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Abstract— Infectious diseases are a major cause of human
morbidity, but most are avoidable. An accurate and
personalized risk prediction is expected to alert people to the
risk of getting exposed to infectious diseases. However, as data
and knowledge in the epidemiology and infectious diseases field
becomes available, an updateable risk prediction model is
needed. The objectives of this article are (1) to describe the
mechanisms for generating a Bayesian Network (BN), as risk
prediction model, from a knowledge-base, and (2) to examine
the accuracy of the prediction result. The research in this paper
started by encoding declarative knowledge from the Atlas of
Human Infectious Diseases into an Infectious Disease Risk
Ontology. Automatic generation of a BN from this knowledge
uses two tools (1) a Rule Converter generates a BN structure
from the ontology (2) a Joint & Marginal Probability Supplier
tool populates the BN with probabilities. These tools allow the
BN to be recreated automatically whenever knowledge and data
changes. In a runtime phase, a third tool, the Context Collector,
captures facts given by the client and consequent environmental
context. This paper introduces these tools and evaluates the
effectiveness of the resulting BN for a single infectious disease,
Anthrax. We have compared conditional probabilities predicted
by our BN against incidence estimated from real patient visit
records. Experiments explored the role of different context data
in prediction accuracy. The results suggest that building a BN
from an ontology is feasible. The experiments also show that
more context results in better risk prediction.
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L INTRODUCTION

Infectious disease is listed as a major cause of human
morbidity [1]. However, many infectious diseases are
avoidable. There is a need for accurate prediction related to
infection risk [2] so that those at risk can take appropriate
avoidance precautions. Infectious disease risk is the result of
interaction between a person, pathogenic agent! and
environment [3], The purpose of this research is to provide
people with personalised information about their risk of being
infected by a disease. The research faces several challenges
such as (1) the continuous update of knowledge of predictors
of risk, (2) the limited sources of experimental and

observational data which are costly to retrieve in full, (3) the
need for data, contexts and knowledge to describe a complex
situation that resembles the real world about risk of getting
an infectious disease, (4) establishing relevant contextual
data from a user’s details and location.

There has been extensive research in algorithms and
techniques for risk prediction, such as fuzzy logic [4,5],
Bayesian network [6,7], logistic regression [8-10] or
combinations between them [11,12]. In general, a Bayesian
network offers flexibility to incorporate dependencies
between variables by defining probabilistic relationships [13],
works under incomplete data [14] and its results are highly
accurate compared to other prediction methods [5].

For this research, using a Bayesian Network approach,
knowledge is represented as a network during the knowledge
building phase. In this phase, person, season, weather and
location risk factors are identified from declarative knowledge
sources. Each factor is filled by a parameter value provided by
a United Nations Data (UN) API. Then, predictors are
transformed into BN nodes and states. After the network is
created, the risk is calculated during the runtime phase. In this
phase, person-related facts are given by the user. Weather and
environment details are also retrieved based on user’s location
from OpenWeather APl and GoogleMaps API. All the
retrieved facts are used to yield the personalized infectious
disease risk prediction.

A recent innovation of Bayesian Networks to model
relationships between variables is Dynamic Bayesian
Networks (DBN) [15]. A DBN approach has been used in
prediction [16-18] and diagnosing various problems [15] [19]
in medical, supply chain and banking cases. Most of the
temporal statements in a DBN are the result of machine
learning [16-18] while a few of them use manual acquisition
from domain experts [15]. A DBN is built by adding temporal
dependencies to a static BN [19]. Machine learning approach
works well when there is plentiful training data to construct
stronger [17] and simpler static BN [18].

In this paper, we adopt the dynamicity concept of a DBN
by designing tools that allow refining a BN based on newest
information stored in a knowledge-base. However, for
infectious disease risk prediction, we have well-established
knowledge, encoded in sources such as the Atlas of Human

! Agent is a microorganism (e.g. fungus, bacteria, virus, prion, parasite or
mix) that cause illness.
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Infectious Diseases [20], Centres of Disease Control and
Prevention [21], Health Protection Surveillance Centre [22]
and the Infectious Disease Ontology [23]. Also, we use
probability data summarised in the United Nations Statistical
Division (UNSD) for demographic parameters and World
Health Organization (WHO) for prevalence rates. Thus,
machine learning is not appropriate. Instead we seek to
directly convert these sources into a BN.

Rules are versatile and have been widely used in health
systems [24]. In terms of knowledge-base, rules are usually
built on the predefined knowledge structure (e.g. Ontology).
This research started by gathering knowledge from various
forms of knowledge sources to build an Infectious Disease
Risk ontology as base of rules. Thereafter, a knowledge
engineer adds disease-centred rules which explain about
personal and environmental contribution to the specific
infection risk. A tool to auto-create a BN based on the newest
rules is then executed. This paper also presents mechanisms
and evaluation of the BN by measuring the accuracy of the
risk prediction. The risk prediction results are compared to
ground truth taken from patient records collected by hospitals
in a county in US during a specific time.

The rest of the paper is organized as follows. Section 2
explains an infectious disease risk prediction service where
the BN is the key of the service; this is the grand design of the
whole research. Section 3 describes the design of tools that are
needed to build the system defined in Section 2. The tools are
Rule Converter, Joint and Marginal Probability Supplier
(JMP) and Context Collector. The Rule Converter and part of
the JMP has been created and explained in another related-
article [25]. Section 4 presents a process to prepare “ground
truth” data used to measure the risk prediction result. Section
5 explains the method to examine prediction accuracy and
presents the results. Section 6 reviews conclusions and
suggests possible future work.

II.  THE PERSONALIZED INFECTIOUS DISEASE RISK

PREDICTION SERVICE

The infectious disease risk prediction web service is designed
to serve client applications which advise users when and how
to protect themselves from infections. The service computes
a person’s risk of being infected by a specified disease in a
specific time frame (may differ for different infections),
given their demographic details and location. The service
uses the location to find weather, season and environmental
features (e.g. swamp, forest, river). This process works at a
runtime using the latest version of BN model.

This section explains the components of the service that
are needed during knowledge building phase: (1) an ontology
that describes Infectious Disease risk; (2) rules to represent
the relationships between risk predictors and infectious
diseases; the rules are taken from declarative knowledge in
Atlas of Human Infectious Diseases (AHID) and represented
in the Semantic Web Rule Language (SWRL); finally, (3) a

BN representing the newest knowledge is constructed. The
prediction accuracy of this BN is what is evaluated in the
third section.

A. Overview of Ontology and Rule Structure

An Infectious Disease Risk (IDR) Ontology (shown in
Figure 1) was developed to describe the interaction between
human and environment in the context of infectious disease
risk. Existing ontologies related to this subject have been
studied and reused [23]. Infectious Disease Ontology and
Epidemiology Ontology were used as references. Since their
focus are not on the risk prediction task, the IDR was created.

The relevant concepts were established by studying the
AHID, identifying and organising all predictors which might
be useful in determining a person’s risk?. A knowledge-
engineer then translated all predictors into classes and sub-
classes in the IDR ontology, and rules defined over that
ontology. Rules are used to describe predictors’ contribution
to a disease risk.

In the IDR, Environment is defined by three classes:
Location, Climate and Feature details. These explain a
person’s surroundings, for example the weather and season at
the access time, also the location and its feature details (e.g.
near woods, river) at a given geocode. The Climate (e.g.
weather, season) is retrieved from OpenWeatherMap API
while the Feature details of a person’s specific location is
retrieved from GoogleMaps API.

A person is represented by his demographic details and his
surroundings (exact position, nearest features and climate at
the access time). In the IDR ontology, this is illustrated by
three arrows pointing out of the Person class. An infectious
disease risk is mostly determined by the disease prevalence in
a specific location, its feature details and the climate
condition. Some weather or season may boost or limit certain
pathogens [26-30]. In figure 1, this is illustrated by three
arrows pointing in to the Infectious Diseases class. Then, a
person’s risk of being infected by a specified disease today,
given their demographic details and environment is illustrated
by a line pointing into Person class which is labelled 'risk of'.
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Figure 1 The infectious disease Risk (IDR) Ontology

Weathed

Environment

2 The result of the AHID study is stored in an online spreadsheet
https:/is.gd/IDcompletelist

595



TABLE 1 SAMPLE RULE ENCODING FOR ANTHRAX RISK

Declarative Knowledge

Farmers or people who live
close to livestock farms are at

high risk. Non-vegetarians are
at medium risk.

Anthrax pathogens are

dormant during winter and the
bacteria are naturally found in

soil or grass in US. They are
easily spread by the wind.

accessDuring(?allpeople,

SWRLs
Person (?allpeople) ~ hasProfession(?allpeople, Farmers) -> hasRiskOf (Anthrax, high)
Person (?allpeople) ~ liveAround(?allpeople, Farms) -> hasRiskOf (Anthrax, high)
Person (?allpeople) ~ hasHabits(?allpeople, EatingMeats) -> hasRiskOf (Anthrax,
medium)
Person (?allpeople) * livelIn(?allpeople, US) ~ accessDuring(?allpeople, Summer) ->
increaseRisk (Anthrax, x)
Person (?allpeople) * livelIn(?allpeople, US) ~ accessDuring(?allpeople, Winter) ->
setRisk (Anthrax, 0)
Person (?allpeople) * livelIn(?allpeople, US) ~ accessDuring(?allpeople, Windy) *

Summer)

-> increaseRisk (Anthrax,y)

Rules facilitate statements in first-order logic about how
predictors impact infection risks. The common composition
of rules is antecedent/predictor (A), consequent or infectious
disease (B) and denoted as (A — B). An antecedent can be
formed by individuals (in classes or sub-classes) and
object/data properties with AND (*). The narrative knowledge
written in AHID determines the individuals and their impact
on a disease. The impact includes odds ratios and tendency. A
knowledge engineer creates rules to represent all knowledge
written in declarative source [20-22]. Table 1 shows sample
rules encoding various tendency levels given by certain
predictors of Anthrax risk (e.g. high, zero, x, y). For example,
increaseRisk (Anthrax, 200) would mean the risk of
Anthrax is doubled in Summer.

B. Overview of BN

The Bayesian Network is the core risk prediction model
for the service. The BN is generated using Rule Converter that
takes the newest knowledge in the IDR ontology and turns it
into nodes, states and Conditional Probability Tables (CPTs)
through several procedures. In figure 2, nodes are represented
by a table, whereas states and CPTs are listed each node.

CLIMATE

ENVIRONMENT

PERSON

INFECTIOUS DISEASE
Figure 2. Structure of the Bayesian Network corresponding to Figure 1

To improve accuracy of prediction and as the knowledge
develops, more predictors may need to be taken into
consideration. In the example, to predict Anthrax risk, the
major predictors like Age and Gender need to be taken into
the initial risk prediction model. Then, as data and information
become more available, more predictors like Profession,

Habit, refine the initial model and make the Anthrax risk
prediction become more accurate.

The BN consists of predictors (upper blocks), in three
node groups: Person, Climate, and Environment, which
contribute to determine the infectious disease(s) risk in a
lower block. Nodes are taken from sub-classes, whereas states
are taken from individuals in each of the sub-classes. Links
between predictors within a group are taken from object or
data properties, while links between predictor and infectious
disease are taken from SWRL rules. Figure 2 depicts the
generated BN from IDR in figure 1.

III.  DESIGN OF TOOLS

The Rule Converter tool is used to translate the SWRL
rules (Table 1) and IDR ontology (Figure 1) into a BN (Figure
2). Netica-J [31], a Java API for Bayesian Network modeller,
is used to calculate the Infectious Disease risks. Netica-J
allows a developer to create, modify and connect the package
with other APIs. By using this API, the web service will be
flexible and easy to be maintained in the future. First, node
and states labels are identified by querying sub-class and
individuals for each sub-class in the generated RDF>. Then,
object and data properties are queried to define links between
predictor nodes. All properties related to rules are then
retrieved to define links between predictors and associated
infectious disease. These steps are used to define network
properties and are executed using SPARQL*.

After knowing the network properties, several Netica
built-in functions (presented in Script 1 and 2) are used to
auto-create the BN structure.

Hode
Node
Hode
Hode

age = new Node (“Age", "Children, Working, Elderly”, net);

influenza = new Node ("F1 ne, Low, High, Decline”, net);

location = new Node ("Region North, South, Central, East, West", net);
anthrax = new Node ("Anthrax", "AtRisk, MotAtRisk", net);

Script 1 Code Example to generate BN nodes and states from IDR

anthrax.addLink(age);
anthrax.addLink(influenza);
anthrax.addLink(location);

Script 2 Code Example to generate BN link from IDR

3 RDF (Resource Description Framework) is a model for encoding
semantic relationships between items of data so that these relationships can
be interpreted computationally.
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The joint and marginal probabilities are the core of the risk
prediction values which will be delivered to the clients. These
probabilities are aimed to be populated in each CPT using a
Joint and Marginal Probability Supplier (JMP).

To fill in the parent nodes’ CPTs, data is downloaded
from the United Nations Data web service in the form of
SDMX?. Then the values are placed in each associated state
in a node. Whereas, the child node’s CPT is filled by taking
numerical arguments and property predicates from the
SWRL rules. The probability of a person with their
demographic details for the risk of contracting Anthrax (e.g.
0.2, 0.25, 0.35) is assigned in each line in Script 3.

anthrax.setCPTable("Children, Low, North", @.8e4, @.996);
anthrax.setCPTable{"Working, High, West", ©.8001, ©.9999);
anthrax.setCPTable("Elderly, Mone, South”, @.8@88, 8.9992);

Script 3 Code Example to populate CPT

While the Rule Converter and JMP are used for preparing the
BN using the newest knowledge, the Context Collector
performs the personalization part of the service at runtime.
The Context Collector collects facts given by the clients
related to demographic and location details.

The collection of clients’ facts (e.g. gender, age and
current location) are taken as beliefs in the risk calculation
process. The collections of a client’s facts are exemplified as
follows: 3-year old females located at (82.1673907, -
168.9778799) are looking for the risk of Anthrax on that day
(4™ of July 2015). The current weather, season and country
name will be automatically retrieved based on access date and
time. Then, all the retrieved contexts will be used to calculate
the Anthrax risk using Script 4.

location.finding().enterState (locationstr);
gender.finding().entersState (keyhumid);
age.finding().enterstate(agestr);

double beliefA = anthrax.getBelief ("AtRisk"™);

Script 4 Code Example to enter the known facts into BN

IV. VALIDATION

In order to prove the concept of using a knowledge-base
to construct an associated BN, a validation step has been
carried out. This research uses patient data to provide the
conditional probabilities, whereas the predicted probabilities
are generated from the BN. By measuring the distance
between conditional probabilities taken from patient visit
records and prediction probabilities, the accuracy of the
prediction can be observed.

We used two datasets: patients’ visit records (whose
metadata is given in Table 2) and Anthrax outbreak dates®
[27,28]. The patient data was taken from Emergency
Department of health care units located in Allegheny County,
Pittsburgh, US., The datasets present the visit records from

January 2002 until December 2003 with 38,596 in total. The
datasets contain demographic details, visit time, and the
reported symptoms. These visit records might contain any
possible diseases other than Anthrax, thus, another dataset is
needed to help identify Anthrax cases within the dataset. The
Anthrax outbreak detection project, WSARE’, supplies this
need by giving the estimation of Anthrax occurrences (date).
Knowledge taken from an interview with a GP was also
needed to determine the Anthrax key symptom (e.g. Rash).

TABLE 2 PATIENT METADATA

Contexts Field Names Data Types

Age child, adult, senior

Person Gender male, female
Flu none, low, high
Weather hot, cold

Climate Season winter, spring, summer, fall
Date mmm-dd-yyyy

Location Region N,W,C,E, S

Inf. Disease Reported symptom | none, respiratory, nausea, rash

Thus, conditional probabilities are estimated from the
patient visit records by following these steps: (1) take the
Anthrax outbreak data (date) and add the incubation (7 days)
and prodromal periods (46 days), (2) select the patients who
present to ER within that period (18,527 records), (3) select
patients who have °‘Rash’ as reported symptom (3,112
records), (4) count Anthrax patients for each demographic
combination (e.g. elderly females living in South Allegheny
County) (5) divide the counts by the corresponding
proportion of total population of the region. These
probabilities are taken as “ground truth”.

The BN for predicting Anthrax risk for this study was
built from knowledge in AHID, medical journals, and an
interview with a GP. Some marginal probability values (e.g.
the probability of female children in a given location) were
obtained from WHO and UNSD. To fill the CPTs, a state’s
value in each node must be acquired (see Figure 1). The Age
CPT values were filled by summarizing age structure
information from UNSD. Since Influenza was the only illness
reported as occurring in conjunction with Anthrax - the risk
of Anthrax increases when patients have Influenza — the
Existing Illness node only handles Influenza, The basic
knowledge about Anthrax risk and Influenza occurrence is
acquired using a probability table of reported_symptoms [35-
37] and interview with GP. Seasons are represented by
Northern Meteorological term (e.g. Winter begins on 1 Dec).
Interestingly, the ground truth data used astronomical
seasons. To obtain Location context, a deeper investigation
of location-related factors needed to be carried out. The
marginal probability for the Location at which a Person lives
(e.g. N, W, E, S) is obtained by summarizing the population

> SDMX (Statistical Data and Metadata eXchange) is a standard designed
to describe statistical data and normalise their exchange.
% Both datasets were downloaded from
https://www.autonlab.org/autonweb/15959.html?branch=1&language=2
[Accessed 21/05/2015] but now the web is under construction.
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distribution from Allegheny County Information Portal [29].
Another Location factor is the regional distribution of
Anthrax (e.g. farms). The marginal probability was obtained
by summarizing the number of farms per region and dividing
by total farms in Allegheny. This information was manually
obtained from Allegheny County Farm Land website [38].
The regional contributions to Anthrax environmental risks
are estimated as North (30%), West (13%), South (26%), East
(15%), Central (13%).

Infectious disease node (Anthrax) is a child node.
Consequently, the child node contains all combinations of
states from its parent nodes. Therefore, other information
needed to build the Anthrax CPT includes:

a. Children are susceptible to Influenza more than
Anthrax, while for a working Adult it is vice versa.

b. Influenza occurs in all seasons, while Anthrax is
dormant in Winter and peaks in Summer.

By encoding these rules in the BN, the probability of a
person, with his details and contexts, being infected by
Anthrax in a specific given time and place, can be estimated.

V.

To measure the performance of the BN prediction result,
Root Mean Square Error (RMSE) is a common measurement
used to assess the prediction accuracy [39]. The lower the
errors the better the prediction. In this case, the BN prediction
result will be compared against the “ground truth” derived
from ED patient visit records (i.e. actual).

EVALUATION METHOD AND RESULTS

RMSE = \/Z(predictio: — actual)?

The RMSEs are categorised by each context in Table 3
below. Thus, n is the number of attribute value combinations.

TABLE 3 PREDICTION ACCURACY GROUPED BY CONTEXTS

. Norm n
Contexts Context Details ‘ RMSE ‘ RMSE ‘ ‘
One-context Combination
Person Age 0.006006 0.698444 3
Flu 0.000736 | 0.287605 4
Age, Flu 0.004341 0.359710 | 12
Climate Season 0.000910 0.386974 4
Location Region 0.007810 0.458550 5
Two-context Combination
Person — Age — Season 0.003114 0.314958 12
Climate Flu — Season 0.001610 0.331685 9
Age, Flu — Season 0.004270 | 0.303918 | 27
Person — Age — Region 0.024840 0.337633 15
Location Flu — Region 0.007460 0316629 | 20
Age, Flu — Region 0.018278 0.196407 | 60
E"m?te | Season - Region 0.004783 | 0.283449 | 20
ocation
Three-context Combination
Person — Age — Season — Region 0.015134 0.243600 | 60
. Flu — Season — Region 0.066149 0.197595 | 45
Climate —
Location | 28 Flu—Season - 0.035340 | 0.174622 | 135
Region
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The RMSEs show that each context detail has good accuracy.
But, to conclude which contexts give the best accuracy, the
RMSE needs to be compared equally based on each of the
context details’ range. Range in each context details is not
same, for instance, (Age, Flu) ranged from [0.0003, 0.01] and
(Age, Flu - Season - Region) ranged from [0, 0.2023]. Thus,
RMSE in each context detail (i) needs to be rescaled into the
range 0-1 with a formula below.
RMSE;
NormRM SEl = M

By having all RMSEs normalized, context details that give
best prediction in each context combination can be identified
(written in bold in Table 3). For all context combinations, the
inclusion of Influenza yields the best accuracy. Also, the
Norm RMSEs show that inclusion of more contexts (the
bottom of the Table 3) gives better predictions.

VL

In this paper, we have introduced an ontology and several
disease risk oriented rules: Infectious Disease Risk (IDR)
Ontology and described tools which generate a BN from
knowledge represented as SWRL rules and using the IDR
ontology. We believe that such tools are necessary to allow
epidemiologists to refine the prediction model as new data
and knowledge of infectious diseases becomes available. As
is confirmed by the experiments presented in Table 3, the
more factors (contexts) that are taken into consideration, the
better the Anthrax risk prediction.

Also in this paper, we have evaluated the accuracy of a
BN for personalised Anthrax risk that encodes current
knowledge. We compared conditional probabilities taken
from patient visit records with BN predictions. We tested
different combinations of context details, each of which came
out with good accuracy. This suggests that building CPTs
from knowledge as rules is a feasible option.

The infectious disease risk prediction system described
here will be offered as a web service which advises users
when and how to protect themselves from infections. The
web service will be linked to several live APIs for supplying
the current environmental data to compute a person’s risk of
being infected by a specified disease in a specific time frame
given their demographic details and location.

The further work of this research covers: developing BNs
for prediction of risk for other infectious diseases and
measuring their accuracy; and prioritizing rules to deal with
opposing, partially completed or out-of-date rules. Providing
a tool to facilitate the system to auto-extract knowledge and
convert it into IDR and rules is also a potential future work.

CONCLUSION
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