were performed on an LG Nexus 9 running

Android 6.0.1.

A. Effectiveness

To assess the effectiveness of our approach, we first manually

verified the presence of advertisements and identified the types

of ads used in each app. From the 22 apps in our testset,

21 apps contained banner ads and 6 apps showed interstitials.

After applying our adblocking technique, all apps in the testset

were still functioning normally and no more advertisements

were shown in 19 apps (86%). In only 3 cases, some ads were

still visible; manual investigation revealed that these apps are

using advertisement libraries that are not yet covered by our

filter definitions.

B. Efficiency

We measured the runtime of our ad stripping algorithm

for every app in our testset. On average, the algorithm took

≈533ms to complete. Since ad stripping takes place only during

the installation of an app, no additional runtime overhead is

incurred (besides the base cost for virtualization [4]). Moreover,

only a minimal fraction of the library classes has to be patched

for stripping the advertisements.

We also evaluated the robustness of our filter definitions

against changes in the advertisement libraries themselves. To

this end, we compiled a synthetic test app with 10 different

versions of the Google Play Ads library released over a period

of two years. Without changes to the filter definitions, ads were

successfully blocked for all versions of the library.

C. User feedback

To assess how our approach performs under real-world

conditions, we implemented an end-user version of our system

in collaboration with Backes SRT GmbH5 and made it publicly

available via [2]. The published app offered the users the

possibility to send anonymized telemetry data back to Backes
SRT. From this telemetry data, we observe that over a two

month period, our app was downloaded 5,718 times and

installed on 470+ different device models from 16+ distinct

manufacturers. Users applied ad blocking to 15,000+ different

apps, most commonly games, news and weather apps, and

social network apps. Interestingly, a significant number of

users tried to block ads within web browsers, with Google’s

Chrome browser topping the list with over 1,000 installations.

Users engaged with ad-blocked apps 24,000+ times, of which

1819 app sessions resulted in the target application crashing.

Only about 25% of these crashes could be attributed to our ad

blocking technique and were caused by incomplete or incorrect

filter definitions, while the majority of crashes was due to

Boxify app compatibility issues. We argue that those numbers

5https://www.backes-srt.com

underline the deployability of our solution in terms of device

and app diversity.

We also asked users to rate their experience with our app

and to provide suggestions for improvement. Rating scores

ranged from zero to five; we received a total number of

401 ratings and achieved an average score of 3.9. Users

suggested improvements 450 times: 42% suggested to support

more apps, 22% asked to improve the stability of the system,

the remainder of suggestions concerned user interface (19%)

and performance (17%). Based on our users’ feedback, we

argue that our ad blocking is effective, but requires at the same

time further improvements of the filtering rules to support

a higher number of advertisement libraries—something that

would in future greatly benefit from an automatic creation of

filtering rules.

D. Ethical Considerations

Showing in-app ads is usually part of the monetization model

of an application. Blocking ads will reduce the developers’

income and might render their business not profitable. This

issue has been discussed in detail for web-based advertisements.

However, major mobile platforms offer alternative monetiza-

tion models. The platforms already have support for in-app

micropayments, allowing users to easily pay for additional

features or virtual in-game currencies. This freemium model is

already widely deployed in top apps and has been shown to

yield high profits.

A future version of our ad blocking approach might be

extended to use more fine-grained, policy-driven ad blocking

and allow the user to only block intrusive ads.

E. Limitations for ad blocking

In order to identify advertisement libraries within an app,

the app’s (full) bytecode must be available at installation time.

However, Android apps may use dynamic class loading to

load additional code at runtime, which could be missed by

our analysis (e.g., code retrieved from a remote server). A

potential solution would be to instrument the ClassLoader to

analyze code fragments when they are first loaded. However,

our approach is not alone in this aspect, since also app rewriting

techniques [16], [8] depend on instrumenting all potentially

executing code.

More advanced obfuscation techniques than identifier re-

naming exist, e.g., control flow obfuscation. These obfuscation

tools can currently thwart our class and method identifica-

tion, rendering our approach ineffective. However, stronger

obfuscation would need to be applied on a per-app basis by

the app developers themselves, as advertisers need to leave

the public APIs of their libraries unobfuscated. Thus, unless

ProGuard is superseeded by a more advanced obfuscation tool

in the standard Android build toolchain, we do not expect

these methods to be employed on a larger scale anytime

soon. In comparison to related work, again app rewriting

techniques [16], [8] suffer the same drawback, since they also

depend on identifying ad library call-sites within application

167

code in order to safely remove the ad lib [16] or inline a

reference monitor [8].

Advertisement libraries might also be shipped in form native
libraries, i.e., C/C++ code. While instrumenting C/C++ code is

generally considered a hard problem and is currently excluded

by most solutions, such native code has to be integrated into

the usually Java-based host app (e.g., life-cycle management).

Thus, a future extension of our solution could be to identify

the native code call-sites (i.e., native-flagged methods) and

redirect them to injected dummy stub methods, which are not

native.

Lastly, our approach, like all previous approaches, is con-

cerned with third party advertisement libraries, which are

included into apps by the app developers to show banner or

interstitial advertisements in the apps’ GUI. Advertisements

that are built-in to the apps’ content, e.g., in form of showing

promoted tweets or posts or advertisements shown within

loaded web content (e.g., in browser apps or within WebView

components), are currently out-of-scope for our solution and

the other approaches.

VI. CONCLUSION

We presented an adblocking solution for Android based on

app virtualization, which combines deployability with efficient

privacy protection. A particular challenge to be solved was the

identification of ad libraries within apps to be able to effectively

strip the ads from the apps.

ACKNOWLEDGEMENTS

This work was supported by the German Federal Ministry

of Education and Research (BMBF) through funding for the

Center for IT-Security, Privacy and Accountability (CISPA)

(FKZ: 16KIS0345).

REFERENCES

[1] Adguard. https://adguard.com, 2016. Last visited 07/25/16.
[2] SRT AdVersary. https://www.backes-srt.com/de/solutions/srt-adblocker/,

2017. Last visited 03/08/17.
[3] Android Developer Reference. Vpnservice. https://developer.android.com/

reference/android/net/VpnService.html.
[4] M. Backes, S. Bugiel, C. Hammer, O. Schranz, and P. von Styp-Rekowsky.

Boxify: Full-fledged app sandboxing for stock android. In Sec’15.
USENIX Association, 2015.

[5] S. Demetriou, W. Merrill, W. Yang, A. Zhang, and C. A. Gunter. Free
for all! assessing user data exposure to advertising libraries on android.
In NDSS’16. Internet Society, 2016.

[6] W. Enck, D. Octeau, P. McDaniel, and C. Swarat. A study of android
application security. In USENIX Security’11. USENIX, 2011.

[7] M. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi. Unsafe exposure
analysis of mobile in-app advertisements. In WISEC’12. ACM, 2012.

[8] B. Liu, B. Liu, H. Jin, and R. Govindan. Efficient privilege de-escalation
for ad libraries in mobile apps. In MobiSys’15. ACM, 2015.

[9] W. Meng, R. Ding, S. P. Chung, S. Han, and W. Lee. The price of
free: Privacy leakage in personalized mobile in-apps ads. In NDSS’16.
Internet Society, 2016.

[10] P. Pearce, A. Porter Felt, G. Nunez, and D. Wagner. AdDroid: Privilege
separation for applications and advertisers in Android. In ASIACCS’12.
ACM, 2012.

[11] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna.
Execute This! Analyzing Unsafe and Malicious Dynamic Code Loading
in Android Applications. In NDSS’14, San Diego, CA, 2014.

[12] V. Rastogi, R. Shao, Y. Chen, X. Pan, S. Zou, and R. Riley. Are these
ads safe: Detecting hidden attacks through the mobile app-web interfaces.
In NDSS’16. Internet Society, 2016.

[13] S. Shekhar, M. Dietz, and D. S. Wallach. Adsplit: Separating smartphone
advertising from applications. In Sec’12. USENIX Association, 2012.

[14] Y. Song and U. Hengartner. Privacyguard: A vpn-based platform to
detect information leakage on android devices. In SPSM’15. ACM, 2015.

[15] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and H. Chen. Investigating
user privacy in android ad libraries. In MoST’12. IEEE, 2012.

[16] W. Yang, J. Li, Y. Zhang, Y. Li, J. Shu, and D. Gu. Apklancet:
Tumor payload diagnosis and purification for android applications. In
ASIACCS’14. ACM, 2014.

[17] X. Zhang, A. Ahlawat, and W. Du. Aframe: Isolating advertisements
from mobile applications in android. In ACSAC’13. ACM, 2013.

168

