
Formalizing and Proving a Typing Result for
Security Protocols in Isabelle/HOL

Andreas Viktor Hess and Sebastian Mödersheim
DTU Compute

Technical University of Denmark
2800 Kongens Lyngby, Denmark

e-mails: {avhe,samo}@dtu.dk

Abstract—There are several works on the formalization of
security protocols and proofs of their security in Isabelle/HOL;
there have also been tools for automatically generating such
proofs. This is attractive since a proof in Isabelle gives a higher
assurance of the correctness than a pen-and-paper proof or the
positive output of a verification tool. However several of these
works have used a typed model, where the intruder is restricted
to “well-typed” attacks. There also have been several works that
show that this is actually not a restriction for a large class of
protocols, but all these results so far are again pen-and-paper
proofs. In this work we present a formalization of such a typing
result in Isabelle/HOL. We formalize a constraint-based approach
that is used in the proof argument of such typing results, and
prove its soundness, completeness and termination. We then
formalize and prove the typing result itself in Isabelle. Finally, to
illustrate the real-world feasibility, we prove that the standard
Transport Layer Security (TLS) handshake satisfies the main
condition of the typing result.

I. INTRODUCTION

Proof assistants like Isabelle [20] allow us to formalize

and check proofs with an almost “absolute” precision and

reliability: once a theorem is proved, the chance of a mistake

or hole in the proof is extremely low. This is very attractive

for proofs of security protocols since security protocols are

relatively small systems that are critical to our infrastructure

and often have very subtle flaws that are easily overlooked.

Paulson and Bella have proved security properties of numerous

protocols in Isabelle and established a general paradigm of

modeling protocols [21], [22], [5], [4].

Despite many automated proof tactics in Isabelle, conduct-

ing security proofs is still labor-intensive. There are many

automated tools like ProVerif [6] that can verify most of

the protocols of Paulson and Bella within minutes. However,

an implementation mistake in such a tool can easily lead to

a “false negative”: no attack is found even though there is

one. To get full reliability, one could directly model such a

method in Isabelle, using Isabelle as a kind of interpreter.

A more efficient way is to have automated tools generate

proofs that Isabelle can check as in the works of Brucker

and Mödersheim [8] and Meier et al. [16] (and by Goubault-

Larrecq [12] for Coq).

Many of the mentioned works [21], [22], [5], [4], [8] rely

on a typed protocol model that excludes that the attacker can

send any ill-typed messages and thereby rules out any type-

flaw attacks. In general, such a restriction to a typed model

makes many aspects of the analysis easier. Most notably, in

the abstract interpretation method used by [6], [8], protocol

security is still undecidable, but under the restriction to a typed

model the question becomes decidable.

There are in fact several results that show the relative
soundness of a typed model if the protocol satisfies certain

reasonable sufficient conditions: Heather et al. [13], Cortier

and Delaune [9], Mödersheim [19], Arapinis and Duflot [2],

and Almousa et al. [1]. Relative soundness means a result of

the form: if a protocol (that satisfies the sufficient conditions)

has an attack then it has a well-typed attack. So if we can

verify that the protocol has no attack in the typed model (with

whatever method), then it also has no attack in the untyped

model. Closely related are relative soundness results from

compositional reasoning, e.g., the mentioned works [9], [1]

rely on typing results to obtain parallel composition results.

All these relative soundness results are so far classical pen-

and-paper proofs. They contain complex proof arguments that,

despite not being formalized out to the last detail, span easily

ten pages (including all relevant formal definitions and lemmas

with their proofs). It is not unlikely that such a result can have

mistakes, from simple holes in a proof to wrong statements.

Relying on such results bears some similarity to relying on

unverified tools: we may wrongly accept a protocol as secure

that actually is not (in the considered model). “Checking” the

proof of such a result may be as complex a task as verifying a

verification tool. The final and third parallel to verification

tools is: there are often subtle differences in the protocol

models and in the sufficient conditions that a casual user (who

did not study the result in detail) may fail to notice. This bears

the risk that in a hand-wavy fashion, one may accidentally

apply a typing or compositionality result to protocols for which

it does not hold.

This paper is a first step to overcome these problems of

relative soundness results, by formalizing them in Isabelle.

This allows us to use these results directly in security proofs

like any other proved theorem. For instance, we may use

any of the previous methods, manual or automatic, to prove

the security of a protocol in the typed model, and then

use the typing theorem to infer the result for the untyped

model as a theorem entirely proved within Isabelle. Also

this ensures that the theorem can only be applied if all the

sufficient conditions are indeed satisfied (otherwise they will

2017 IEEE 30th Computer Security Foundations Symposium

© 2017, Andreas Viktor Hess. Under license to IEEE.

DOI 10.1109/CSF.2017.27

453

2017 IEEE 30th Computer Security Foundations Symposium

© 2017, Andreas Viktor Hess. Under license to IEEE.

DOI 10.1109/CSF.2017.27

451

remain as open subgoals to prove). This therefore solves the

problem of overlooking incompatible assumptions. The long-

term goal is to establish a verification framework in Isabelle

where different proof methods, manual and automatic, can

be integrated with relative soundness results as far as they

are applicable. This is interesting since probably no single

verification approach is suited for all kinds of protocols.

In order to prove a typing result, one needs to make

arguments of the form “in every step of an attack where the

intruder sends something ill-typed, he may send something

well-typed instead and the attack would work similarly.” To

make such arguments in a clear and precise way—avoiding

handwavy and roundabout proofs—existing typing results [9],

[19], [2], [1] use a popular verification technique that uses

symbolic intruder constraints and that we simply refer to as

the lazy intruder. This idea is originally used to cope with

the infinity induced by the Dolev-Yao model in automated

verification [17], [23], [3]: the intruder is lazy in the sense

that he chooses parts of messages only in a demand-driven

way, i.e., if they are necessary for a particular attack. One can

use this technique in a different way for the typing results by

showing (for protocols that satisfy some requirements) that the

lazy intruder never makes ill-typed choices, and all type-flaw

attacks are ill-typed choices of message parts that the lazy

intruder did not instantiate. This allows one to conclude that,

if there is a solution to the constraints, then there is a well-

typed one. This is at the core of all typing results and we thus

formalize the lazy intruder in Isabelle, including the proof that

the reduction procedure for constraints is sound, complete, and

terminating, because the typing result relies on this.

The main contribution of the paper is the formalization and

proof in Isabelle/HOL of the relative typing result from [1].

Our entire Isabelle/HOL theory is approximately 8000 lines

of code and takes about two minutes for Isabelle/HOL to

load and verify on a standard machine. While some of the

formalization could be streamlined it shows the complexity of

formalizing and proving such a typing result when modeled

with absolute formal precision. During this formalization effort

we discovered a number of errors in [1]. We have fixed these

problems by imposing some additional conditions on the class

of protocols. We argue that these conditions are reasonable

restrictions and still more liberal then those of other typing

results. This is discussed in detail in Section VI. To illustrate

the feasibility of our requirements, as a real-world case study,

we prove in Isabelle that the Transport Layer Security (TLS)

protocol satisfies the requirement of the typing result, namely

type-flaw resistance.

In order to facilitate easier reasoning in Isabelle, we have

also made several simplifications to the lazy intruder, in

particular “out-sourcing” the analysis to the transition system.

We also prove in Isabelle that these simplifications are without

loss of generality, i.e., we prove the equivalence to a standard

transition system with a full intruder. We use the Isabelle

formalization of the lazy intruder in this paper only as a

means to prove the main typing result, however it can also

be employed directly to conduct lazy intruder-based proofs in

Isabelle. More generally, we believe that all tools that use the

lazy intruder technique can benefit from the simplification we

made to the technique here.
Since this work consists of many definitions and theorems,

including several variants of theorems, we here give a shortlist

of definitions and the main typing result, i.e., everything that

one needs to consider in order to apply our result:

• Given a protocol described as a countable set of closed

strands, we define a state transition system with con-

straints (Definition 9).

• We define the semantics of constraints using a standard

Dolev-Yao intruder deduction relation (in the free alge-

bra) (Section IV-B and Definition 1).

• We define the notion of type-flaw resistance for protocols

(Definition 8).

• We define a requirement on the use of operators in

the protocol, called analysis-invariance, needed to fix a

mistake in [1] (Definition 11).

• The main result is that for any reachable state of a

type-flaw resistant, analysis-invariant protocol, there is a

solution for the constraints if and only if there is a well-

typed solution (Theorem 4).

Throughout the paper we have chosen to use slightly sim-

plified Isabelle notation. The full Isabelle formalization (with

all proofs) is available at our website:

http://www2.compute.dtu.dk/~samo/typing-soundness/

II. EXPRESSING THE PRELIMINARIES IN ISABELLE

In this section we summarize some standard definitions

along with a discussion of how we model them in Is-

abelle/HOL whenever there are some differences. This also

gives us a chance to review a few features of Isabelle that are

relevant for following this paper in detail. In fact, we simplify

the Isabelle notation in several places.

A. Term Algebra
At the core of all definitions are the protocol messages that

we model in a free first-order term algebra as is often done.

The standard notions like unification are already part of several

Isabelle libraries namely the Unification example theory that

ships with Isabelle and the IsaFoR/CeTA library [26], and we

point out only where our definitions augment them.
Our definitions are parameterized over a set V of vari-

ables (typically denoted with letters x, y, z) and a set Σ of

function symbols (typically denoted with letters f, g, h). We

also assume a function arity : Σ → N that assigns each

function symbol its arity. We denote by C the subset of Σ
of constants, i.e., the function symbols of arity 0 (typically

denoted with letters a, b, c). By Σn we then denote the subset

of Σ containing all symbols of arity n. We further partition

C into the disjoint sets Cpub of public and Cpriv of private

constants. We later define that the intruder has access to all

constants in Cpub.
We now define the set of terms over Σ, V in Isabelle as an

inductive datatype:

datatype (Σ,V) term = Var V | Fun Σ ((Σ,V) term list)

454452

Here we have slightly changed the Isabelle notation that would

have instead of Σ and V two type variables, which we for

ease of notation do not distinguish from the universes of those

values.1 For instance the expression Fun f [Var x, Fun c []]
represents the term f(x, c) in more conventional notation,

and we will use that notation whenever possible. Note that

because this definition introduces the data constructors Var

and Fun as injective functions, we obtain a free term algebra,

i.e. f(t1, . . . , tn) = g(s1, . . . , sm) iff f = g and ti = si for

1 ≤ i ≤ n = m.

Typically there is only a small finite set of non-constant

function symbols representing the cryptographic primitives

and the like; therefore this set is actually fixed in several

other works on protocol security [21], [4], [16] with one

data constructor for each function symbol. Our parameterized

version has the advantage that our proofs do not depend on the

particular set of operators used, so we do not have to update

our proofs when adding a new operator. A slight disadvantage

is that we cannot control as part of the data-type definition

that a function symbol f with arity f = n is only applied

to a list of exactly n arguments. We can fix this however by

the following notion of well-formed terms (where � is the

subterm relation that is defined as expected):

wftrm t ≡ ∀f T. Fun f T � t −→ length T = arity f

We deal only with well-formed terms and for simplicity omit

writing it as a side-condition on all terms we use in the rest

of the paper. We further define the function FV for the free
variables of a term as standard, and say that a term t is ground
if FV t = ∅. Additionally, the set of subterms of a term t is

written subterms t. Both functions are extended to sets as

expected.

B. Substitutions and Interpretations

We use for substitutions and unifications the definitions

and theorems of the IsaFoR/CeTA library where substitutions

(typically denoted with letters θ, δ) are functions from vari-

ables V to terms (Σ,V) term. They are homomorphically

extended to functions on terms as expected, and we simply

write θ t for applying substitution θ to term t (omitting the

extensions function). The composition θ · δ of substitutions θ
and δ is defined as (θ · δ) t = δ (θ t). (This is following

the convention of IsaFoR/CeTA.) The substitution domain
domsubst : (Σ,V) subst → V set of a substitution is the set of

variables that are not mapped to themselves:

domsubst θ ≡ {x | θ x �= Var x}
For substitutions with finite domain we will use the common

notation of value mappings, like θ = [x 	→ s, y 	→ t] for the

substitution θ with substitution domain {x, y} sending x to s
and y to t. Thus, [] denotes the identity substitution.

The substitution image imgsubst : (Σ,V) subst →
(Σ,V) term set is defined in terms of the domain by applying

1In Isabelle, one has to rather write UNIV to refer to the set of values that
belong to a particular type.

the substitution to every element of the domain (where f � S
denotes the image of f under the set S):

imgsubst θ ≡ θ � domsubst θ

Every substitution we use in this paper has either a finite

domain or its domain are all variables of V and it maps them

to ground terms. The latter kind we call interpretations. We

thus divert here from the common convention that substitution

and interpretation are two disjoint notions, because they are

conceptually so similar (e.g. they can be applied to all term-

based data-structures) that having them separated would lead

to two similar versions of many definitions and lemmas.

It is cumbersome to work with substitutions where some

variable occurs both in the domain and the image like [x 	→
f(x)] as they are, for instance, not idempotent. Thus, we

introduce a notion of well-formedness of substitutions that

excludes any variable to occur both in domain and image and

that requires a finite domain (because we will not use this

notion on interpretations):

wfsubst θ ≡ domsubst θ ∩ FV (imgsubst θ) = ∅ ∧
finite (domsubst θ)

Intuitively, a well-formed substitution represents a set of

solutions (e.g. all solutions to a unification problem). We

can prove the following lemma that is useful later when we

compose substitutions in constraint reduction:

Lemma 1 (Well-formedness preservation of substitution
composition): If θ1 and θ2 are well-formed substitutions such

that domsubst θ1 ∩ domsubst θ2 = ∅ and domsubst θ1 ∩
FV (imgsubst θ2) = ∅ then the composition θ1 · θ2 is also

well-formed.

An interpretation (typically denoted by letter I) is a sub-

stitution that represents one single solution, mapping every

variable to a ground term:

interpretationsubst I ≡ domsubst I = V ∧
ground (imgsubst I)

We define that a substitution θ supports an interpretation I
iff I is a solution represented by θ:

θ supports I ≡ ∀x. I (θ x) = I x

C. Unification

A most general unifier (mgu) θ between two terms, t1 and

t2, is defined as a substitution satisfying the following standard

definition:

MGU θ t1 t2 ≡ θ t1 = θ t2∧(∀δ. δ t1 = δ t2 −→ (∃γ. δ = θ·γ))
In other words, θ is a unifier which can be used to construct

any other unifier δ of t1 and t2 using composition with a third

substitution γ. Well-formed mgus are furthermore restricted to

the variables of the terms being unified. That is:

wfMGU θ s t ≡ wfsubst θ ∧ MGU θ s t ∧
domsubst θ ∪ FV (imgsubst θ) ⊆ FV s ∪ FV t

The library of IsaFoR/CeTA provides the function

mgu :: (Σ,V) term ⇒ (Σ,V) term ⇒ (Σ,V) subst option

455453

that computes the most general unifier of two terms if one

exists. We proved that this unifier is always well-formed.

III. DOLEV-YAO STYLE INTRUDER MODEL

We define a standard symbolic Dolev-Yao style intruder

deduction relation M � t to formalize that the intruder can

derive term t from the set of terms M , his knowledge. We

define � inductively as the least relation closed under the

following rules:

Definition 1 (The Intruder Model):

M � t
(Axiom),
t ∈M

M � t1 · · · M � tn
M � f (t1, . . . , tn)

(Compose),
f ∈ Σn,
public f

M � t M � k1 · · · M � kn
M � ti

(Decompose),
Ana t = (K,T), ti ∈ T,

K = {k1, . . . , kn}
Here, all terms are at first ground terms without variables (as

we are not performing any substitutions); later we will use

constraints with variables in terms. For later we also define a

restricted variant �c that is the closure only under (Axiom)
and (Compose), but omitting (Decompose).

The first rule expresses that the intruder can derive every-

thing in his knowledge. The second rule allows the intruder

to compose messages by applying public function symbols to

messages he can already derive. (Note that f might have arity

n = 0, in which case it is a constant.) To that end, we define

the function public that yields true for all public constants

and any function with arity greater than zero (i.e., all symbols

of Σn\Cpriv). The third rule allows the intruder to decompose
(i.e. analyze) messages. To avoid that we have to write a

special decryption rule for each operator to consider, we define

a function Ana as an interface. Intuitively, Ana t = (K,T)
means that the intruder can analyze the term t provided that he

knows the “keys” in K and then obtain as the result of analysis

the terms of T . The advantage of this interface function is that

in order to add a new operator to the model, one simply has

to specify the Ana function for it, but none of the following

definitions or theorems require an update. We will require

some restrictions on the Ana function in Section VI-B.

Example 1: Consider the following set of non-constant

operators (with their arities): asymmetric encryption crypt/2,
symmetric encryption scrypt/2, signatures sign/2, a function

pub/1 that yields the public key for a given private key, hash

function hash/1, a key derivation function kdf/2 and message

structuring formats fi/i (i ∈ N), together with the following

Ana function:

Ana scrypt(k,m) = ({k}, {m})
Ana crypt(pub(k),m) = ({k}, {m})
Ana sign(k,m) = (∅, {m})
Ana fi(t1, . . . , ti) = (∅, {t1, . . . , ti})

and in all other cases: Ana t = (∅, ∅)
This describes the decryption of symmetric and asymmetric

encryptions as expected; the contents of signatures we assume

can be obtained without knowing the signing key (i.e., the

signature primitive includes the signed text in clear). The func-

tions pub, hash, and kdf are one-way in the sense that they do

not yield any information in analysis. The non-cryptographic

message structuring formats fi exist only to structure clear-

text messages (other than pure concatenation). Like [1] we use

these formats instead of the classical “concatenate” operator:

this allows for modeling abstractly the actual mechanisms

of the implementation to structure messages unambiguously,

such as tags, length information, or character encodings;

compare for instance the TLS example in Section V-B. The

formats are transparent, i.e., the analysis function yields all

direct subterms without requiring any key. For signatures,

we similarly allow the intruder to obtain the signed message

without any key. This models a signature scheme where the

message being signed is given along with a signature on a hash

of that message; thus one does not need any key to obtain the

message, but only to verify the signature. More on signature

verification below.

Let M = {scrypt(kdf(n1, n2), secret), n1, n2} then for

instance M � secret since the intruder can first compose the

key kdf(n1, n2) and then decrypt the encrypted message.

A. Free Algebra

Recall that our definition of terms yields a free term algebra,

i.e., two terms are equal only if they are syntactically equal.

This prevents many interesting properties of operators like the

property gxy = gyx that is needed for all Diffie-Hellman-

based protocols. Modeling algebraic properties in Isabelle is

not trivial: one has to work with a quotient algebra (every term

represents the set of terms that are algebraically equal) and

thus everything becomes more complex, see for instance [24],

[14]. Therefore all protocol verification in Isabelle that we

know of uses the free algebra. Most typing results also are

limited to the free algebra (an exception being [18]).

One may wonder, however, how this free algebra model

compares to other protocol models like the Applied-π calculus

model of ProVerif that supports algebraic properties to some

extent. As an example, to describe signature verification,

one may specify a destructor function verify that takes as

arguments a signed message and a public key and yields true if

the signature is correct w.r.t. that public key. This is expressed

by the rewrite rule:

verify(sign(privkey ,msg), pub(privkey))→ true

(Similar rewrite rules we have for decryption functions and

the like.) This is in fact an algebraic property and it cannot

be directly expressed in a free algebra term model. Note

that internally, ProVerif works with Horn clauses in the free

algebra as well. Therefore a transformation step is taken when

translating a given Applied-π-calculus specification into Horn

clauses. In the example of signature verification or similar

theories of constructors and destructors, this would amount to

pattern matching. Consider for instance an honest agent who

receives an arbitrary message x and checks that applying verify
with a particular key pub(privkey) yields true; ProVerif’s

transformation would yield an agent who now receives only

456454

messages of pattern sign(privkey , y) where y is a variable to

which the content of the signature is bound. This is precisely

how free algebra approaches handle constructors—having no

explicit destructors anymore.

Furthermore, ProVerif also allows for equations and it

similarly applies a completion procedure to the Horn clauses to

take into account all algebraic variants of a term. Note this fea-

ture may easily lead to non-termination and one must carefully

craft the algebraic properties for this, see for instance [15]. In

principle one can apply the same transformation also to strands

in order to handle some algebraic properties, but we leave this

external to our approach.

IV. MODELING THE LAZY INTRUDER IN ISABELLE/HOL

A naïve approach to model checking security protocols

would be to devise a transition system that contains transitions

for honest agents and composition/decomposition steps for

the intruder. Since composition is infinite, one would not

only bound the number of honest agents and the number of

protocol runs they can participate in, but also the complexity

of messages that the intruder can compose. (In fact, the typing

result shows that for a large class of protocols this bounding of

the intruder would be without loss of attacks.) But even under

tight bounds, the search space is infeasibly large. Therefore a

technique has emerged that replaces this “eager” exploration

of what the intruder can do by a symbolic approach with

constraints and a demand-driven, “lazy” evaluation of these

constraints [17], [23], [3]. We thus like to call this technique

the lazy intruder. While a successful method in the analysis

and verification (for a bounded number of sessions) of security

protocols, it has also been used as a proof argument for

typing and compositionality results [1], [9], [2] like the one

we formalize here in Isabelle. Note that in this way of using

the lazy intruder, there is no bound on the number of sessions.

The lazy intruder constraints are of the form M � t where

now M and t can contain variables. Intuitively, M is the

knowledge that the intruder had at a point where he sent a

message of the form t to some honest agent. Here the term t
may contain variables, so that t is a pattern of what messages

the agent would accept and the variables are the places where

the agent does not expect a particular value. This is where the

lazy intruder is lazy: we do not right away try to determine

a value for each variable. Therefore, the next messages this

honest agent sends may contain variables from t and this is

how variables can end up in the intruder knowledge M ′ in a

successor state.

For a feasible procedure for checking the satisfiability of

constraints, one needs to require a well-formedness condition

on constraints: they can be ordered as M1 � t1, . . . ,Mn � tn
(the order in which the constraints occurred) where

1) Mi ⊆ Mi+1 (for 1 ≤ i < n): the intruder knowledge

grows monotonically; and

2) FV Mi ⊆
⋃i−1

k=1 FV tk: all variables originate from a term

sent by the intruder.

A large part of this work is to formalize in Isabelle/HOL

these lazy intruder constraints, a reduction procedure for the

constraints, and to prove the soundness, completeness, and

termination of this procedure. Completeness and termination

are quite difficult even as standard pen-and-paper proofs. We

therefore had to first seek for any possibilities to make the task

and the formalization as easy and light-weight as possible. The

main simplifications are a different representation and an “out-

sourcing” of decomposition steps, as we explain next.
The formalization we present here is a so-called deep

embedding, i.e. we formalize constraints as objects in Isabelle

that we can reason about. This is in contrast to a shallow
embedding where we simply consider them as HOL formulae

that use the � predicate. A shallow embedding would have

advantages (both in terms of simplicity and performance)

if one would like to directly perform constraint reasoning

in Isabelle. A deep embedding is however necessary for

our purpose, since we want to reason about a procedure
that manipulates constraints, and in particular prove that this

procedure is complete and terminates (the soundness proof

could also be expressed in a shallow embedding).

A. The Lazy Intruder on the Beach
The first idea for keeping matters simple is to change the

representation of the constraints by using strands.2 A strand is

a sequence of send and receive operations and strand spaces

are a nice formalism to reason about protocol executions [25].

We define an intruder strand as a list of received and sent

messages:

datatype (Σ,V) strand-step =
Send ((Σ,V) term) | Receive ((Σ,V) term)

type-synonym (Σ,V) strand = (Σ,V) strand-step list

Thus, the intruder knowledge at each point in the strand are

the messages that the intruder has received up to this point,

and each sent message must be something he can construct

from the knowledge at that point.
Example 2: Consider the following constraints in traditional

representation:

{crypt(pub(ka), secret), ki} � crypt(pub(x), y)
{crypt(pub(ka), secret), ki, y} � secret

In the strand representation we would write this as:

Receive crypt(pub(ka), secret).Receive ki.
Send crypt(pub(x), y).Receive y.Send secret.0

Instead of [st1, . . . , stn] we rather write st1.stn.0 like

in process calculi.
The advantage of our representation is that we have “built-in”

the first condition of the well-formedness: that the intruder

knowledge monotonically grows. The second condition—that

all variables originate in terms sent by the intruder—is now

easy to formulate:
Definition 2: An intruder strand A is well-formed iff

wfst ∅ A holds where:

wfst V 0 iff True
wfst V (Receive t.A) iff FV t ⊆ V and wfst V A

wfst V (Send t.A) iff wfst (V ∪ FV t) A
2Note that the word strand in Danish and German means beach.

457455

Here the parameter V of wfst V A is meant to denote the free

variables of all sent messages that have occurred in a prefix of

the parameter A. The variables occurring in an intruder strand

A are denoted by varsst A. Moreover, the intruder knowledge
of an intruder strand A, written ikst A, is the set of received

messages. That is, t ∈ ikst A iff Receive t occurs in A.

B. Constraint Semantics

We define the semantics of intruder strands based on the

Dolev-Yao deduction relation �. Recall that an interpretation

I maps all variables to ground terms. We write �A� M I to

denote that I is a solution of an intruder strand A where M
is an (initially empty) set of messages available to the intruder

at the start, and define this relation as follows:

�0� M I iff True
�Send t.A� M I iff (I M) � (I t) and �A� M I

�Receive t.A� M I iff �A� ({t} ∪M) I
Thus, every message he receives is simply added to the

parameter M that collects the intruder knowledge in this

inductive definition. For every message t that the intruder

sends, we require that he can derive it from knowledge M
(under the interpretation I).

Example 3: Consider the intruder strand from the previous

example. Any I with I x = ka and I y = secret is a solution

of the constraint. Consider only the prefix up to (and including)

the first Send step; then also I x = I y = ki is a solution,

and so is any interpretation that maps x and y to terms that

the intruder can generate from his knowledge at that point.

During constraint reduction below we will consider pairs

(A, θ) of an intruder strand A and a well-formed substitution

θ that represents the (partial) solution obtained so far (like the

solution for x and y in the example above). At the beginning

of the reduction, θ is simply the identity. Whenever θ is

augmented during reduction, we apply it also to A, i.e., A
contains no variables in the domain of θ (that are already

“solved”).3 Formally:

Definition 3: An intruder constraint is of the form (A, θ),
where A is an intruder strand and θ is a substitution. An

intruder constraint (A, θ) is furthermore well-formed if 1)

A is a well-formed intruder strand, 2) θ is a well-formed

substitution, and 3) the domain of θ and the variables of A
are disjoint.

The interpretation I is said to be a model of (A, θ) (with

initial intruder knowledge M0) written M0, I |= (A, θ), iff θ
supports I and �A� M0 I holds. For the default M0 = ∅ we

simply write I |= (A, θ), and I |= A if additionally θ = [].

C. Out-sourcing Analysis

One aspect that makes the lazy intruder complicated, both

in terms of an implementation in tools, and in terms of prov-

ing completeness and termination of the reduction procedure

below, is analysis of terms. For instance, if the intruder learns

3In Isabelle, we have to define explicitly an extension of substitution to
functions on constraints (defined homomorphically as expected) but we leave
this implicit in the notation in this paper, for simplicity.

an encrypted term where the subterm for the key contains a

variable, then whether he can decrypt the term may depend on

the substitution for that variable. In general, one has to make

then a case split: the case that the message can be deciphered

and the case that it cannot, since ignoring either case may

eliminate solutions. In fact, in the case a message has not

been decrypted, after each received message another case split

is necessary whether or not the term should now be decrypted.

Another complication arises from the fact that a term in the

intruder knowledge could directly be a variable that may

represent a decryptable term, and one has to carefully argue

that the term in question was known to the intruder earlier (and

could have been decrypted then), but this argument requires

that the earlier constraints have already been simplified.

To avoid these complications, we now consider the follow-

ing idea: we limit the intruder to composition steps, i.e., the

�c relation, and “out-source” all decomposition steps to the

transition system. To that end, we can imagine special honest

agents that perform decryption operations for the intruder. We

discuss this in detail (and prove correctness) in Section VI.

One may wonder why we even bother with the lazy intruder

and do not simply out-source also the composition steps of �c
as well. Recall that the lazy intruder was conceived to counter

the problem that the �c closure is infinite (while closure under

analysis is finite). In other words, in a forward exploration

of a transition system, composition leads to blind exploration

(while analysis is not a problem). A backwards search like

lazy intruder constraint solving is a clear demand-driven way

to handle composition steps. Exactly this demand-driven, lazy

aspect is what we shall exploit in the typing results: while

the intruder can compose ill-typed messages, this is never
necessary to mount the attack, and this “never necessary” is

captured by the laziness of the intruder. Not having analysis

steps as part of that argument does not hurt, because the

analysis of terms is not what introduces ill-typed messages.

In fact, we believe that even for automated tools that use the

lazy intruder technique, the out-sourcing of analysis could be

beneficial, since it drastically simplifies the technique, and as

far as we can see every provision for efficiency (e.g. eagerly

performing analysis steps that require no substitution) can be

similarly applied at the transition system level.

We then define a variant �·�c of the semantics �·� restricted

to composition steps by replacing � with �c in the definition

of �·�. Similarly, we define |=c by replacing �·� with �·�c in

the definition of |=.

D. Constraint Reduction

The goal of the constraint reduction procedure is to de-

termine all solutions of a constraint. There are in general

infinitely many solutions, but they can be finitely represented,

namely by simple constraints:

Definition 4: An intruder constraint (A, θ) is simple if and

only if t ∈ V for every Send t that occurs in A.

The point is that simple constraints are always satisfiable: the

remaining variables are arbitrary, so the intruder can choose

any term from his knowledge. A key point of the typing result

458456

is: when the variables are annotated with an intended type (and

the intruder knows values for each type), then there always

also exists a well-typed solution for a simple constraint.

The goal of the reduction procedure is now to transform a

given constraint into an equivalent set of simple constraints.

That is, we define a reduction relation � on constraints4, and

for a given (A0, θ0), we consider the reachable constraints, i.e.,

(A0, θ0) �∗ (A, θ). (The relation �∗ denotes the reflexive

transitive closure of � while �+ then denotes the transitive

closure.) We prove in Isabelle that there are finitely many

(termination), and that the union of the models of the reachable

simple constraints is exactly the set of models of (A0, θ0)
(soundness and completeness).

Definition 5: The lazy intruder is the least relation �
between constraints closed under the following rules:

(ComposeLI) : (A.Send f(t1, . . . , tn).A′, θ)
� (A.Send t1. · · · .Send tn.A′, θ)

if simple A, f ∈ Σn, public f

(UnifyLI) : (A.Send s.A′, θ)� (δ (A.A′), θ · δ)
if s, t /∈ V, simple A, t ∈ ikst A, Some δ = mgu s t

The (ComposeLI) rule corresponds to the (Compose) rule

of the Dolev-Yao model, i.e., if the intruder has to produce

f(t1, . . . , tn) for a public symbol f , one way to do it is to

produce each of the ti (in whatever way) and apply f to them.

The (UnifyLI) rule corresponds to the (Axiom) rule of the

Dolev-Yao model: it states that the intruder can send a message

s if he has previously learned a message t that can be unified

with s. More precisely, the most general unifier δ of s and

t (if it exists; the data constructor Some is from the option
datatype) represents all interpretations of the constraint, under

which s and t are equal, and thus under which the Send s can

be removed as this requirement is satisfied. However, we have

to integrate δ by composing it with the existing solution θ and

applying it to the rest of the constraint, so that no variable in

the domain of δ remains in the intruder strand.

Note that the (UnifyLI) rule is not applicable if the term s
to be generated is a variable, because we are lazy: since so far

there is no more constraint on what s should be precisely, it is

pointless to explore options—the intruder can always generate

something. This is a key to the typing result later. In following

reduction steps, this variable may be replaced with a more

concrete term, and then we explore how that term can be

generated. Finally, the rule also forbids that the term t that

we unify with s is a variable (and this is again crucial in

the typing result), but that this restriction is without loss of

generality is a tricky part of the completeness proof.

Note that in contrast to many other lazy intruder methods,

these rules are only applicable to the first term of the form

Send t where t is not a variable, i.e., all prior Send steps

must be simple already. This restriction is without loss of

4This relation φ � ψ is sometimes written

ψ

φ, i.e, in the form of a proof
calculus for satisfiability. One can read each such rule top down: every solution
of ψ is also a solution of φ. The procedure, however, works by backwards
exploring the rules: the solutions of φ include all solutions of ψ.

generality again as our proofs show; since this removes some

non-determinism, it also makes some arguments later easier,

because we can rely on the prefix to be simple.

Example 4: Let us reduce the constraint from Example 2

(with [] as initial substitution). With one � step (address-

ing the first Send) we can get (using (ComposeLI)) to:

. . . Send pub(x).Send y.Receive y.Send secret.0.
Since we cannot unify the pub(x) with anything, we

then are forced to make another compose, leading to:

. . . Send x.Send y.Receive y.Send secret.0 The remaining

non-simple Send secret cannot be solved (if secret ∈ Cpriv),

i.e. it has no successor under�. Since it is not simple, it does

not have any solution by completeness of the lazy intruder (the

actual completeness theorem will be introduced later).

From the original constraint we can however also reach

another constraint when using (UnifyLI) between the received

encrypted message and the one to be sent, giving the unifier

δ = [x 	→ ka, y 	→ secret]: . . . Receive secret.Send secret.0
which can trivially be solved with another unify step.

Our formalization can be extended with equality constraints

si
.
= ti as well. To solve such constraints we can simply com-

pute the mgus θi of all equality constraints s1
.
= t1, · · · , sn .

=
tn associated with an intruder strand A and then solve the

constraint (θ A, θ) where θ = θ1 · . . . · θn. The resulting

constraint is well-formed as well since θ is a well-formed

substitution by Lemma 1 and hence the set of variables of

θ A and the domain of θ would be disjoint. Negative equality

constraints ¬∃x̄. si .
= ti can be handled separately from the

lazy intruder, similar to how they are handled in other works

like [1].

E. Proving Soundness & Completeness

A great part of the contribution of this paper lies in the

Isabelle proof of the soundness and completeness of lazy

intruder reduction. This is following basically the proofs in [1]

and we do not repeat here any proof sketches. In fact, with

analysis (that we out-source to the transition system) we found

several mistakes in [1]; these are discussed on the transition

system level in Section VI-B, along with a correction.

We first prove that all reductions preserve well-formedness

of the constraints:

Lemma 2 (Well-formedness preservation): If (A1, θ1) is

well-formed and (A1, θ1)�∗ (A2, θ2) then (A2, θ2) is well-

formed.

From the well-formedness we can quite easily derive sound-

ness, i.e., that no reduction step introduces new solutions:

Theorem 1 (Soundness): If (A, θ) is well-formed, (A, θ)�∗
(A′, θ′), and I |=c (A′, θ′), then I |=c (A, θ).
The proof of completeness relies on the termination which we

thus prove first.

Lemma 3 (Termination): For a constraint (A, θ), the set of

reachable constraints {(A′, θ′) | (A, θ)�∗ (A′, θ′)} is finite.

The next step is that all simple constraints are satisfiable:

Lemma 4 (Simple constraints are satisfiable): If (A, θ) is

well-formed andA is simple, then there exists an interpretation

I such that I |=c (A, θ).

459457

The most difficult lemma to prove is that given a non-simple

but satisfiable constraint, then for every solution I of that

constraint exists a reduction � that preserves I.

Lemma 5 (Completeness, single step): If (A, θ) is well-

formed, I |=c (A, θ), and A is not simple, then there exists

(A′, θ′) such that (A, θ)� (A′, θ′) and I |=c (A′, θ′).
From this, we obtain the completeness: a well-formed

constraint is either simple (and thus satisfiable), or we can

make further reductions (and no solution gets lost), or else we

are stuck at an irreducible constraint (that is thus unsatisfiable).

Together with termination we thus have:

Theorem 2 (Completeness): If (A, θ) is well-formed and

I |=c (A, θ) then there exists a (A′, θ′) such that A′ is simple,

(A, θ)�∗ (A′, θ′), and I |=c (A′, θ′).
V. TYPED MODEL

So far our model of the intruder is untyped. We now define

a simple type system and consider the restriction of the model

where the intruder is limited to well-typed messages. The

main result of this section is the formalization of a typing

result on intruder constraints for a large class of protocols: if a

constraint (A, θ) has a solution I, then it also has a well-typed

solution I ′. Thus, if we can verify a protocol in a typed model

(all constraints that arise only have well-typed solutions) then

we can infer that it is also secure in the untyped model. In

this section we first develop the typing result on the level

of constraints (without analysis) and then extend it to entire

protocols and transition systems in Section VI.

A. The Type System

Recall that our notion of terms is parameterized over a

set Σ of function symbols, so one can easily introduce new

operators without updating all the proofs. Similarly, for the

type system we introduce another set over which our result is

parameterized: a finite set Ta of atomic types. An example is

Ta = {Agent,Nonce, SymmetricKey,PrivateKey}. (Note that

public keys do not have an atomic type, because we build them

using operator pub from private keys.) Next, we introduce

composed types as built like terms from Ta and the operators

of Σ, for instance crypt(pub(PrivateKey),Nonce) could be a

composed type. As types are thus very similar to normal terms,

we re-use the definition for terms:

type-synonym (Σ,Ta) term-type ≡ (Σ,Ta) term

Thus, we put atomic types in every place where normal terms

would have variables. (Note that our type system has no type

variables, atomic types are like constants.) To avoid confusion

and make definitions nicer to read, we introduce two synonyms

for the constructors Var and Fun of terms, namely TAtom

and TComp, and consistently use them when talking about

types. We inherit all previous notions from terms, e.g., well-

formedness for types (all operators are used with correct arity).

However, we additionally require that no constants occur

in types. Further, our result is parameterized over a typing
function Γ : (Σ,V) term ⇒ (Σ,Ta) term-type that maps each

term to a type and that must satisfy the following properties:

1) Γ(c) ∈ Ta for every c ∈ C.

2) Γ(f(t1, . . . , tn)) = f(Γ(t1), . . . ,Γ(tn)) for every f ∈
Σ \ C.

3) Γ(v) must be a well-formed type for every v ∈ V .

In fact, it is thus sufficient to specify Γ for all constants

(as atomic types) and all variables (as arbitrary well-formed

types), and then homomorphically extend Γ to arbitrary terms.

Thus, every well-formed term t has a well-formed type Γ(t).
Finally, we want to give the intruder an unbounded sup-

ply of terms of every type, thus we require that Cpub
contains infinitely many constants of every atomic type:∧
a. infinite {c. Γ (Fun c []) = TAtom a ∧ public c}
An important point why this type system is of foundational

interest is that it limits the size of terms that can be substituted

for a variable, e.g., when the protocol requires a value to be of

type nonce, it cannot be a composed term in the typed model

anymore. Abstract interpretation approaches like the one used

in ProVerif (where Σ is finite) become decidable under this

restriction, and several Isabelle proof methodologies are based

on a typed model [21], [22], [5], [4], [8]. This restriction on

substitutions—that they preserve typing—is captured by the

following definition:

Definition 6 (Well-typed substitutions): A substitution δ is

well-typed iff Γ(δ x) = Γ(x) for all x ∈ V .

The requirement that we need for our typing result is that

the messages and sub-messages of a protocol must have a

different shape whenever they have different types. For that

reason we specify the set of sub-message patterns given the

set of messages M . In the next section we will use as M
the set of all messages of the protocol description (containing

variables, hence message patterns).
Definition 7 (Sub-message patterns): The sub-message pat-

terns SMP(M) for a set of messages M is defined as the least

set satisfying the following rules:

1) M ⊆ SMP(M).
2) If t ∈ SMP(M) and t′ � t then t′ ∈ SMP(M).
3) If t ∈ SMP(M) and δ is a well-typed substitution then

δ t ∈ SMP(M).

The intuition behind this definition is that during constraint

reduction we can get to subterms of the initially given terms

and apply substitutions. We will show that for the considered

class of protocols these substitutions will always be well-

typed, so we never fall out of SMP(M).
We can now define the main requirement for our typing

result, as a property of the set SMP(M):
Definition 8 (Type-flaw resistance): We say a set M of mes-

sages is type-flaw resistant iff ∀s, t ∈ SMP(M)\V. (∃δ. δ s =
δ t) −→ Γ(s) = Γ(t). We may also apply the notion of type-

flaw resistance directly to an intruder strand A to mean that

the set of all t for which Send t or Receive t occurs in A is

type-flaw resistant.

The notion of type-flaw resistance requires that we cannot

unify any subterms (except variables) that have different types,

i.e., terms that have different meaning must be clearly distin-

guishable. This is a bit more general than results that are based

460458

on adding tags to messages to make them distinguishable,

like [13], [7] since we do not impose a particular mechanism

to disambiguate messages, such as tags, but rather have a very

general definition: to prove type-flaw resistance you just have

to ensure that terms of different types are not unifiable (hence

distinguishable). We illustrate this with a real-world example,

also formalized in Isabelle, by proving type-flaw resistance of

TLS.

B. TLS Example

As a real-world example, let us consider the messages

of the TLS Handshake protocol [10]. TLS defines several

concrete message structuring formats, e.g., the first message

of the TLS handshake is called clientHello, and contains

essentially five distinct pieces of information (such as a time

stamp and a random number); the concrete message format

includes also length information and a tag (to distinguish

the clientHello from other messages). We represent in

our term algebra by an abstract function of five arguments

clientHello(T,R, S, C,K) and define it as a transparent

function in Ana, i.e., the intruder can extract all fields from

a known message of this format (without knowing any keys).

All other formats of TLS are modeled the same way. The

entire TLS handshake protocol can then be represented by the

following set of message patterns M :

clientHello(T1, RA, S,Cipher ,Comp),
serverHello(T2, RB , S,Cipher ,Comp),
serverCert(sign(Pr ca, x509(B,PB))),
clientKeyExchange(crypt(PB , pmsForm(PMS))),
finished(prf(clientFinished(
prf(master(PMS , RA, RB)), RA, RB , hash(HSMsgs))))

Here crypt is again asymmetric encryption, sign is signa-

ture, and master, prf and hash are one-way functions for

hashing, key derivation, and MAC’ing; all other functions are

formats. Most variables are of atomic type except for PB

being of type pub(PrivateKey) and HSMsgs which represents

the concatenation of all handshake messages, i.e., its type is

concat(clientHello(. . .), . . . , finished(. . .)) for yet an-

other format concat.

One may wonder at this point how this finite set M is

sufficient to represent the protocol with an unbounded number

of sessions. In fact, we will define below a protocol by an

unbounded number of strands for the honest agents (essentially

the initial state of a transition system). In fact, the sent

and received messages of these strands shall be well-typed
instances of M : we rename variables so that strands use

pairwise disjoint sets of variables, but this renaming is well-

typed, and we may instantiate some variables with ground

terms, e.g., in all client strands the variable PMS shall be

instantiated with a unique constant of the according type.

Collecting all messages from these strands we thus obtain

an infinite set M ′, however, SMP(M) ⊇ SMP(M ′) since

M ′ contains only well-typed instances of M , and thus if M
is type-flaw resistant, so is M ′. More generally, for checking

that a protocol is type-flaw resistant, it is sufficient to consider

any set M that subsumes all messages of the protocols’ honest

agent strands as well-typed instances.

It is not too difficult to show that M for TLS is type-flaw

resistant: every operator except prf is applied to arguments

of the same type throughout SMP(M); for prf the argument

is either of the form clientFinished(·) or master(·) (but

never a variable, because prf is always applied to non-variable

arguments in M and it does not occur in the type of any term

in M). Due to the free algebra, it follows almost immediately

that two unifiable elements of SMP(M) \ V have the same

type. While we have conducted the proof manually in Isabelle,

we believe it is possible to automate such proofs as a general

proof strategy.

C. Constraint-level Typing Result & Formalization in Isabelle

For our typing result on the constraint-level we first prove

that well-typedness and type-flaw resistance are invariants of

the constraint reduction:

Lemma 6 (Invariants): If (A, θ) is well-formed, A is type-

flaw resistant, θ is well-typed, and (A, θ) �∗ (A′, θ′), then

A′ is type-flaw resistant and θ′ is well-typed.

Recall that by Lemma 4, every simple constraint has an

interpretation; we now show that it even has a well-typed

interpretation. This is because the intruder can generate terms

of any type (as he knows constants of any type and can

compose with public functions).

Lemma 7 (Simple intruder strands are well-typed satisfi-
able): If (A, θ) is well-formed, A is simple, and θ is well-

typed, then there exists a well-typed interpretation Iτ such

that Iτ |=c (A, θ).
In fact, the proof is constructive, using this interpretation:

Isimple ≡ λ v. ε t.Γ(v) = Γ(t) ∧ ∅ �c t
where ε is the Hilbert operator, i.e. ε t. φ yields a value t
such that φ holds, and ∅ �c t means that the intruder can

generate t without any prior knowledge except for the public

constants. Since all intruder deduction constraints are on the

form M �c x all variables of the same type can safely be

interpreted as the same public, ground term.5

From this we get the typing result on the constraint level:

Theorem 3 (Existence of well-typed attacks, on the
constraint-level): If (A, θ) is well-formed and type-flaw re-

sistant, θ is well-typed, and I |=c (A, θ), then there exists a

well-typed interpretation Iτ such that Iτ |=c (A, θ).
The proof idea is that all terms in the constraints reduction

are elements of SMP(A) and thus any unifier between non-

variable terms must be well-typed.

VI. PROTOCOL TRANSITION SYSTEMS

The previous sections have established the typing result on

the level of constraints and we now lift it to transition systems.

Since we had out-sourced the entire question of analysis, we

also have to take care of it now.

5It is possible to extend this result to include inequalities like x �= y as
in Almousa et al. [1], by simply ensuring that Isimple chooses different terms
for each variable; this is possible since the intruder has an infinite supply of
every atomic type.

461459

A. Definitions

We now represent also the honest agents by strands (reusing

the definition of intruder strands), and we define a protocol to

be a countably infinite set of such honest agent strands:

type-synonym (Σ,V) protocol ≡ (Σ,V) strand set

As is usual we allow the intruder full control of all commu-

nication happening in the protocol: whenever an honest agent

receives a message the intruder must have sent it, and when-

ever an honest agent sends a message the intruder intercepts it.

Hence, for protocol execution, we define a symbolic transition

system in which honest agents can send and receive messages

(that might contain variables, hence symbolic) and where we

record the steps taken during these transitions. A state (S;A)
then consists of a protocol S and an intruder strand A which

represents the steps taken from the intruder’s point of view

and which we will build up during execution of S . Since the

goal of this section is to lift the typing result to the transition

system, where we use the full semantics |=, we interpret the

constraints in states under |= and not |=c as we did in previous

sections. For the initial state the intruder strand is empty, that

is (S0; 0) where S0 denotes the initial protocol and where the

empty intruder strand 0 will be filled during transitions.

Definition 9 (Protocol transition system):

TS1 : (S;A)⇒• (S \ {0};A) if 0 ∈ S
TS2 : (S;A)⇒• ({S} ∪ (S \ {Send t.S});A.Receive t)

if Send t.S ∈ S
TS3 : (S;A)⇒• ({S} ∪ (S \ {Receive t.S});A.Send t)

if Receive t.S ∈ S
The first rule simply removes empty strands, i.e., honest

agents that have finished execution. The second rule allows

honest agents to send messages, in which case the intruder

intercepts and receives this message. Hence we extend the

intruder knowledge (by adding a Receive step to the intruder

strand) at that point with the message that is sent. The third

and final rule allows an honest agent to receive a message,

and in this case we require that the intruder must generate this

message. Thus we extend the intruder strand with an additional

derivation requirement by adding a Send step. As usual we

write ⇒•∗ for the reflexive transitive closure.

Note that we require intruder strands to be well-formed,

including those emerging from an execution of a protocol. For

this reason, we impose a requirement on the variables in all

honest-agent strands of the protocols we consider that is dual

to the requirement for intruder strands: while in the intruder

strands all variables must originate in a Send step, we require

that in an honest agent strand they are all originating in a

Receive step. Formally, we define the dual of a strand S as

“swapping” the direction of the steps of S:

dualst 0 = 0
dualst (Send t.S) = Receive t.(dualst S)

dualst (Receive t.S) = Send t.(dualst S)

Then we define protocol well-formedness using Definition 2:

Definition 10: A protocol S is well-formed iff wfsts S where

wfsts S ≡ ∀S ∈ S. wfst ∅ (dualst S)

It is now immediate that all intruder strands of reachable states

are well-formed if the initial protocol is well-formed.

B. Problems of the Original Paper

Recall that in our Isabelle formalization of the lazy intruder,

we have decided to “out-source” the analysis step from the

intruder to the transition system. Therefore, we need to now

show that the transition system from the previous section

(that assumes the full intruder in its semantics) is equivalent

to a transition system where the intruder is restricted to

composition steps (i.e., �c) and that has special transition

steps for analysis—and make that work with the typing result.

Upon trying to prove these results in Isabelle we discovered

several problems in the result of Almousa et al. [1]. In fact,

that paper handles analysis as part of the lazy intruder, but

the problems appear in similar form. In fact, discovering and

provably fixing all such mistakes is indeed the main goal of

the Isabelle formalization. We discuss first the errors and ways

to fix them, and then how other typing results are doing on

these issues.

The lazy intruder analysis rule of [1] would in our notation

look like this:

(DecomposeLI) (A.A′, θ)� (A.Send K.Receive T.A′, θ)
if s ∈ ikst A, Ana s = (K,T), T � ikst A

Here we use Send K and Receive T for sets K and T
of messages as obvious abbreviation for sequences of send

and receive steps. The rule means, at any point in an intruder

strand, the intruder can attempt the analysis of a term s that he

learned before that point, and this attempt would mean that he

has to generate (“Send”) the key terms K and would obtain

(“Receive”) the resulting messages T . (In fact, our handling

of analysis as part of the transition system adds analysis steps

that similarly produce such sending and receiving steps in the

intruder strand.)

Like [1], we make the following requirement on the Ana

function that all key and result terms are subterms of the term

being analyzed:

Ana1 : Ana t = (K,T) =⇒ K ∪ T ⊂ subterms t

This is necessary for termination, since without such a re-

striction to subterms one could encode undecidable problems

into analysis. This is however not enough as our first counter-

example to correctness of [1] shows:

Example 5: Suppose for two public unary operators f and

g we define: Ana f(g(x)) = (∅, {x}). Then the constraint

Receive g(c).Send c has a solution since {g(c)} � c. This

solution would however be missed by (DecomposeLI), thus

the lazy intruder of [1] is incomplete.

The same problem does not occur in other typing results,

or works with lazy intruder constraints [2], [9] because they

consider a fixed set of operators where none has a destructor-

like behavior upon analysis. A property of analysis that all

462460

these approaches use is that the intruder does not learn

anything new from analyzing terms that he composed himself,

e.g., encrypting a term and then decrypting it will not reveal

new information, and without loss of generality we thus can

exclude intruder-composed terms from analysis. Also [1] uses

this argument, but as example 5 shows, this is not true for

all intruder theories they allow. We thus make an additional

restriction on Ana, namely that analysis can only yield direct
subterms:

Ana2 : Ana f(t1, . . . , tn) = (K,T) =⇒ T ⊆ {t1, . . . , tn}
Example 6: Let now f be a binary operator with the

following Ana rule:

Ana f(s, t) = (∅, {t}) if s ∈ V
This is hardly a reasonable analysis rule since it gives results

only for symbolic terms, but not for ground terms. The

constraint Send x.Receive f(x, c).Send c has no solution

since there is no interpretation I with I {f(x, c)} � c.
However, constraint reduction with rule (DecomposeLI) yields

a simple (and thus satisfiable constraint), and we thus also have

a counter-example for soundness of [1].

To correct this, we add the following requirement:

Ana3 : Ana t = (K,T) �= (∅, ∅) =⇒ Ana (δ t) = (δ K, δ T)
for any substitution δ

Thus, when applying Ana on any analyzable term t, then any

instance δ t must allow for the same analysis under δ.

Example 7: Consider again our standard Ana (which sat-

isfies all three requirements). For the full intruder model

� (that is not restricted to composition only) the lazy in-

truder with (DecomposeLI) is not complete: The constraint

Send x.Receive crypt(x, c).Send c has the solution I =
[x 	→ pub(c′)] for some constant c′. However, this solution

is not found by the lazy intruder (with the above analysis

rule) because Ana crypt(x, c) = (∅, ∅). The problem is that

the case Ana crypt(pub(k),m) does not match the term we

need to analyze, since it has the variable x in the key position.

One may wonder if the authors of [1] actually meant to

apply this rule under unification with a term in the intruder

knowledge, however that would require to apply the unifier

(in the example [x 	→ pub(x′)] for a new x′) to the rest of

the constraint—while all other rules of [1] explicitly denote

such unifiers; moreover this reading of the rule would lead to

non-termination.

In the other typing results [2], [9], this problem does not occur

because they fix the public-key infrastructure, i.e., they cannot

model that an honest agent receives an arbitrary public key

x in a message and use it for encrypting a message, i.e.,

crypt(x,m). When fixing the public key infrastructure, all

keys used for public key encryption are of the form pub(·) (in

our notation) and then the mentioned problem does not occur.

However, we do not want to impose this strong restriction to a

fixed public key infrastructure and rather allow for protocols

that can also exchange public keys. A milder restriction is

that all terms used as a first argument of crypt must have the

form pub(·), for instance the strand of an honest agent could

be: Receive pub(x).Send crypt(pub(x), c). The restriction

here is that this agent only accepts a public key as input, i.e.,

restricting this bit to a typed model by assumption. There are

several ways to justify this restriction, e.g., it is common in

protocols where a new public key t can be introduced that

the creator has to sign any message with the corresponding

private key, proving that t = pub(s) for some private key s
(and without the recipient learning s). Also, when receiving

a public key as part of a certificate from a trusted authority,

one may rely that the authority has required this kind of proof

from the owner of the public key, and thus it is justifiable to

model the certified key to have the form pub(·).6
While the pub-requirement solves the problem for the

concrete example crypt, we need a general requirement for

arbitrary operators. The example shows that this cannot be a

property of Ana alone, but relates to the use of the operators

in the protocol:

Definition 11 (Analysis-invariance): A protocol S0 is

analysis-invariant iff

∀t ∈ (subterms M) \ V. ∀K,T, δ.
Ana t = (K,T) −→ Ana (δ t) = (δ K, δ T)

where M is the set of sent messages occurring in S0.

Thus we require that any subterm t of the protocol, ex-

cept variables, can be analyzed if some instance δ t can

be analyzed. This excludes a term like crypt(x, t) since it

cannot be analyzed while the instance crypt(pub(c), t) can. In

general, this restriction affects only those operators f where

the analysis rule has the form Ana f(t1, . . . , tn) where some

ti is not a pattern variable; then the protocol cannot use a

variable for that argument.

These restrictions are sufficient to conclude the typing result

on the transition system level, as described next, and they still

support strictly more protocols than the previous typing results

(except the flawed [1]).

C. Handling Analysis

As an intermediate step towards the result, we now define

a second transition system ⇒•
c similar to ⇒•, but where

the intruder does not handle analysis himself (interpreting

constraints under |=c instead of the full |= as in ⇒•) and

where we have special transitions for analysis. An easy way

to handle this would be to simply define a set of hon-

est agents that behave like the analysis functionality, e.g.,

Receive crypt(pub(x), y).Receive x.Send y. In fact, this

works fine (and does not even need the requirement of analysis

invariance we introduced before) as far as the equivalence to

the standard transition system ⇒• is concerned. However this

does not directly work with the typing result: the notion of

type-flaw resistance would have to be satisfied on the set of

all honest agent strands, including the ones for analysis. This

6Many approaches have other models of the relation between public and
private keys, e.g., mappings on constants that are not part of Σ, or a private
function from public to private keys. All these seem to have trouble with
either the lazy intruder or the typing result.

463461

would be violated for many reasonable protocols (that have no

type-flaw problems). Luckily, there is a (more complicated)

solution that requires no further restriction on protocols.

The idea is that the intruder is allowed to attempt analysis

for every non-variable subterm of a term in his knowledge.

(Note that includes subterms he may be unable to derive, but

as part of the analysis step he has to prove he can produce

them, so this is sound.) Thus, the ⇒•
c is defined like ⇒• plus

the following additional rule:

TSc4 : (S;A)⇒•
c (S;A.Send t.Send k1. · · · .Send km.

Receive s1. · · · .Receive sn)
where t ∈ (subterms (ikst A)) \ V
and Ana t = ({k1, . . . , km}, {s1, . . . , sn})

Example 8: Consider the protocol S0 = {S1,S2,S3} where

S1 = Send ka.Send scrypt(kb, crypt(pub(ka), secret))
S2 = Receive scrypt(kb, x).Send x
S3 = Receive secret

Here, the strand S3 represents a strand to check a secrecy

goal, i.e., we want to check that we cannot reach a state

where S3 has executed and the intruder constraint is satis-

fiable. Consider the execution of the steps of S1 and S2, i.e.,

(S0; 0) ⇒•
c
∗ ({S3};A) where

A = Receive ka.Receive scrypt(kb, crypt(pub(ka), secret))
Send scrypt(kb, x).Receive x

For the intruder to obtain the secret, we can now make

an analysis step with rule (TSc
4) for the term t =

crypt(pub(ka), secret), yielding the state ({S3};A.D) with

D = Send crypt(pub(ka), secret).Send ka.Receive secret

and then execute S3, yielding state (∅;A.D.A′) with A′ =
Send secret. This constraint A.D.A′ is satisfiable in |=c.

In the standard transition system the corresponding state

would just omit the analysis step, i.e., (S0; 0) ⇒•∗ (∅;A.A′).
This constraint A.A′ is satisfiable for the full intruder |=.

More generally, we prove in Isabelle that the two transition

systems are equivalent. In particular, for every reachable state

(S;A) of ⇒• and every solution I |= A, an equivalent state

(S;A′) of⇒•
c is reachable where A′ is like A augmented with

analysis steps, and I |=c A′. From the initial state (S0; 0) this

can be stated as follows:

Lemma 8 (Equivalence of transition systems, part 1):
If protocol S0 is well-formed and analysis-invariant,

(S0; 0) ⇒•∗ (S;A1. · · · .An), and I |= A1. · · · .An where

each Ai emerged from exactly one application of (TS1),
(TS2), or (TS3), then there exists D1, . . . ,Dn−1 such that

(S0; 0) ⇒•
c
∗ (S;A1.D1. · · · .An−1.Dn−1.An) and I |=c

A1.D1. · · · .An−1.Dn−1An and where each Di emerged from

zero or more applications of (TSc4).
The most complicated aspect of the proof is to show that, if

I (ikst A) � I t for some intruder strand A with model I
and some term t, then there exists some sequence of (TSc

4)
steps D such that I (ikst (A.D)) �c I t and where I is

also a model of A.D. This proof proceeds by an induction on

the derivation of I t. Not surprisingly, this case bears many

similarities to completeness proofs of lazy intruder constraint

reduction systems like [1], [9] where the intruder can analyze

terms. The most complicated case—both in our proof and

the proofs of completeness—is where the last step of the

derivation is an application of the (Decompose) rule, i.e.,

where I t is derived by analyzing another ground term t′. In

the completeness proofs we would in this case have to inspect

the derivation tree for t′, eliminate redundant parts (namely,

analysis of intruder-composed terms), and, in the case where

the last step in the derivation is yet another application of

(Decompose), regress to a point in the derivation tree for

t′ where no (Decompose) has occurred yet. In our setting,

because we have a clear separation between term analysis

and composition (because of the out-sourcing analysis and by

considering the sub-relation �c of �), we immediately get from

the induction hypothesis that there exists some D′ (where I is

still a model of A.D′) such that I (ikst (A.D′)) �c t′. Hence

we essentially perform the regression by simply applying the

induction hypothesis instead of inspecting and transforming

derivation trees, making the proof slightly easier.

The other direction of the equivalence is more straightfor-

ward and does not require any assumptions on the protocol.

It follows easily by an induction on reachability:

Lemma 9 (Equivalence of transition systems, part
2): If (S0; 0) ⇒•

c
∗ (S;A1.D1. · · · .An.Dn) and I |=c

A1.D1. · · · .An.Dn where each Ai emerged from exactly

one application of (TS1), (TS2), or (TS3), and where each

Di emerged from zero or more applications of (TSc4), then

(S0; 0) ⇒•∗ (S;A1. · · · .An) where I |= A1. · · · .An.

D. Lifting the Typing Result

With this equivalence between the transition systems

proven, we can now lift the typing result of Theorem 3

to constraints reachable in ⇒• where these constraints are

interpreted under the full intruder |= instead of |=c. First

we define that an entire protocol S0 (a set of strands for

honest agents) is type-flaw resistant if the set M of all sent

and received messages of S0 is type-flaw resistant. It is now

immediate that all intruder strands reachable from (S0; 0) in

both transition systems we defined (including analysis steps)

are also type-flaw resistant, because the set of sub-message

patterns are closed under subterms.

We can now first apply Lemma 8 to any satisfiable reachable

state (S;A1. · · · .An) in ⇒• to obtain an equivalent state

(S;A1.D1. · · · .An.Dn) with the same solution reachable in

our intermediate transition system ⇒•
c . Then we can lift the

typing result from the constraint level to ⇒•
c , since here

constraints are interpreted in |=c, i.e., solving the constraints

does not require analysis steps and thus our constraint-level

typing result Theorem 3 applies. Then, by the equivalence

to ⇒• with the full intruder model |=, i.e. Lemma 9, we

obtain our main result that every reachable state of a type-

flaw resistant and analysis-invariant protocol has a solution iff

it has a well-typed one:

464462

Theorem 4 (Existence of well-typed attack, on transition
system level): If protocol S0 is well-formed, type-flaw resistant

and analysis-invariant, (S0; 0) ⇒•∗ (S;A), and I |= A, then

there exists a well-typed interpretation Iτ such that Iτ |= A.

VII. CONCLUSION

We have established a typing result in Isabelle: Given an

Isabelle proof of security of a protocol where the intruder is

limited to well-typed messages (e.g., like proofs in the works

of [21] and [4]), then the typing result allows us to lift this

proof to an intruder model without the restriction to well-typed

messages. As an example, we have proved that the type-flaw

resistance requirement of our result is indeed satisfied by the

TLS protocol.

The particular value of this is the high reliability of proofs

checked with Isabelle, in contrast to pen-and-paper proofs in

partially natural language. This is illustrated by several errors

we discovered in the pen-and-paper proofs of Almousa et

al. [1]. Strictly speaking, their result does not hold without

further restrictions on the supported operators and protocols.

The complexity of such results (as well as verification tools)

makes such mistakes likely and this bears the risk of accepting

false security proofs. The Isabelle proof of the typing result

under some additional restrictions is thus also a step towards

“cleaning up”.

In other typing results, namely Cortier and Delaune [9] and

Arapinis and Duflot [2], the problems of [1] do not arise, since

they have fixed public key infrastructures (and fixed sets of

supported operators). Our restrictions in contrast do allow also

protocols where public keys are exchanged, though one must

ensure or assume that the received terms are indeed public

keys, but this is often in our opinion a realistic restriction.

At the core of our result, is the formalization of the lazy

intruder and its correctness. This, as well as the proving of the

typing result, gives insights for modeling and proving proto-

cols in general: Since Isabelle forces one to be precise about

every single detail, one is compelled to abstract, generalize,

and simplify as far as possible, to reduce the formalization

to the absolute essence. We have simplified the constraint

representation and shown how to “out-source” the analysis

steps of the intruder to steps in the protocol transition system.

We believe that such insights are helpful beyond the result

itself.

The typing results can also used as a stepping stone for

compositional reasoning, e.g., [9], [1] prove that two protocols

that are secure in isolation can also run securely on the same

communication medium in parallel, if their messages do not

interfere with each other, a requirement closely related to the

typing result. We plan to formalize such a result in Isabelle as

future work.

Acknowledgments: This work was supported by the

Sapere-Aude project “Composec: Secure Composition of Dis-

tributed Systems”, grant 4184-00334B of the Danish Council

for Independent Research. We thank Luca Viganò, Achim

Brucker, and Anders Schlichtkrull for helpful comments and

discussions.

REFERENCES

[1] O. Almousa, S. Mödersheim, P. Modesti, and L. Viganò. Typing
and compositionality for security protocols: A generalization to the
geometric fragment. In ESORICS 2015, pages 209–229, 2015. Extended
version available at http://www.imm.dtu.dk/~samo/.

[2] M. Arapinis and M. Duflot. Bounding messages for free in security
protocols - extension to various security properties. Inf. Comput.,
239:182–215, 2014.

[3] D. A. Basin, S. Mödersheim, and L. Viganò. OFMC: A symbolic model
checker for security protocols. Int. J. Inf. Sec., 4(3):181–208, 2005.

[4] G. Bella. Formal Correctness of Security Protocols - With 62 Figures
and 4 Tables. Information Security and Cryptography. Springer, 2007.

[5] G. Bella, F. Massacci, and L. C. Paulson. Verifying the SET purchase
protocols. J. Autom. Reasoning, 36(1-2):5–37, 2006.

[6] B. Blanchet. An efficient cryptographic protocol verifier based on Prolog
rules. In CSFW 2001, pages 82–96, 2001.

[7] B. Blanchet and A. Podelski. Verification of cryptographic protocols:
tagging enforces termination. Theor. Comput. Sci., 333(1-2):67–90,
2005.

[8] A. D. Brucker and S. Mödersheim. Integrating automated and interactive
protocol verification. In FAST 2009, pages 248–262, 2009.

[9] V. Cortier and S. Delaune. Safely composing security protocols. Formal
Methods in System Design, 34(1):1–36, 2009.

[10] T. Dierks and E. Rescorla. RFC 5246: The Transport Layer Security
(TLS) Protocol, Version 1.2, 2008. Available: http://tools.ietf.org/rfc/
rfc5246.txt.

[11] G. Gonthier and M. Norrish, editors. Certified Programs and Proofs -
Third International Conference, CPP 2013, Melbourne, VIC, Australia,
December 11-13, 2013, Proceedings, volume 8307 of Lecture Notes in
Computer Science. Springer, 2013.

[12] J. Goubault-Larrecq. Towards producing formally checkable security
proofs, automatically. In Computer Security Foundations Symposium,
2008.

[13] J. Heather, G. Lowe, and S. Schneider. How to prevent type flaw attacks
on security protocols. Journal of Computer Security, 11(2):217–244,
2003.

[14] B. Huffman and O. Kuncar. Lifting and transfer: A modular design for
quotients in Isabelle/HOL. In Gonthier and Norrish [11], pages 131–146.

[15] R. Küsters and T. Truderung. Using ProVerif to analyze protocols with
Diffie-Hellman exponentiation. In CSF, pages 157–171. IEEE, 2009.

[16] S. Meier, C. Cremers, and D. A. Basin. Efficient construction of
machine-checked symbolic protocol security proofs. Journal of Com-
puter Security, 21(1):41–87, 2013.

[17] J. K. Millen and V. Shmatikov. Constraint solving for bounded-
process cryptographic protocol analysis. In CCS 2001, Proceedings of
the 8th ACM Conference on Computer and Communications Security,
Philadelphia, Pennsylvania, USA, November 6-8, 2001., pages 166–175,
2001.

[18] S. Mödersheim. Diffie-Hellman without difficulty. In FAST, pages 214–
229, 2011.

[19] S. Mödersheim. Deciding security for a fragment of ASLan. In
ESORICS, pages 127–144. Springer, 2012.

[20] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof
Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer, 2002.

[21] L. C. Paulson. The inductive approach to verifying cryptographic
protocols. Journal of Computer Security, 6(1-2):85–128, 1998.

[22] L. C. Paulson. Inductive analysis of the Internet protocol TLS. ACM
Trans. Inf. Syst. Secur., 2(3):332–351, 1999.

[23] M. Rusinowitch and M. Turuani. Protocol insecurity with a finite number
of sessions and composed keys is NP-complete. Theor. Comput. Sci.,
299, 2003.

[24] A. Schropp and A. Popescu. Nonfree datatypes in Isabelle/HOL -
animating a many-sorted metatheory. In Gonthier and Norrish [11],
pages 114–130.

[25] F. J. Thayer, J. C. Herzog, and J. D. Guttman. Strand spaces: Proving
security protocols correct. Journal of Computer Security, 7(1):191–230,
1999.

[26] R. Thiemann and C. Sternagel. Certification of termination proofs using
CeTA. In S. Berghofer, T. Nipkow, C. Urban, and M. Wenzel, editors,
TPHOLs 2009, volume 5674 of Lecture Notes in Computer Science,
pages 452–468. Springer, 2009.

465463

