
Lua code: security overview and practical
approaches to static analysis

Andrei Costin∗†

∗University of Jyväskylä

Jyväskylä, Finland

ancostin@jyu.fi

†Firmware.RE

andrei@firmware.re

Abstract—Lua is an interpreted, cross-platform, embeddable,
performant and low-footprint language. Lua’s popularity is on
the rise in the last couple of years. Simple design and efficient us-
age of resources combined with its performance make it attractive
for production web applications even to big organizations such
as Wikipedia, CloudFlare and GitHub. In addition to this, Lua is
one of the preferred choices for programming embedded and IoT
devices. This context allows to assume a large and growing Lua
codebase yet to be assessed. This growing Lua codebase could
be potentially driving production servers and extremely large
number of devices, some perhaps with mission-critical function
for example in automotive or home-automation domains.

However, there is a substantial and obvious lack of static
analysis tools and vulnerable code corpora for Lua as compared
to other increasingly popular languages, such as PHP, Python
and JavaScript. Even the state-of-the-art commercial tools that
support dozens of languages and technologies actually do not
support Lua static code analysis.

In this paper we present the first public Static Analysis for
Security Testing (SAST) tool for Lua code that is currently
focused on web vulnerabilities. We show its potential with
good and promising preliminary results that we obtained on
simple and intentionally vulnerable Lua code samples that we
synthesized for our experiments. We also present and release our
synthesized corpus of intentionally vulnerable Lua code, as well
as the testing setups used in our experiments in form of virtual
and completely reproducible environments. We hope our work
can spark additional and renewed interest in this apparently
overlooked area of language security and static analysis, as well as
motivate community’s contribution to these open-source projects.
The tool, the samples and the testing VM setups will be released
and updated at http://lua.re and http://lua.rocks.

I. INTRODUCTION

Lua is an interpreted, cross-platform, embeddable, perfor-

mant and low-footprint language that supports “extensible
semantics, anonymous functions, full lexical scoping, proper
tail calls, and coroutines” [1]. While not yet extremely visible

in the overall programming languages ecosystem, Lua’s pop-

ularity is on the rise in the last couple of years. For example,

in January 2017 it ranks above languages such as Transact-

SQL 1 and Scala according to TIOBE index of programming

1Transact-SQL ranked as most popular language in TIOBE index 2013 [2].

languages’ popularity [2], and above languages such as Go and

Delphi according to PYPL index [3]. On the one hand, Lua’s

lack of sufficient visibility could be explained by a series of

factors, such as quantitative and qualitative lack of libraries

in LuaRocks compared to RubyGems (for Ruby), PyPI (for

Python) and CPAN (for Perl) [4]. On the other hand, Lua’s

rise in popularity [2], [5] could be explained by the follow-

ing aspects. First, the simple design combined with efficient

performance and resource usage [6], [7] make it attractive for

production web applications even to big organizations such

as Wikipedia [8], CloudFlare [9] and GitHub [10]. Second,

there is an exploding market and an overwhelming popularity

of extremely low-cost IoT chipsets such as ESP8266 [11]

that can run Lua code using open-source firmware such as

NodeMCU [12] and NodeLua [13]. Additionally, some of

devices running Lua could be used in mission-critical appli-

cations, such as automotive 2, radiation/photon experimental

physics 3, home automation and more [14].

Within the described context, there are several main moti-

vations for our work. First, there is a substantial lack of static

analysis tools for Lua as compared to other increasingly popu-

lar languages, such as PHP, Python, and JavaScript [15], [16].

In fact, we are only aware of very few such tools that perform

static analysis on Lua code. LuaCheck [17], lualint [18] and

lua-checker [19] are mainly intended for linting and checking

the code style rather than performing static code analysis and

looking for most common security issues (e.g., OWASP Top10
[20]), such as XSS and SQLi. Second, even the state-of-the-

art commercial tools that support dozens of languages and

technologies actually do not support Lua applications [21],

[22], [23]. Even when they do [24], those tools unfortunately

support Lua only in dynamic blackbox analysis mode [25], i.e.,

static analysis of Lua code is not possible. Finally, there is a

2See Mercedes-Benz FOSS licenses used within each car cate-
gory http://www4.mercedes-benz.com/manual-cars/ba/foss/content/en/assets/
FOSS licences.pdf

3See APS ANL EPICS Attocube ANC300 Piezo Motion Con-
troller usage https://www1.aps.anl.gov/files/download/SECTOR27/Manual%
20ANC300%20v3.1.pdf

2017 IEEE Symposium on Security and Privacy Workshops

© 2017, Andrei Costin. Under license to IEEE.

DOI 10.1109/SPW.2017.38

132

lack of knowledge on insecure coding patterns and insecure

API calls for Lua code. Baseline corpora of vulnerable samples

and applications exist for other languages such as PHP (e.g.,

BugBox [26]), Java (e.g., WebGoat [27]) and Server-Side

JavaScript (SSJS) (e.g., TestREx [28]). This still tremendously

helps in understanding insecure coding practices and (anti-

)patterns in those languages. However, such corpora do not

exist for Lua. This limits the general understanding of how to

securely code in Lua, or how to detect and prevent insecure

Lua coding practices in (preferably) automated ways.

In summary, our main contributions with this work are:

• We develop and open-source the first static analysis

tool for Lua code that mainly focuses on finding most

common security issues.

• We build and open-source the first public corpus of

synthetic Lua code samples containing both vulnerable

and non-vulnerable examples. For example, it can be used

as a baseline for tool evaluation/comparison or for secure

coding practices.

• We release the testing setups used in our experiments in

form of virtual and reproducible environments.

The rest of this paper is organized as follows. In Section II

we start with summaries of the most notorious uses of Lua,

which in our opinion are useful for the overall picture and

to further motivate our work. Section III overviews Lua

technologies relevant to our work and Section IV describes

our experimental setup. We detail the covered vulnerabilities

and the vulnerable Lua code corpus in Section V. Then,

in Section VI we describe the design, implementation and

preliminary results. We discuss related work in Section VII,

and conclude with Section VIII.

II. NOTORIOUS LUA USAGE

Several web directories aggregate regularly updated lists of

projects, products and companies that use Lua one way or

another [29], [30], [14], [31]. In addition to these web direc-

tories, the following Google search query can help discover

other (sometimes surprising) uses of Lua:

Copyright Lua PUC-Rio filetype:PDF
We strongly encourage the interested readers to explore and

contribute to these web directories. However, we will focus on

summarizing the most notorious (at least from our perspective)

Lua use cases. We believe that providing such a summary

strongly adds to the motivation behind our work.

A. Web and Internet Projects

Wikipedia added Lua as a templating language [8]. Cloud-

Flare is using Lua code with Nginx server to power many

of the services and modules that run within their infrastruc-

ture [9]. GitHub re-engineered their GitHub Pages service

to efficiently run with load-balanced Nginx instances that

run a simple yet effective Lua module to route requests to

hosting filesystems [10]. TaoBao, the largest e-commerce site

in Asia and in Top 100 in Alexa ranking, serves its content

using Tengine [32]. TaoBao develops Tengine which is

an Nginx-forked web-server that also supports Lua dynamic

scripting language. Lua is also used at incredible online

scale for example in Massive Multiplayer Online Role-Playing

Games (MMORPG) such as World of Warcraft (WoW) [33].

B. Projects, Tools and Utilities

Nmap provides Nmap Scripting Engine (NSE) [34], which

is one of the Nmap’s most powerful and flexible features. It

allows its users to write scripts to automate a wide variety

of networking tasks and for this it embeds a Lua5.2 inter-

preter. Wireshark has an embedded Lua interpreter [35] and

allows writing dissectors, post-dissectors and taps in Lua. Both

Wireshark and Nmap provide Lua interpreter to allow quick

development of network analysis tools. However, if not written

with security in mind those Lua scripts can be attacked by

malicious network nodes and traffic using for example log

poisoning, command and code injection. Google StreetView

team, and Russ Smith primarily, developed lua-checker to

validate their Lua scripts [19]. Syhunt is using Lua as part

of their security tools for web applications. They also recently

started using Lua modules for web applications within their

Apache and Nginx web servers [36]

C. Security Incidents and Malware

Below we summarize publicly known instances where mal-

ware, both classical and embedded/IoT, used Lua one way

or another. Since these malware instances (partly) contain

Lua code, it is perhaps possible to find vulnerabilities within

the malware itself using our tool. Finding vulnerabilities

within malicious code can potentially help the cyber-protection

organizations in their efforts of limiting the impact of such

attacks, and taking down the malware and the botnets [37].

1) Conventional Malware:
a) Flamer: (a.k.a. Flame, a.k.a. sKyWIper, a.k.a. Sky-

wiper) [38] is one of the most sophisticated pieces of malware

analyzed to that date. It was compared to Stuxnet and Duqu
in terms of complexity and its use in mainly targeted attacks.

Flamer is described as an info-stealer malware with highly

modular structure that incorporates multiple propagation and

attack techniques. One important piece of this malware is the

mssecmgr.ocx file which contained a Lua interpreter along

with SSH code, and SQL functionality. The Lua interpreter

makes this component highly flexible and configurable, allow-

ing the attackers to deploy updated commands and functional-

ity quickly and efficiently. Crysys Lab released a comprehen-

sive list of all Lua modules (pre-compiled .luac files) present

within the malware, and detailed some interesting ones such

as CRUISE_CRED.lua which collects credential information

from an already infected machine [39]. The malware name

comes from the FLAME prefix in some of the variable names

in Lua modules, such as FLAME_ID_CONFIG_KEY.

b) EvilBunny: was analyzed in 2014 by Marion

Marschalek at Cyphort [40]. It was described as a technically

fascinating piece of malware, similar to the targeted attacks

samples seen in the wild around 2011, such as Stuxnet, Duqu
and Flamer. EvilBunny is a sophisticated malware that also

aims to trick sandboxes and performed quite uncommon tricks

133

to evade detection. In addition, it was specifically designed to

be an execution platform for Lua scripts that can be injected

by the attacker at any stage of the attack. It embeds a Lua5.1
interpreter, which allows it to download and execute Lua

scripts in order to reach a certain level of polymorphism. The

design of EvilBunny is such that Lua scripts can call back

into the malware’s C++ code to modify its behavior during

runtime.

c) ProjectSauron: (a.k.a. Strider) was analyzed by

Kaspersky [41] based on their detection in 2015 of the

massive activity from a new threat actor they codenamed

ProjectSauron. The threat actor is supposedly responsible for

large-scale attacks against key governmental organizations in

several countries. Symantec estimates this malware was active

since 2011 [42]. ProjectSauron embeds a Lua interpreter and

includes main Lua modules such as Network Loader, Host

Loader and Keylogger. The malware name comes from the

SAURON prefix in some of the variable names in Lua modules,

such as SAURON_KBLOG_KEY.

2) Malware for IoT and Embedded Devices:
a) LuaBot: is a malware for embedded/IoT devices, and

was initially discovered and analyzed by MalwareMustDie

researchers who dissected its ARMEL version [43]. At the

same time, the researchers at Symantec analyzed its ARMEB

variant [44]. MalwareMustDie researchers suggest that it con-

tains a Lua5.3 interpreter along with around two dozens

of Lua scripts. This malware abuses some vulnerabilities in

cable modems disclosed by Bernardo Rodrigues [45], who also

confirmed that the malware author packed the Lua scripts of

the malware as a GZip blob. This malware puts the infected

devices into botnets which are used in large-scale attacks,

similar to the Mirai DDoS attack [46] which abused multiple

vulnerabilities in web-cameras, CCTV and video surveillance

systems [47].

D. IoT and Embedded Devices

Lua is a core component of several mainstream firmware

and IoT/IIoT platforms. OpenWrt [48] can be safely called

a “de facto” standard distribution for IoT and embedded

platforms. It is powering classical networking devices (e.g.,

routers and broadband modems [49]), IoT-focused boards (e.g.,

LinkIt Smart 7688 [50]), and other IoT-focused distributions

(e.g., Linino [51]). OpenWrt heavily uses Lua Configuration

Interface (LuCI) [52]. LuCI uses the Lua programming lan-

guage with its object-oriented libraries and template features

to provide a clean, easy to extend and maintainable web

user interface for embedded and IoT devices [53]. Lua is

also a core API component inside Wind River’s (now Intel’s)

Intelligent Device Platform (IDP), which includes a Lua VM

as depicted in the components description figure of IDP

product note [54]. Finally, there is an exploding market and an

overwhelming popularity of extremely low-cost IoT chipsets

such as ESP8266 [11] that can run Lua code using open-source

firmware such as NodeMCU [12] and NodeLua [13].

III. OVERVIEW OF RELEVANT LUA ECOSYSTEM

Below we provide an overview of Lua technologies that are

relevant to the scope of our work and experiments.

A. Lua Interpreters

Besides its syntax and semantic specifications Lua language

is supported by Lua interpreters, and several popular Lua in-

terpreters exist. There is the original Lua implementation [29]

developed at PUC-Rio which releases version specific inter-

preters such as Lua5.1, Lua5.2, Lua5.3. These are

usually readily available as packages in major Linux distribu-

tions. LuaJIT [55] is an alternative and full implementation

of Lua interpreter using a Just In-Time (JIT) compiler. It was

developed for applications that require additional speed and

performance gains. eLua [56] stands for Embedded Lua, and

is an alternative and full implementation of Lua language,

tailored to the world of embedded devices. It extends Lua with

specific features for efficient and portable embedded software

development. LLVM-Lua [57] is a JIT static Lua compiler. It

uses Low Level Virtual Machine (LLVM) as its JIT compiler

backend. In LLVM-Lua case, the Lua scripts are compiled to

native code using LLVM’s JIT engine and support natively

any CPU architecture supported by LLVM executables.

B. Web Technologies and Lua

In order to run Lua code in the context of web servers, web

applications and web services, there must exist support and

bindings for Lua that can integrate and interpret its code in

the web context. The mod_lua package is an external module

for the popular Apache2 httpd server. This module provides

Lua hooks into various portions of the Apache2 httpd request

processing. It basically allows the Apache2 web server to

be extended with scripts written in Lua [58]. OpenResty
provides a full-fledged web platform. It integrates the standard

Nginx core, the Lua interpreter (e.g., LuaJIT or standard

Lua) through the ngx_lua module, and a wide range of well-

written Lua libraries. It also allows Lua web applications to

access the Nginx core, 3rd-party Nginx modules, and most

of their external dependencies [59]. At very high level, it

is a very convenient packaging of Nginx [60] that contains

the ngx lua [61] module with bindings and configurations for

standard Lua or LuaJIT. The ngx_lua package is the Nginx

module that integrates Lua code interpretation into the Nginx

core. Using standard Lua interpreter or LuaJIT, it embeds

Lua into Nginx. It leverages Nginx’s subrequests, and thus

allows the integration of the powerful and efficient Lua threads

(i.e., Lua coroutines) into the Nginx event model [62]. The

CGILua [63] package implements the CGI/FCGI protocols.

The Common Gateway Interface (CGI) and Fast-CGI (FCGI)

are standard protocols for web servers to execute binary

and scripting console programs that generate and process

web pages dynamically. CGILua allows creating web pages

dynamically and processing of web forms data. It also sep-

arates the logic and data handling for web page generation,

thus simplifying the development of web applications in Lua.

CGILua provides an abstraction of the underlying web server.

134

Therefore, the advantage of CGILua is that by following the

CGI specifications, it is easy to integrate it into any com-

patible web server that implements the CGI/FCGI interfaces,

such as Apache2, Nginx/OpenResty, Lighttpd. The

Lua-WSAPI [64] package implements the Web Services API

(WSAPI). The WSAPI is an API that abstracts the web server

from the web applications. The advantage of Lua-WSAPI

code is that by following the WSAPI interface, it is easy

to integrate such code it any WSAPI-compatible web server

that implements the CGI/FCGI interfaces, such as Apache2,

Nginx/OpenResty, Lighttpd. Currently Lua-WSAPI
provides the wsapi-cgi and wsapi-fcgi packages that

run over the CGI and FCGI, respectively.

It must be pointed out that Scott and Sharp [65] indicate

that a web application regardless of its underlying technology

will always be vulnerable, and therefore Lua is no exception

to this assumption.

IV. OUR EXPERIMENTAL SETUP

We performed our setup on a virtual and reproducible

environment (e.g., using Vagrant [66]) having the following

OS configuration as in Listing 1:

lua@lua-re:˜$ cat /etc/lsb-release
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=14.04
DISTRIB_CODENAME=trusty
DISTRIB_DESCRIPTION="Ubuntu 14.04.5 LTS"

lua@lua-re:˜$ uname -a
Linux lua-re 4.2.0-27-generic #32˜14.04.1-Ubuntu SMP
Fri Jan 22 15:32:27 UTC 2016 i686 i686 i686 GNU/Linux

Listing 1. Base configuration of our Ubuntu testing environment.

We configured this environment to host both Lua5.1 and

Lua5.2 interpreters. We also configured and installed a

version of luarocks package manager for each interpreter

version, i.e., luarocks-5.1 and luarocks-5.2 respec-

tively 4. In our testing and evaluation we used only Lua5.2,

but the concept is similarly applicable to the Lua5.1 config-

uration which is readily available within the environment.

We have chosen the following four configurations to host

Lua-based web applications. We believe they provide a suf-

ficiently good coverage of existing technologies and setups.

These configurations of course can be easily expanded in the

future work to provide even more setup variety.

A. Apache2 with mod lua code

First, we installed the default and basic Apache2
packages. Then, we used the Apache2 development

packages to compile and install the mod_lua with

bindings to Lua5.2. To configure mod_lua support

in Apache2, we added the following snippet to the

/etc/apache2/sites-enabled/000-default.conf
as in Listing 2:

AddHandler lua-script .mod_lua
LuaScope thread

4Similar to pip2 for Python2 and pip3 for Python3, respectively.

LuaCodeCache stat
AcceptPathInfo On

Listing 2. Enabling mod lua support in Apache2.

B. Apache2 with CGILua code

For Lua samples based on the CGILua package,

we installed the CGILua package using the Lua5.2’s

corresponding luarocks-5.2. We reused the same

Apache2 instance as above and configured CGILua code

to be run in FastCGI (FCGI) mode. To configure CGILua
support in Apache2, we added the following snippet to the

/etc/apache2/sites-enabled/000-default.conf
as in Listing 3:

<Directory "/var/www/html/CGILua">
AllowOverride All
Options ExecCGI
AddHandler fcgid-script .lua
AddHandler fcgid-script .lp
FCGIWrapper /usr/local/bin/cgilua.fcgi .lua
FCGIWrapper /usr/local/bin/cgilua.fcgi .lp
</Directory>

Listing 3. Enabling CGILua support in Apache2.

C. Nginx with ngx lua code

For Lua code using ngx_lua API, we installed the Open-
Resty package and its dependencies. This allows us to create

Nginx configuration files that contain Lua code for the web

service. The simplest Lua code snippet that uses Nginx and

ngx_lua is presented in Listing 4:

worker_processes 1;
error_log logs/error.log;
events {

worker_connections 1024;
}
http {

server {
listen 8080;
location / {

default_type text/html;
content_by_lua ’

ngx.say("<p>hello, world</p>")
’;

}
}

}

Listing 4. Enabling Lua code in Nginx and ngx lua.

Then we use these configuration files to actually start

the Nginx web server that will run the Lua code from the

configuration files. This can be accomplished with a simple

command similar to the one in Listing 5:

/usr/local/openresty/nginx/sbin/nginx -p ‘pwd‘/ -c nginx.conf

Listing 5. Starting Nginx web server with configuration file for Lua code
support.

135

D. Lighttpd with vanilla Lua code

To run vanilla Lua code within a web server, we in-

stalled WSAPI Lua package via luarocks-5.2. We

also installed the standard Lighttpd package with its

dependencies, and enabled CGI and FCGI modules in

its configuration. To configure Lua WSAPI CGI support

in Lighttpd, we added the following snippet to the

/etc/lighttpd/conf-enabled/10-cgi.conf as in

Listing 6:

cgi.assign = (
".lua" => "/usr/local/bin/wsapi.cgi",

)

Listing 6. Enabling vanilla Lua code to server web requests in Lighttpd via
WSAPI CGI.

E. Smoke Testing

All these environments undergo a “smoke test” in order to

insure they are up-and-running, and they work as expected

with Lua bindings. Also, we test that the vulnerable samples

are indeed exploitable and the non-vulnerable do not exploit

the system.

V. VULNERABILITIES AND SAMPLES

Daragon [36] first summarized a set of Lua code examples

that intentionally contain security vulnerabilities, mainly from

OWASP Top10 . Their report is comprehensive and provides

great details about potential security pitfalls in Lua code.

However, it falls short of full practical usability for several

reasons. First, the vulnerable Lua code samples are not com-

piled into a ready-to-run and ready-to-test corpus. Second, the

report leaves to the user the burden of actually creating a
reproducible environment (i.e., the working configurations and

the code samples) in order to actually test the vulnerabilities

and the proposed countermeasures. This in turn can be counter-

productive to perform in practice, and can be prone to errors as

well. Therefore, our work in a way is a natural and practically-

applicable extension to their work.

Below we present a sample of Lua code for each vulner-

ability class that is supported by our tool. Since we support

multiple Lua configurations, as detailed in Section IV, we will

present here code for a single configuration. Nevertheless, the

corpus we open-source contains the Lua code samples for all

configurations.

A. Cross-Site Scripting (XSS)

Listing 7 presents Lua code for CGILua vulnerable to

reflected XSS attacks. The original intent of this Lua code

is to welcome a logged-in user with her username in the page

header.

#!/usr/bin/env wsapi.fcgi

local luatech = ’CGILua’
local username = cgilua.QUERY.username or ’Unknown username’

cgilua.htmlheader()
cgilua.put([[
<title>XSS Lua]] .. luatech .. [[</title>

]])
cgilua.put([[Hello,]] .. username)

Listing 7. CGILua code containing a simple XSS vulnerability.

This vulnerability can be triggered for example by accessing

the following URL: http://lua-VM/cgilua/xss/xss reflected

true.lua?username=%3Cscript%3Ealert(1);%3C/script%3E. In

turn, this will perform a reflected XSS inside the browser of

a victim user who is tricked into opening the malicious URL.

B. OS Command Injection

Listing 8 presents Lua code for CGILua vulnerable to OS

command injection attacks. The original intent of this Lua

code is to directory list the home folder of a particular user.

#!/usr/bin/env wsapi.fcgi

local luatech = ’CGIlua’
local username = cgilua.QUERY.username or ’root’

cgilua.htmlheader()

cgilua.put([[
<title>OS Command Injection Lua]] .. luatech .. [[</title>
]])

local handle = io.popen("ls -lart /home/" .. username)
local data = handle:read("*a")
handle:close()

cgilua.put([[
Listing home dir:
]] .. data)

Listing 8. CGILua code containing a simple OS command injection vulner-
ability.

This vulnerability can be triggered for example by

accessing the following URL: http://lua-VM/cgilua/

os-command-injection/os-command-injection os.execute

true.lua?username=lua;ls-lart/etc. In turn, this will also list

the contents of the /etc directory.

C. Null Byte Injection

Listing 9 presents Lua code for CGILua vulnerable to null

byte injection attacks. The original intent of this Lua code is

to list to the user browser contents of only text files, therefore

the assumption that appending ".txt" will work. However,

null byte injection is successful in this case.

#!/usr/bin/env wsapi.fcgi

local luatech = ’CGIlua’
local textfile = cgilua.QUERY.textfile or ’README’

local f = io.open(textfile .. ".txt")
local data = f:read("*a")
f:close()

cgilua.htmlheader()

cgilua.put([[
<title>Null-Byte Injection Lua]] .. luatech .. [[</title>
]])

cgilua.put([[
Your text file contains:
]] .. data)

Listing 9. CGILua code containing a simple null byte injection vulnerability.

136

This vulnerability can be triggered for example by accessing

the following URL: http://lua-VM/cgilua/null-byte-injection/

null-byte-injection true.lua?textfile=/etc/passwd%00. In turn,

this will list the contents of /etc/passwd file (or eventually

other sensitive file).

D. Path Traversal

Listing 10 presents Lua code for CGILua vulnerable to path

traversal attacks. The original intent of this Lua code is to list

to the user browser the contents of only files within /tmp
folder, therefore the assumption that prepending "/tmp/"
will work. However, path traversal is successful in this case.

#!/usr/bin/env wsapi.fcgi

local luatech = ’CGIlua’
local tmpfile = cgilua.QUERY.tmpfile or ’.X0-lock’

local f = io.open("/tmp/" .. tmpfile)
local data = f:read("*a")
f:close()

cgilua.htmlheader()

cgilua.put([[
<title>Path Traversal Lua]] .. luatech .. [[</title>
]])

cgilua.put([[
Your tmp file contains:
]] .. data)

Listing 10. CGILua code containing a simple path traversal vulnerability.

This vulnerability can be triggered for example by access-

ing the following URL: http://lua-VM/cgilua/path-traversal/

path-traversal true.lua?tmpfile=../etc/passwd. In turn, this will

list the contents of /etc/passwd file (or eventually other

sensitive file).

E. Local File Inclusion

Listing 11 presents Lua code for CGILua vulnerable to

path traversal attacks. The original intent of the code is to load

a particular Lua Pages template, for example when the user

selected a specific foreign language in the web application.

#!/usr/bin/env wsapi.fcgi

luatech = ’CGIlua’
local template = cgilua.QUERY.template or "default_template"

cgilua.htmlheader()
cgilua.handlelp(template .. ".lp")

Listing 11. CGILua code containing a simple local file inclusion vulnerability.

This vulnerability can be triggered for example by accessing

the following URL: http://lua-VM/cgilua/lfi/lfi handlelp true.

lua?template=/var/www/html/admin/cgilua/reboot.lp%00

In turn, this will include for execution a file

(in this case a CGILua Lua Pages) that could

potentially execute high-privileged commands. The

/var/www/html/admin/cgilua/reboot.lp
file could simply contain a call to OS such as

<?os.execute("reboot")?>.

F. SQL Injection

Listing 12 presents Lua code for CGILua vulnerable to

SQL injection attacks. The original intent of this code is

to check the credential of a user trying to log into the

web application, and to display a message in case both the

username and password match.

#!/usr/bin/env wsapi.fcgi

local luatech = ’CGIlua’
local u = cgilua.QUERY.username or ’’
local p = cgilua.QUERY.password or ’’
local logged = 0

local mysql = require "luasql.mysql"
local env = mysql.mysql()
local conn = env:connect(’mysqldb’, ’mysqluser’, ’mysqlpass’)

cur, err = conn:execute("select * from users where
username = ’" .. u .. "’ and password = ’" .. p .. "’")

row = cur:fetch ({}, "a")

while row do
row = cursor:fetch (row, "a")
logged = 1

end

cgilua.htmlheader()

cgilua.put([[
<title>SQL Injection Lua]] .. luatech .. [[</title>
]])

if logged == 1
then

print("Yes")
cgilua.put([[You successfully logged in as]] .. u)

end

cursor:close()
conn:close()
env:close()

Listing 12. CGILua code containing a simple SQL injection vulnerability.

This vulnerability can be triggered for example by

accessing the following URL: http://lua-VM/cgilua/sqli/sqli

mysql true.lua?username=super admin god’;--&password=

does not matter

VI. OUR TOOL

A. Summary of Design and Implementation

Our tool has three logical parts and we detail them below.

1) Parser: The first part is the parser which parses Lua

code and creates the parse tree, also known as the Concrete

Syntax Tree (CST). To create the parser in our tool we used

ANTLR4 [67] which is a tool that generates parsers based

on LL(*) (LL-regular) parsers. ANTLR4 requires a language

grammar specification in a particular format, namely .g4.

Conveniently enough, the Lua project provides the specifica-

tion in extended Backus-Naur Form (BNF) 5. And in fact,

there is already a reference specification in .g4 format for

Lua, based on its BNF specification 6. We use and adapt

this specification to be able to parse Lua code used in our

synthetic samples as well as in real-world projects as found

5See https://www.lua.org/manual/5.3/manual.html
6See https://github.com/antlr/grammars-v4/blob/master/lua/Lua.g4

137

for example on GitHub [68], [69]. Alternatively, one could use

the parsers from the existing tools, such as LuaCheck [17] or

lua-checker [19]. Unfortunately the parsers in those tools are

tailored to particular versions of Lua specifications and adapt-

ing them to all or latest Lua specifications may be untrivial or

may introduce bugs and unnecessary complexity. Therefore,

we argue that specifying the Lua syntax and grammar via

a clean BNF specification written in a .g4 file format is a

future-proof approach for a maintainable project.

$ antlr4 -Dlanguage=Python2 Lua.g4
$ ls
LuaLexer.py
LuaParser.py
LuaListener.py
LuaVisitor.py

Listing 13. Compilation of the parsing modules of our tool using Python2
as the target for the parser implementation.

Subsequently, we extend the LuaListener stub

class with the necessary functionality (e.g., class
LuaListenerExtended(LuaListener):) to walk the

parse tree in order to create the Abstract Syntax Tree (AST)

based on it.

2) Abstract Syntax Tree Generator: The second part is the

Abstract Syntax Tree (AST) generator, which transforms the

CST generated by the parser into a tree of basic blocks that

provide enough computational abstraction to apply security

and taint analysis. We then create the AST by walking the

parse tree which the ANTLR4-generated parser will create in-

memory. Listing 14 shows the simplified code that will start

the parse-tree walking and AST generation:

(...)
ASTgenerator = LuaListenerExtended()
walker = ParseTreeWalker()
walker.walk(ASTgenerator, tree)
(...)

Listing 14. Walking the parse tree of of analyzed Lua code and generating
its AST representation.

3) Security Analyzer: The third part is the security analyzer

(scanner) itself. It walks the AST and performs the taint

propagation and analysis on the AST. This way it is able to

detect potential vulnerable blocks that allow dangerous tainted

inputs from the user into the sensitive sinks. Additionally, we

implement simplest context parsers that can potentially help

the security analyzer to understand whether the code context

opens up for a vulnerability. One example is HTML markup

parser for sinks such as print and cgilua.put that can

try to decide whether a tainted input requires a single-quote or

a double-quote in order to successfully inject an XSS. Another

example is the OS commands context parsers for sinks such as

os.execute and io.popen that can try to decide whether

a tainted input requires a single-quote or a semicolon in order

to achieve a OS command injection/execution. Similarly to

the above we have a SQL context parser, with similar goals

and simple heuristics as above. The security analyzer makes

extensive use of the list of tainted input sources and sensitive

sinks. We have systematically summarized the tainted input

sources and sensitive sinks (both exposed by vanilla Lua

specifications as well as exposed by other packages/modules)

that are relevant to Lua code and that our tool supports. Due

to space considerations we skip this list from the submission,

however it can be thoroughly consulted in the configuration

files of the tool itself.

B. Preliminary Results

Our tool is at a proof-of-concept stage. It has still to undergo

heavy testing and evaluation using more complex samples and

real-world projects, Also it has some limitations which we

discuss in Section VI-D.

However, at this stage it is able to successfully detect 100%

of all the simple true positive vulnerable samples that we

detailed in Listings 7, 8, 9, 10, 11, 12, regardless of the

configuration under test as described in Section IV.

C. Tool’s Additional Uses

As already mentioned, Lua’s popularity is on the rise in the

last couple of years. There is already a considerable amount of

open-source Lua code [68], [69], and we expect it to grow 7.

The amount and the open-source nature of the such Lua code

prompts consideration for potential software license violations.

There are many techniques to find such code-clones [70]

and software license violations [71]. The Binary Analysis

Toolkit (BAT) [72], previously known as GPLtool, is one such

framework that allows detection of potential software license

violations, besides many other things. For this to be possible,

BAT needs a database of distinguishable source-code attributes

that identify a particular source-code sample. For example,

such attributes could be file names, function names, variables

names, string constants. We implemented in our tool a special

mode of operation that outputs the main elements of Lua

code (e.g., function names, variables names, string constants)

as structured output such as JSON and XML. This mode of

operation takes advantage of the presence of the Lua parser

and the availability of the parse-trees. This allows tools such as

BAT to easily support Lua code and import Lua source-code

information into their database for further processing (e.g.,

detection of compliance, violation or cloning).

D. Limitations and Future Work

Unfortunately, our tool currently has some limitations that

we intend to address as soon as possible in our future work.

1) Second-order Vulnerabilities: For example, our tool can-

not yet detect more complex variants of the discussed vulner-

ability classes, such as second-order vulnerabilities. Second-

order vulnerabilities occur when the exploitation payload is

first stored by the vulnerable application (e.g., web server

or web application), and then later on uses it a security-

sensitive operation. Our tool lacks the detection of second-

order vulnerabilities as this is not trivial. One possible way to

overcome this limitation is to use the static analysis approach

proposed by Dahse and Holz [73] and implemented into RIPS

7One example is the exploding market of low-cost IoT devices (such as
ESP8266) running open-source Lua firmware (such as NodeMCU [12] and
NodeLua [13]).

138

static analysis tool for PHP [74]. Another possibility is to

use the Lua ASTs that our tool generates in conjunction with

(extended) Joern [75], which is a generic framework for source

code vulnerability discovery using AST [76], [77], [78].

2) Limitations of Static Analysis: Our tool requires also a

configuration input specifying which input-sanitization func-

tions should be treated as safe and which should be not.

This is needed because it is non-trivial to determine whether

such functions are indeed safe using pure static approaches as

highlighted for example by Balzarotti et al. [79].

For example, Listing 15 implements a safe HTML input-

sanitization function, described by Daragon [36]. It replaces

“dangerous characters” in an input with their safe HTML

equivalents.

function htmlescape(text)
local special = {
[’<’]=’<’, [’>’]=’>’, [’&’]=’&’, [’"’]=’"’
}
return text:gsub(’[<>&"]’, special)
end

Listing 15. Safe input-sanitization function.

However, the input-sanitization function in Listing 16 is

unsafe. Though it very much resembles the safe input-

sanitization function in Listing 15, the subtle difference is

that the “dangerous characters” to be matched and escaped are

preceded with spaces. As a consequence, the text:gsub will

not replace the actual “dangerous characters” with their safe

HTML equivalents, such as < and &. Such simple yet

easy to overlook vulnerabilities could in theory be introduced

sometimes by unintended mistakes 8, and other times by

potentially malicious intent 9.

function htmlescape(text)
local special = {
[’ <’]=’<’, [’ >’]=’>’, [’ &’]=’&’, [’ "’]=’"’
}
return text:gsub(’[<>&"]’, special)
end

Listing 16. Unsafe input-sanitization function.

Another example relates to the analysis of the vulnerable

context. For instance, an XSS attack makes sense in an

JS/HTML context (e.g., browser parsing and rendering),

but will not be applicable in a plain-text context. A static

analysis tool can in principle perform only very basic

context parsing and analysis. For example, when detecting

that a tainted input source from the GET request directly
reaches a sensitive sink such as a printout function (e.g.,

ngx.say or r:puts(r:parseargs().username)),

it could analyze the content-type (e.g.,

ngx.header.content_type = "text/html" or

r.content_type = "text/plain"). If there is a

match for "text/html" it marks the XSS as a true

8https://github.com/MrMEEE/bumblebee-Old-and-abbandoned/issues/123
9See statements that Juniper discovered unauthorized code in ScreenOS

https://kb.juniper.net/InfoCenter/index?page=content&id=JSA10713&actp=
search

positive. However, if there is a match for "text/plain" it

marks the XSS as a non-issue. Finally, if r.content_type
= base64.decode("dGV4dC9odG1s") 10 such static

analysis and matching will simply not work or becomes

absolutely non-trivial.
One way to overcome the type of limitations described

above is to use a particular application of the abstract
interpretation technique [80], called abstract parsing. Abstract

parsing [81] is a program pre-execution static technique to

analyze the documents (or outputs in general) generated

dynamically by a program block. It was demonstrated to

statically validate a suite of PHP programs (i.e., dynamic inter-

preted language programs) that dynamically generate HTML

files. Another way to overcome such limitations of the input-

sanitization uncertainty is by using a hybrid approach. That

is, drive and focus the dynamic analysis onto this particular

part of code that was initially marked as suspicious or unsure

by the static analysis, as proposed by Balzarotti et al. [79]

or as implemented in [25]. We leave the evaluation and the

implementation of such enhancements for future work.
3) Support for Lua Pages Code: Additionally, our tool does

not currently support code written in Lua Pages. Lua Pages are

supported only by the CGILua setups. In simple terms, they

are similar to PHP or Java Server Pages (JSP), but intended

for Lua server-side engines. They represent (X)HTML pages

with Lua code embedded in-between using escape sequences

such as <?lua and ?>. For example, Listing 17 shows the

Lua Pages equivalent of the pure Lua code vulnerable to XSS

presented in Listing 7.

<?lua
local luatech = ’CGILua LuaPages’
local username = cgilua.QUERY.username or ’Unknown username’
?>
<title>XSS Lua <%= luatech %> </title>
Hello World, <%= username %>

Listing 17. Lua Pages code containing an XSS vulnerability.

We estimate it should be fairly straightforward to write

a “Lua Pages”-to-“Lua code” transform by employing

some (X)HTML parsing 11 and parse-tree processing using

ANTLR4 [67] for example. For example, such a transform

could process the Lua Pages code from Listing 17 and produce

an equivalent pure Lua code shown in Listing 18. Following

this transform, our tool would be used on the transformed

equivalent code similarly to other Lua code.

cgilua.htmlheader()

local luatech = ’CGILua LuaPages-to-Lua’
local username = cgilua.QUERY.username or ’Unknown username’

cgilua.put([[<title>XSS Lua]])
cgilua.put(luatech)
cgilua.put([[</title>
Hello World,]])
cgilua.put(username)

Listing 18. Equivalent Lua code produced via transform from the previous
Lua Pages example that contained an XSS vulnerability.

10dGV4dC9odG1s string is the base64 coding of text/html string.
11https://github.com/antlr/grammars-v4/blob/master/html/HTMLParser.g4

139

Finally, we plan to validate and improve our tool more thor-

oughly by running it on large and mature projects developed

in Lua.

VII. RELATED WORK

A. Lua Security

Daragon [36] first summarized and described the risks for

Lua application as posed by most common vulnerabilities,

such as the ones from OWASP Top10 . They also suggested

some simple protective countermeasures, and discussed con-

figuration and deployment hardening. We take their work one

step further and, in addition to developing and open-sourcing

our Lua static analysis tool, we build and open-source the

samples and the setup into an easy to reproduce, extend and

share environment.

B. Static Analysis of Dynamic and Interpreted Languages

There is a large amount of work done in the area of

static analysis and in particular static analysis of dynamic,

interpreted and scripting (web-oriented) languages. Huang et

al. [82] presented a sound approach to ensure security of

web applications. The authors created a lattice-based static

analysis algorithm derived from type systems and typestate.

They also implemented their approach into the WebSSARI
static analysis tool, which however supports PHP programs.

Di Lucca et al. [83] proposed a static analysis approach for

testing web applications in order to detect XSS vulnerabil-

ities. Then they propose to cross-check the analysis results

with dynamic testing techniques in order to eliminate false

positives. They have demonstrated the effectiveness of their

approach on real-world web applications implemented in PHP

and ASP. Jovanovic et al. [84] proposed a flow-sensitive, inter-

procedural and context-sensitive data flow static analysis to

find vulnerable locations in web applications. The Pixy static

analysis tool is the prototype implementation of their approach

that is targeted to discover XSS vulnerabilities in PHP scripts.

Xie and Aiken [85] presented a static analysis algorithm

that discovers security vulnerabilities in PHP projects. Their

analysis algorithm employed a novel three-tier architecture to

capture information at the intra-block, intra-procedural, and

inter-procedural levels. Wassermann and Su [86] presented a

static analysis technique to discover XSS vulnerabilities. Their

approach directly addressed weak or absent input validations,

and combined ideas from tainted information flow with string

analysis. The authors evaluated their approach on several

real-world PHP web applications. Livshits and Lam [87]

proposed a static analysis approach to detect common web

application vulnerabilities such as SQL injections, XSS, and

HTTP splitting. Their approach is based on a scalable and

precise “points-to analysis”, and was shown to detect a number

of important vulnerabilities in real-world Java projects. Biggar

and Gregg [88] presented an improved static analyzer for PHP

applications, by extending classical static analysis to analyse

more complex PHP code. Their analysis approach combined

alias analysis, type-inference and constant propagation for

PHP. Dahse and Holz [73] proposed a static code analysis

approach to discovering second-order vulnerabilities in web

applications. In their approach the authors analyzed reads and

writes to memory locations and identified unsanitized data

flows by connecting input/output data blocks of persistent

data stores. Additionally, Dahse and Holz [89] proposed a

static analysis based vulnerability discovery approach in PHP

programs by precisely modeling the highly dynamic nature

of PHP code. The authors configured and simulated over 900

PHP built-in features to create the model, and then performed

inter- and intra-procedural data flow analysis by creating block

and function summaries. They implemented both their static

analysis approaches into a prototype called RIPS [74] which

supports only PHP web applications.

However, none of these works so far have taken Lua as their

target or have addressed specific Lua security issues. In this

regard, our work is complementary to the described works and

fills the void within this research space.

C. Corpora of Vulnerable Code Samples

Contrary to the field of static analysis techniques and tools

where a lot of work has been done, the area of vulnerable code

corpora that is systematically collected/synthesized and well-

maintained is less generous. We are aware of only several

such projects as follows. OWASP develops and maintains

WebGoat [27], [90], a project that contains a collection of

synthesized Java and J2EE web modules that are deliberately

insecure. It was designed to teach web application security and

practically demonstrate common server-side application flaws.

WebGoat also provides virtualized reproducible environments

such as Vagrant and Docker. Nilson et al. [26] introduced Bug-

Box, a corpus of real-world PHP vulnerable web applications

and an exploit simulation environment. BugBox [91], [92]

provides virtualized reproducible environments and packaging

mechanisms to share and distribute vulnerability and exploit

data. The goal of BugBox is to facilitate the empirical studies

of vulnerabilities, evaluation of security tools, and research

on security metrics. Dashevskyi et al. [28] argued that in

order to test if existing exploits can be reproduced in different

settings and to facilitate discovery of new vulnerabilities,

reliable testbeds are required. Therefore the authors presented

TestREx [93] testbed for repeatable exploits. TestREx allows

packaging and running applications along the intended en-

vironment, injecting and monitoring exploits, and generating

security reports. Within TestREx, the authors also packaged

a corpus of vulnerable SSJS node.js samples they developed,

along with existing corpora such as WebGoat [27], [90] and

BugBox [91], [92].

By building and open-sourcing the corpus of both vulner-

able and non-vulnerable Lua code samples, our work sup-

plements the relatively scarce research corpora in this field

that are available to security researchers, practitioners and

evaluators. Additionally, our work aims to facilitate empirical

vulnerability studies, practical teaching of (in)secure coding

patterns in Lua, and evaluation of static and dynamic security

tools for Lua and web applications.

140

VIII. CONCLUSION

Lua is a powerful and performant dynamic language. Its

popularity is on the rise within the embedded/IoT applications,

as well as within large organizations for their web platforms.

However, there is a lack of both static analysis tools for Lua

code and corpora of vulnerable Lua code samples.

In this paper we present the first public Static Analysis for

Security Testing (SAST) tool for Lua code that is currently

focused on web vulnerabilities. We also present and release

our synthesized corpus of intentionally vulnerable Lua code, as

well as the virtualized testing setups used in our experiments.

At this preliminary stage our tool detects all 100% of the true

positives that we detailed in Listings 7, 8, 9, 10, 11, 12 We

hope our work can spark additional and renewed interest for

source code static analysis and Lua security.

ACKNOWLEDGEMENTS

The authors thank the NLnet Foundation (http://www.nlnet.

nl) and the Binary Analysis Tool (BAT) project (http://www.

binaryanalysis.org) for their financial support under the NLnet

project number 2014-09-017e. We extend our thanks per-

sonally to Armijn Hemel from Tjaldur Software Governance

Solutions (http://www.tjaldur.nl) and Michiel Leenaars from

NLnet foundation (http://www.nlnet.nl) for having confidence

in this project’s usefulness and potential, and for their con-

tinuous support and trust. Last but not least, we thank all the

anonymous reviewers for their valuable time and inputs, and

for the constructive feedback that helped us improve our paper

and results.

REFERENCES

[1] R. Ierusalimschy, L. H. De Figueiredo, and W. Celes Filho,
“Lua – an extensible extension language,” Journal of Software:
Practice and Experience, vol. 26, no. 6, pp. 635–652, 1996. [On-
line]. Available: http://dx.doi.org/10.1002/(SICI)1097-024X(199606)26:
6〈635::AID-SPE26〉3.0.CO;2-P

[2] “TIOBE Index,” Jan 2017, (Accessed: Jan 2017). [Online]. Available:
http://www.tiobe.com/tiobe-index/

[3] “PYPL – PopularitY of Programming Languages Index,” Jan 2017,
(Accessed: Jan 2017). [Online]. Available: http://pypl.github.io/PYPL.
html

[4] P. Chapuis, “State of the Lua Ecosystem,” Nov 2013, (Accessed: Jan
2017). [Online]. Available: https://www.lua.org/wshop13/Chapuis.pdf

[5] “CodeEval – Most Popular Coding Languages of 2015,” Feb 2015,
(Accessed: Jan 2017). [Online]. Available: http://blog.codeeval.com/
codeevalblog/2015

[6] “Performance comparison of LuaJIT against other VMs on different
architectures,” (Accessed: Jan 2017). [Online]. Available: http:
//luajit.org/performance.html

[7] “The Computer Language Benchmarks Game – Lua,” (Accessed:
Jan 2017). [Online]. Available: http://benchmarksgame.alioth.debian.
org/u64q/compare.php?lang=lua&lang2=python3

[8] S. Harihareswara, “New Lua templates bring faster, more
flexible pages to your wiki,” Mar 2013, (Accessed: Jan
2017). [Online]. Available: https://blog.wikimedia.org/2013/03/11/
lua-templates-faster-more-flexible-pages/

[9] M. Tourne, “Pushing Nginx to its limit with Lua,” Dec 2012,
(Accessed: Jan 2017). [Online]. Available: https://blog.cloudflare.com/
pushing-nginx-to-its-limit-with-lua/

[10] C. Somerville, “Rearchitecting GitHub Pages,” May 2015,
(Accessed: Jan 2017). [Online]. Available: https://githubengineering.
com/rearchitecting-github-pages/

[11] N. Kolban, “Kolbans book on the ESP8266,” Texas, USA, 2015.

[12] Project-NodeMCU, “Nodemcu – an open-source firmware based
on esp8266 wifi-soc,” URL http://nodemcu.com/indexen.html, 2014.
[Online]. Available: http://nodemcu.com/

[13] Project-NodeLua, “Nodelua – the first open source lua based firmware
that runs on esp8266,” URL https://nodelua.org, 2014. [Online].
Available: https://nodelua.org/

[14] “Where Lua Is Used,” (Accessed: Jan 2017). [Online]. Available:
https://sites.google.com/site/marbux/home/where-lua-is-used

[15] “A curated list of static analysis tools, linters and code quality checkers
for various programming languages,” (Accessed: Jan 2017). [Online].
Available: https://github.com/mre/awesome-static-analysis

[16] A. Costin, A. Zarras, and A. Francillon, “Automated dynamic firmware
analysis at scale: a case study on embedded web interfaces,” in Pro-
ceedings of the 11th ACM on Asia Conference on Computer and
Communications Security. ACM, 2016, pp. 437–448.

[17] “LuaCheck – A tool for linting and static analysis of Lua code,”
(Accessed: Jan 2017). [Online]. Available: https://github.com/mpeterv/
luacheck

[18] “lualint – Lua linter performs luac-based static analysis of global
variable usage in Lua source code,” (Accessed: Jan 2017). [Online].
Available: https://github.com/philips/lualint/

[19] “lua-checker – Check Lua source code for various errors,” (Accessed:
Jan 2017). [Online]. Available: https://code.google.com/archive/p/
lua-checker/

[20] “OWASP Top Ten Project,” (Accessed: Jan 2017). [Online]. Available:
https://www.owasp.org/index.php/OWASP Top Ten Project

[21] “HP – Fortify On Demand,” (Accessed: Jan 2017). [Online]. Available:
https://saas.hpe.com/en-us/software/fortify-on-demand/capabilities

[22] “Checkmarx – Language Overview,” (Accessed: Jan 2017). [Online].
Available: https://www.checkmarx.com/language-overviews/

[23] “Kiuwan – Supported Languages,” (Accessed: Jan 2017). [Online].
Available: https://www.kiuwan.com/languages/

[24] “Syhunt – Cross-Site Scripting (XSS),” (Accessed: Jan 2017). [Online].
Available: http://www.syhunt.com/docwiki/index.php?n=Vulnerabilities.
XSS

[25] “Syhunt – Supported Technologies and Languages,” (Accessed: Jan
2017). [Online]. Available: http://www.syhunt.com/docwiki/index.php?
n=SyhuntHybrid5.Technologies

[26] G. Nilson, K. Wills, J. Stuckman, and J. Purtilo, “Bugbox: A vulnera-
bility corpus for php web applications.” in CSET, 2013.

[27] OWASP, “OWASP WebGoat Project,” (Accessed: Jan 2017). [On-
line]. Available: https://www.owasp.org/index.php/Category:OWASP
WebGoat Project

[28] S. Dashevskyi, D. R. Dos Santos, F. Massacci, and A. Sabetta, “TestREx:
a Testbed for Repeatable Exploits.” in CSET, 2014.

[29] “Lua: uses,” (Accessed: Jan 2017). [Online]. Available: https:
//www.lua.org/uses.html

[30] “lua-users wiki: Lua Uses,” (Accessed: Jan 2017). [Online]. Available:
http://lua-users.org/wiki/LuaUses

[31] “Lua-scriptable software,” (Accessed: Jan 2017). [Online]. Available:
http://en.wikipedia.org/wiki/Category:Lua-scriptable software

[32] “Tengine – a Nginx and Lua based web server originated by Taobao,
the largest e-commerce website in Asia,” (Accessed: Jan 2017).
[Online]. Available: http://tengine.taobao.org/

[33] “Lua for World of Warcraft,” 2016, (Accessed: Jan 2017). [Online].
Available: http://wowwiki.wikia.com/wiki/Lua

[34] “Nmap Scripting Engine – Lua Base Language,” (Accessed: Jan 2017).
[Online]. Available: https://nmap.org/book/nse-language.html

[35] H. Kaplan, “Lua – The Wireshark Wiki,” Jul 2015, (Accessed: Jan
2017). [Online]. Available: https://wiki.wireshark.org/Lua

[36] “Lua Web Application Security Vulnerabilities,” May 2014, (Accessed:
Jan 2017). [Online]. Available: http://www.syhunt.com/en/index.php?n=
Articles.LuaVulnerabilities

[37] Scott Tenaglia, “Killing Mirai: Active defense against an IoT botnet
(Part 1),” Oct 2016, (Accessed: Jan 2017). [Online]. Available:
https://www.invincealabs.com/blog/2016/10/killing-mirai/

[38] Symantec Security Response, “Strider: Cyberespionage group
turns eye of Sauron on targets,” May 2012, (Accessed: Jan
2017). [Online]. Available: https://www.symantec.com/connect/blogs/
flamer-highly-sophisticated-and-discreet-threat-targets-middle-east

[39] Laboratory of Cryptography and System Security (CrySyS Lab),
“sKyWIper (a.k.a. Flame a.k.a. Flamer): A complex malware for
targeted attacks,” May 2012, (Accessed: Jan 2017). [Online]. Available:
http://www.crysys.hu/skywiper/skywiper.pdf

141

[40] M. Marschalek, “EvilBunny: Malware Instrumented By Lua,” Dec
2014, (Accessed: Jan 2017). [Online]. Available: https://www.cyphort.
com/evilbunny-malware-instrumented-lua/

[41] Kaspersky Lab’s Global Research/Analysis Team, “ProjectSauron: top
level cyber-espionage platform covertly extracts encrypted government
comms,” Aug 2016, (Accessed: Jan 2017). [Online]. Available: https:
//securelist.com/analysis/publications/75533/faq-the-projectsauron-apt/

[42] Symantec Security Response, “Strider: Cyberespionage group
turns eye of Sauron on targets,” Aug 2016, (Accessed: Jan
2017). [Online]. Available: https://www.symantec.com/connect/blogs/
strider-cyberespionage-group-turns-eye-sauron-targets

[43] MalwareMustDie, “MMD-0057-2016 - Linux/LuaBot -
IoT botnet as service,” Sep 2016, (Accessed: Jan
2017). [Online]. Available: http://blog.malwaremustdie.org/2016/09/
mmd-0057-2016-new-elf-botnet-linuxluabot.html

[44] Symantec, “Linux.Luabot,” Sep 2016, (Accessed: Jan 2017).
[Online]. Available: https://www.symantec.com/security response/
writeup.jsp?docid=2016-090915-3236-99&tabid=2

[45] B. Rodrigues, “LuaBot: Malware targeting cable modems,” Sep 2016,
(Accessed: Jan 2017). [Online]. Available: https://w00tsec.blogspot.
com/2016/09/luabot-malware-targeting-cable-modems.html

[46] R. Dobbins, “Mirai IoT botnet description and ddos attack mitigation,”
Arbor Threat Intelligence, vol. 28, 2016.

[47] A. Costin, “Security of CCTV and Video Surveillance Systems: Threats,
Vulnerabilities, Attacks, and Mitigations,” in TrustED’16: International
Workshop on Trustworthy Embedded Devices Proceedings, 2016.

[48] “OpenWrt – Linux distribution for embedded devices.” (Accessed: Jan
2017). [Online]. Available: https://openwrt.org/

[49] “OpenWrt – Table of Hardware,” (Accessed: Jan 2017). [Online].
Available: https://wiki.openwrt.org/toh/start

[50] “LinkIt Smart 7688 Resources – FAQ,” (Accessed: Jan
2017). [Online]. Available: https://docs.labs.mediatek.com/resource/
linkit-smart-7688/en/faq

[51] “Linino – Internet of Everything,” (Accessed: Jan 2017). [Online].
Available: https://www.linino.org

[52] “LuCI – OpenWrt Configuration Interface Source Code,” (Accessed:
Jan 2017). [Online]. Available: https://github.com/openwrt/luci

[53] “LuCI – Technical Reference Wiki,” (Accessed: Jan 2017). [Online].
Available: https://wiki.openwrt.org/doc/techref/luci

[54] Wind River, “Intelligent Device Platform XT,” Oct 2013, (Accessed:
Jan 2017). [Online]. Available: https://www.windriver.com/products/
product-notes/PN IDPXT/PN IDPXT.pdf

[55] “The LuaJIT Project.” (Accessed: Jan 2017). [Online]. Available:
http://luajit.org/luajit.html

[56] “eLua Project – Embedded power, driven by Lua.” (Accessed: Jan
2017). [Online]. Available: http://www.eluaproject.net/

[57] “The llvm-lua Project.” (Accessed: Jan 2017). [Online]. Available:
https://github.com/Neopallium/llvm-lua.git

[58] “mod lua – Apache HTTP Server Version 2.5.” (Accessed: Jan 2017).
[Online]. Available: https://httpd.apache.org/docs/trunk/mod/mod lua.
html

[59] “OpenResty – a dynamic web platform based on NGINX and LuaJIT.”
(Accessed: Jan 2017). [Online]. Available: http://openresty.org/

[60] “OpenResty – a dynamic web platform based on NGINX and LuaJIT.”
(Accessed: Jan 2017). [Online]. Available: https://github.com/openresty/
openresty

[61] “lua-nginx-module – Embed the Power of Lua into NGINX
HTTP servers.” (Accessed: Jan 2017). [Online]. Available: https:
//github.com/openresty/lua-nginx-module

[62] “ngx lua,” (Accessed: Jan 2017). [Online]. Available: https://launchpad.
net/ngx-lua

[63] KeplerProject, “CGILua – Building Web Scripts with Lua.” (Accessed:
Jan 2017). [Online]. Available: https://keplerproject.github.io/cgilua/

[64] ——, “WSAPI – Lua Web Server API.” (Accessed: Jan 2017).
[Online]. Available: https://keplerproject.github.io/wsapi/

[65] D. Scott and R. Sharp, “Abstracting application-level web security,” in
Proceedings of the 11th international conference on World Wide Web.
ACM, 2002, pp. 396–407.

[66] M. Hashimoto, Vagrant: Up and Running. ” O’Reilly Media, Inc.”,
2013.

[67] T. Parr, The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013.
[68] “Lua – Found 10,132 repository results,” (Accessed: Jan 2017). [Online].

Available: https://github.com/search?l=Lua&q=lua&type=Repositories&
utf8=%E2%9C%93

[69] “Lua – Trending in open source,” (Accessed: Jan 2017). [Online].
Available: https://github.com/trending/lua?since=monthly

[70] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Science of Computer Programming, vol. 74, no. 7, pp. 470–495, 2009.

[71] A. Hemel, K. T. Kalleberg, R. Vermaas, and E. Dolstra, “Finding
software license violations through binary code clone detection,” in
Proceedings of the 8th Working Conference on Mining Software Repos-
itories. ACM, 2011, pp. 63–72.

[72] A. Hemel, “BAT – Binary Analysis Toolkit,” (Accessed: Jan 2017).
[Online]. Available: http://binaryanalysis.org/

[73] J. Dahse and T. Holz, “Static detection of second-order vulnerabilities
in web applications,” in 23rd USENIX Security Symposium (USENIX
Security 14), 2014, pp. 989–1003.

[74] J. Dahse, “RIPS – A static source code analyser for vulnerabilities
in PHP scripts.” in Seminar Work (Seminer Çalismasi). Horst Görtz
Institute Ruhr-University Bochum, 2010.

[75] F. Yamaguchi, “Joern – An Intelligent Code Analysis Platform for
C/C++,” (Accessed: Jan 2017). [Online]. Available: http://www.mlsec.
org/joern/

[76] F. Yamaguchi, M. Lottmann, and K. Rieck, “Generalized vulnerability
extrapolation using abstract syntax trees,” in Proceedings of the 28th
Annual Computer Security Applications Conference. ACM, 2012, pp.
359–368.

[77] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and discov-
ering vulnerabilities with code property graphs,” in Security and Privacy
(SP), 2014 IEEE Symposium on. IEEE, 2014, pp. 590–604.

[78] F. Yamaguchi, A. Maier, H. Gascon, and K. Rieck, “Automatic inference
of search patterns for taint-style vulnerabilities,” in Security and Privacy
(SP), 2015 IEEE Symposium on. IEEE, 2015, pp. 797–812.

[79] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna, “Saner: Composing static and dynamic
analysis to validate sanitization in web applications,” in 2008 IEEE
Symposium on Security and Privacy (SP 2008). IEEE, 2008, pp. 387–
401.

[80] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in Proceedings of the 4th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages. ACM, 1977, pp. 238–252.

[81] K.-G. Doh, H. Kim, and D. A. Schmidt, “Abstract parsing: static analysis
of dynamically generated string output using lr-parsing technology,” in
International Static Analysis Symposium. Springer, 2009, pp. 256–272.

[82] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo, “Se-
curing web application code by static analysis and runtime protection,”
in Proceedings of the 13th international conference on World Wide Web.
ACM, 2004, pp. 40–52.

[83] G. A. Di Lucca, A. R. Fasolino, M. Mastoianni, and P. Tramontana,
“Identifying cross site scripting vulnerabilities in web applications,” in
Web Site Evolution, Sixth IEEE International Workshop on (WSE’04).
IEEE, 2004, pp. 71–80.

[84] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static analysis tool
for detecting web application vulnerabilities,” in Security and Privacy,
2006 IEEE Symposium on. IEEE, 2006, pp. 6–pp.

[85] Y. Xie and A. Aiken, “Static Detection of Security Vulnerabilities in
Scripting Languages.” in USENIX Security, vol. 6, 2006, pp. 179–192.

[86] G. Wassermann and Z. Su, “Static detection of cross-site scripting
vulnerabilities,” in Proceedings of the 30th international conference on
Software engineering. ACM, 2008, pp. 171–180.

[87] V. B. Livshits and M. S. Lam, “Finding Security Vulnerabilities in Java
Applications with Static Analysis.” in Usenix Security, vol. 2013, 2005.

[88] P. Biggar and D. Gregg, “Static analysis of dynamic scripting languages.”
[89] J. Dahse and T. Holz, “Simulation of Built-in PHP Features for Precise

Static Code Analysis.” in NDSS, 2014.
[90] OWASP, “WebGoat – a deliberately insecure Java web application.”

(Accessed: Jan 2017). [Online]. Available: https://github.com/WebGoat/
WebGoat

[91] “BugBox Homepage – A Vulnerability Corpus for Web Applications.”
(Accessed: Jan 2017). [Online]. Available: https://bugbox.cs.umd.edu/

[92] “BugBox on Github – A Vulnerability Corpus for Web
Applications.” (Accessed: Jan 2017). [Online]. Available:
https://github.com/UMD-SEAM/bugbox

[93] S. Dashevskyi, “ TestREx – a testbed for repeatable web application
security experiments.” (Accessed: Jan 2017). [Online]. Available:
https://github.com/standash/TestREx

142

