
Proving Flow Security of Sequential Logic via
Automatically-Synthesized Relational Invariants

Hyoukjun Kwon, William Harris, Hadi Esmaeilzadeh
Georgia Institute of Technology

hyoukjun@gatech.edu, {wharris, hadi}@cc.gatech.edu

Abstract—Due to the proliferation of reprogrammable hard-
ware, core designs built from modules drawn from a variety
of sources execute with direct access to critical system resources.
Expressing guarantees that such modules satisfy, in particular the
dynamic conditions under which they release information about
their unbounded streams of inputs, and automatically proving
that they satisfy such guarantees, is an open and critical problem.

To address these challenges, we propose a domain-specific
language, named STREAMS, for expressing information-flow poli-
cies with declassification over unbounded input streams. We also
introduce a novel algorithm, named SIMAREL, that given a core
design C and STREAMS policy P , automatically proves or falsifies
that C satisfies P . The key technical insight behind the design
of SIMAREL is a novel algorithm for efficiently synthesizing
relational invariants over pairs of circuit executions.

We expressed expected behavior of cores designed indepen-
dently for research and production as STREAMS policies and
used SIMAREL to check if each core satisfies its policy. SIMAREL
proved that half of the cores satisfied expected behavior, but
found unexpected information leaks in six open-source designs:
an Ethernet controller, a flash memory controller, an SD-card
storage manager, a robotics controller, a digital-signal processing
(DSP) module, and a debugging interface.

I. INTRODUCTION

As the demand for computation increases [22], the gains from

general-purpose processors continue to diminish [21, 25, 63].

To address this challenge, research in both academia and

industry has begun to focus on developing programmable
accelerators [12, 13, 37, 42, 51, 52]. Among programmable

accelerators, Field-Programmable Gate Arrays (FPGAs) pro-

vide large gains in performance and energy efficiency. In

particular, Microsoft has deployed FPGA’s in its data centers

to accelerate its web-search service, Bing [51]. Intel recently

acquired a major FPGA vendor for 16.7 billion USD to

integrate FPGAs in their data-center products and develop new

platforms for Internet of Things (IoT) devices [28]. Commercial

products that integrate general-purpose cores (i.e., circuit design

modules) with FPGAs have already been released by major

chip producers [3, 65] and IoT design platforms based on

FPGA’s are becoming available to crowds of developers [17].

While FPGAs could provide significant benefits for designing

next-generation systems, they present novel security issues that

have not been adequately addressed. In particular, to implement

highly optimized FPGA controllers, a host system typically

provides direct read and write privileges to an FPGA. With

such privileges, an FPGA can access critical system resources

such as memory, the system bus, and even on-chip network

devices without mediation from the operating system. As a

consequence, an FPGA containing a security vulnerability,

perhaps due to aggressive manual optimization, could constitute

a critical target for leaking sensitive information throughout

a host system. Moreover, practical core designs consist of

complex submodules developed independently by multiple

sources. If a single, commonly-used module leaks information

in an unexpected way, it can affect the information-flow security

of all cores designed to use it.

Approaches that track the flow of information dynamically

in hardware [35, 61] are not well-suited for running on repro-

grammable hardware, on which resources are tightly limited.

Approaches that statically analyze if there is any potential

flow of information between data containers like program

variables or wires in a hardware design [24, 43–45] often

cannot be applied to such designs, which are often expected

to release sensitive information under particular conditions.

Hardware description languages that express allowed flows

with declassification [35, 36, 68] require either reimplementing

a target core in a new language or embedding security-related

descriptions in appropriate positions in the source code of

target core.

In this work, we propose a novel automatic approach for

verifying that a given core satisfies desired a information-flow

guarantee. Our approach consists of (1) a domain-specific

language of information-flow policies, named STREAMS, as

external documents expressed purely in terms of the interface

of a given module and (2) a novel automatic verifier, named

SIMAREL, that proves or falsifies that a given sequential core

design satisfies a given STREAMS policy.

The key technical challenge in developing our approach

was to design a verifier that can automatically synthesize a

proof that a core satisfies an information-flow policy with

declassification; such proofs are known to be expressible as

relational invariants [15]. Automatic verifiers for information

flow with declassification that construct the self-composition

of program [7, 59] cannot directly be applied to verify

systems that may read an unbounded stream of inputs over an

execution, such as sequential circuits (see §IV-C). Constructions

of relational invariants as invariants of a product program

conventionally require semi-manual constructions of a product

program as a subset of the Cartesian product of a program

paired with itself [6].

To address this challenge, we developed a novel automatic

verifier for relational properties of sequential cores, named

SIMAREL, based on symbolic model-checking. SIMAREL

2017 IEEE 30th Computer Security Foundations Symposium

© 2017, Hyoukjun Kwon. Under license to IEEE.

DOI 10.1109/CSF.2017.35

422

2017 IEEE 30th Computer Security Foundations Symposium

© 2017, Hyoukjun Kwon. Under license to IEEE.

DOI 10.1109/CSF.2017.35

420

avoids verifying the product construction of a given core by

using a novel procedure that efficiently proves the correctness

of all pairs of core runs up to a bounded length and inspects

the proof to determine if it contains a proof of the correctness

of the core.

To evaluate if STREAMS and SIMAREL can aid the design

of secure cores, we used them to express and attempt to verify

expected information-flow policies of 12 FPGA cores developed

independently for research and production systems. The cores

included both applications that would typically be used to

process sensitive information, and optimized implementations

of control subsystems.

SIMAREL proved that six cores satisfied their policies and

found unexpected information leaks in the other six cores,

including an Ethernet controller and a robotics controller (see

§V). We investigated each core identified be SIMAREL as

insecure and determined that their leaks are caused by subtle

design mistakes made by either the original designer of a

component core or a designer who integrated multiple core

modules. Our results indicate that critical cores often are not

adequately designed to account for the security requirements

of modular designs run on reprogrammable hardware, and that

our approach can significantly aid in the development of secure

cores.

The rest of this paper is organized as follows. §II illustrates

our approach by example. §III reviews previous work on which

our approach is based. §IV describes our approach in detail.

§V presents the results of verifying information-flow security

of a set of cores of critical applications and subsystems. §VI

compares our approach to related work, and §VII concludes.

II. OVERVIEW

In this section, we discuss the attack model under which

we assume that systems execute, and illustrate by example

the problem that we consider and our approach. In §II-A,

we describe an I/O management core of a storage-card

controller, named iomanager, from the open-source repos-

itory opencores.org. In §II-B, we express the information-

flow requirements of iomanager as a policy ModalRecall

in our language STREAMS. In §II-C, we illustrate how our

information-flow verifier SIMAREL automatically verifies that

iomanager satisfies ModalRecall.

A. An I/O manager for external storage

External storage cards are prevalent in smart phones, digital

cameras, and drones equipped with cameras. Even if the storage

card is secure, the interface logic that reads and writes data

to the card can still contain security vulnerabilities. Such a

vulnerability can leak important and personal images from the

card’s host device.

The OpenCores design repository contains an SD card I/O

manager for the host side of a card controller, which we refer

to as iomanager. iomanager takes a target address and data

from another FPGA core and a read or write command. When

iomanager receives a read command, it generates a read control

signal specific to the SD card and relays input data from the

1 module sd_controller_wb (
2 wb_clk_i, wb_set_i, wb_recall_i, wb_arg_ty, wb_data_i // ins:
3);
4 // output port:
5 output reg [31 : 0] wb_data_o;
6 // internal registers:
7 reg [31 : 0] argument_reg;
8 reg [31 : 0] cmd_setting_reg;
9 reg [31 : 0] status_reg;

10 // update registers to store input values
11 always @(posedge wb_clk_i) begin
12 if(wb_set_i)
13 case (wb_arg_ty)
14 ‘argument : argument_reg <= ...wb_data_i...
15 ‘command : cmd_setting_reg <= ...wb_data_i...
16 ‘status_reg : status_reg <= ...wb_data_i...
17 ...
18 endcase
19 end
20 // output values in stored registers
21 always @(posedge wb_clk_i) begin
22 if(wb_recall_i)
23 case (wb_arg_ty)
24 ‘argument : wb_data_o <= argument_reg
25 ‘command : wb_data_o <= cmd_setting_reg
26 ‘status : wb_data_o <= status_reg
27 // further, but non-exhaustive, cases
28 endcase
29 end
30 endmodule

Fig. 1: An I/O management core for SD card controllers, iomanager,
given as a fragment of Verilog code.

card. When iomanager receives a write command, it generates

a write control signal specific to the SD card, along with the

data to be written.

The complete implementation of iomanager consists of nine

Verilog modules with 3,673 lines of Verilog code. Each module

implements a state machine that generates specific control

signals. Some state machines have as many as 10 states.

Because iomanager has direct access to the SD card and has

a complex and stateful implementation, it is a prime target for

security attacks.

Figure 1 contains a simplified excerpt from one of the

submodules of iomanager; the complete implementation of

the submodule alone consists of 310 lines of Verilog. The

submodule takes as input a clock signal wb_clk_i, a sig-

nal to store data wb_set_i, a signal to recall data stored

wb_recall_i, an argument-type field on wb_arg_ty, and a data

value on wire wb_data_i. iomanager outputs a data value on

register wb_data_o (line 5). Internal registers argument_reg,

cmd_setting, and status_reg store the last argument, com-

mand, and status set, respectively (lines 7—9).

When iomanager receives a signal on wb_set_i (lines 12),

it checks the argument type passed in wb_arg_ty (line 13).

Depending on the argument type, iomanager stores a value

computed from wb_data_i in one of its internal registers (line

13—18). When the input wire wb_recall_i is set (line 22),

iomanager checks the argument type passed in (line 23). If

the input type matches some expected constant value, the set

of which do not span the range of all possible values for

wb_arg_ty, then iomanager copies the appropriate value from

an internal register (line 23—28). recall is set when an agent

intends to load the last value that it stored when issuing a

command (lines 23—30).

423421

1: levels public < sensitive
2: default level public
3: wb_data_i has sensitive
4: !recall => public

Fig. 2: An information-flow policy for iomanager, written in
STREAMS, named ModalRecall.

B. A policy for the I/O manager

One of the primary goals of our work is to develop

techniques that specify and verify that a hardware design

releases information-flow securely. We assume that an attacker

can directly observe inputs and outputs of a core design on

particular wires on particular steps of execution, designated

in information-flow policies in our language. In practice, an

attacker can do so by implementing a hardware module that

snoops the output ports of other hardware components and leaks

the information. Designers on FPGA systems typically allow

modules from mutually-untrusting developers to co-habitate

on a single module to minimize design cost.

Our attack model does not require any assumption on the

source of a design itself. In practice, a developer may want

to verify the security of a design reused or shared from a

benevolent but imperfect source. However, in principle, a

developer may also want to verify the security of a design

provided by an untrusted source, which may contain a Hardware

Trojan. Our policies can express expected properties of such

systems as well.

One information-flow policy that iomanager is expected to

satisfy is that it should only reveal the value provided on

its input wires on runs in which recall is set. If iomanager

satisfied such a policy, then it could be used in contexts where

only a particular agent can send the recall signal to review its

history until it relinquishes control and the state of iomanager

is reset. Such a policy, while simple to formulate and referring

to a relatively small component of the complete interface of

iomanager, cannot be enforced by other hardware information-

flow languages without specifying the entire design of the

system in the language [36], due to the fact that it can only be

satisfied by checking a dynamic condition on program inputs.

In general, such policies also rely on maintaining correct state

related to sensitive information.

In this work, we introduce a policy language, STREAMS,

that can express such policies for cores implemented in a

conventional hardware description language. Figure 2 contains

a STREAMS policy for iomanager, named ModalRecall, that

expresses the above requirements for iomanager that were

stated informally. We define the complete syntax and semantics

of STREAMS in §IV-A, but the intuition behind the use

of its constructs in ModalRecall can be understood without

a complete definition. In particular, ModalRecall contains

a definition of two levels of sensitive information, public

and sensitive, with sensitive denoting information that is

strictly more sensitive than public information (line 1). Thus,

information that the core receives over a sensitive input

wire cannot, by default, be revealed on a public output wire.

ModalRecall contains a declaration that each wire that is not

explicitly labeled is public (line 2), and an explicit labeling

of output wire wb_dat_i as sensitive (line 3). However,

ModalRecall also contains a directive specifying that wires

labeled public must reveal public inputs only on steps when

recall is not set (line 4).

C. Checking flow-security of the I/O manager

Unfortunately, iomanager in fact does not satisfy

ModalRecall, and as a result may leak information read

over wire wb_data_i over wire wb_data_o without receiving

an appropriate signal on recall. The cause of the leak in

iomanager is a result of inexhaustive case logic for determining

the values output to wb_data_o (Figure 1, lines 21—26). In

particular, iomanager checks wb_arg_ty against values that

it expects to read, but does not check wb_arg_ty against all

possible values, which could conceivably be provided by an

arbitrary environment. Furthermore, each output register, in

particular wb_data_o, also acts as an implicit storage register.

When Verilog matches a register in a case statement and none

of the provided cases match, then the circuit does not update

any storage registers involved in the case statement. As a

result, if an attacker without the authorization to signal recall

sends a value for wb_arg_ty that does not match any of the

values checked in lines 21—26, then iomanager will provide

the last value that it output, which could potentially have been

computed from information read on wb_data_i.

In this work, we present, along with our policy language

STREAMS, a verification algorithm SIMAREL that takes a core

C and a STREAMS policy F and either proves that C satisfies

F or provides a counterexample that proves that C does not

satisfy F . The key property of STREAMS that enables the

design of SIMAREL is that, by definition of STREAMS (see

§IV-A), a core C satisfies a STREAMS policy F if each pair of

runs of C satisfies a suitable relational property. A significant

consequence of this design choice is that if a given core does

not satisfy a given flow policy F , there is a pair of runs of C
that demonstrate the violation.

In the case of iomanager and ModalRecall, a pair of runs of

iomanager that violates ModalRecall is any pair of runs that

(1) read different values only on register wb_data_i, (2) do

not read in their last step an enabling signal on recall, and

(3) produce different values on output wire wb_data_o.

SIMAREL uses this feature of STREAMS to search for

examples that prove that a policy is violated. In particular,

for iteratively larger step bounds n, SIMAREL constructs a

propositional formula ϕn for which each model defines a pair

of runs of C that violate F and runs a SAT solver on ϕn. If

the solver finds a model, then SIMAREL returns the model as

a counterexample for C and F (see §IV-B5).

Given iomanager and ModalRecall, SIMAREL constructs

a formula that characterizes all pairs of runs of iomanager

of length two and finds a counterexample for iomanager

and ModalRecall as two runs whose values for wb_data_i,

recall, and wb_data_o satisfy each of the above conditions.

In particular, one of the runs takes as input a control signal

that is not explicitly matched in Figure 1 lines 23—28.

424422

The fact that each STREAMS policy defines a property over

all pairs of runs of a core also guides how SIMAREL verifies that

a correct core does satisfy a given flow policy. Let iomanager’

be iomanager as given in Figure 1, but patched to include a

default case for the case statement at lines 23—28 that sets

wb_data_o low. The combined state of each pair of runs of

iomanager’, extended with an auxiliary variable InsEq that

tracks if the two runs have read equal values over wb_clk_i,

wb_set_i, and wb_arg_ty, always satisfies a key relational
invariant. In particular, the invariant establishes that after any

pair of runs, if InsEq holds, and in the next step of each run,

the run does not read a high signal on recall, then the two

runs will send equal values to wb_data_o.

The above fact is in fact an inductive relational invariant

of all pairs of runs of ioman’, extended with InEq. When

SIMAREL is given a core C, such as ioman’, that satisfies a

given flow policy F , then SIMAREL verifies that C satisfies

F by proving for iteratively larger bounds n that all pairs of

runs of C of length up to n satisfy F . SIMAREL inspects the

invariants obtained in such proofs to determine if they are in

fact inductive proofs that C satisfies F , and if so determines

that C satisfies F (see §IV-B3).

III. BACKGROUND

In this section, we review previous work on which our

work is based. In §III-A, we establish basic definitions of the

hardware systems that we will consider. In §III-B, we review

definitions and fundamental results from propositional logic.

A. Hardware core design

We will describe an approach for specifying and verifying

the flow security of sequential hardware core designs with

direct physical access to sensitive and public input and output

channels. Our work is motivated in particular by the recent

development of Field Programmable Gate Arrays (FPGAs),
which are integrated circuits designed to be programmed and

reconfigured by users or a designer after the chip is fabricated.

The design of an FPGA core is generally specified in a

Hardware Description Language (HDL), such as Verilog. In this

work, we assume that our verifier has access to a description

of a given circuit in an HDL. This description is a circuit that

will be implemented using the pre-fabricated logic elements

of the FPGA.

FPGAs can interact with their host system over a rich

interface that allows them to read information from and send

it to memory and critical system devices such as network

controllers. In practical deployments, a single FPGA unit

commonly is programmed with multiple colocated cores that

perform computation on behalf of multiple mutually-untrusting

users. To present our approach, we assume that there are fixed

sets of propositional variables that model, for a given core,

the input wires to the core (denoted I), output wires from the

core (denoted O), and persistent state of the core (denoted Q).

The union of the spaces of I and O is the space of I/O wires,
denoted IOs = I ∪ O. The union of the space of I/O wires and

state registers is denoted Wires = IOs ∪ Q. The space of all

cores is denoted Cores.

For each C ∈ Cores, the transition relation of C defines

how in each step, C uses its current state and input to

update its state and generate an output. For each space of

propositional variables X (i.e., a vocabulary), we denote the

space of all evaluations of X as Evals[X] = X → B. The

initial states InitsC ⊆ Evals[Q] are the states in which C
may begin a run. The transition relation of C is a binary

relation ρC ⊆ (Evals[I] × Evals[Q]) × (Evals[Q] × Evals[O]).
For I ∈ Evals[I], Q,Q′ ∈ Evals[Q], and O ∈ Evals[O],
we denote the fact ((I,Q), (Q′, O)) ∈ ρC alternatively as

(I,Q)→C (Q′, O).

A run is a sequence of triples of input evaluations, states,

and output evaluations; i.e., the space of runs is Runs =
(Evals[I] × Evals[Q] × Evals[O])∗. A trace is a sequence of

pairs of input and output evaluations; i.e., the space of traces

is denoted Traces = (Evals[I] × Evals[O])∗. For I0, . . . , In ∈
Evals[I], Q0, . . . , Qn ∈ Evals[Q], and O0, . . . , On ∈ Evals[O],
let (I0, Q0, O0), . . . , (In, Qn, On) be such that Q0 ∈ InitsC
and for each 0 ≤ i < n, it holds that (Ii, Qi) →C

(Qi+1, Oi+1). Then (I0, Q0, O0), . . . , (In, Qn, On) is a run
of C and (I0, O0), . . . , (In, On) is a trace of C.

B. Propositional logic

For each vector of propositional variables X , we denote the

space of Boolean formulas over X as Forms[X]. We denote a

disjoint set of variables corresponding to the variables in X
as X ′. For all vectors of propositional variables X and Y of

equal size and each formula ϕ ∈ Forms[X], we denote ϕ with

each variable in X replaced with its corresponding variable

in Y as ϕ[Y/X]. For each ϕ ∈ Forms[X], we denote ϕ[Y/X]
alternatively as ϕ[Y]. For each ϕ ∈ Forms[X] and assignment

σ : X → B, we denote the fact that σ satisfies ϕ as σ � ϕ.
For all propositional formulas ϕ0, . . . , ϕn, ϕ ∈ Forms[X], if
each satisfying assignment of formulas ϕ0, . . . , ϕn is also a

satisfying assignment of ϕ, then ϕ0, . . . , ϕn entail ϕ, denoted
ϕ0, . . . , ϕn |= ϕ.

In general, checking if a given propositional formula is

satisfiable or checking if a given set of propositional formulas

entail a given propositional formula is NP-complete in the

combined size of the formulas. However, in practice, many

instances of SAT that arise in hardware verification can be

solved efficiently using well-studied heuristics [18, 19]. We

present SIMAREL as using a generic SAT decision procedure,

referred to as ISSAT.

1) Modeling core semantics in logic: For each C ∈ Cores,
the initial states of C (see §III-A) are represented as the

propositional formula IsInitC ∈ Forms[Q]. The transition

relation of C, ρC , (see §III-A) is represented as a propositional

formula ψC ∈ Forms[I, Q, Q′, O]. For each evaluation σI ∈
Evals[I], each evaluation σO ∈ Evals[O] of output variables,

and all evaluations of state variables σQ, σQ′ ∈ Evals[Q], if
(σI , σQ)→C (σQ′ , σO), then σI , σQ, σQ′ , σO � ψC .

425423

Stream :=(Lvs < Lvs)∗(IOs has Lvs)∗(Conds => Lvs)∗ (1)

Conds:=I OP I | ¬Conds | Conds ∧ Conds (2)

Fig. 3: Syntax of STREAMS, defined over spaces of levels Lvs and
input wires I, introduced in §III-B1.

2) Interpolation: An interpolant I of mutually-unsatisfiable

formulas ϕ0 and ϕ1 is a formula that explains their mutual

unsatisfiability in their common vocabulary.

Definition 1. For all vocabularies X and Y and formulas
ϕ0 ∈ Forms[X] and ϕ1 ∈ Forms[Y] such that ϕ0, ϕ1 |= False,
an interpolant of ϕ0 and ϕ1 is a formula I ∈ Forms[X ∩ Y]
such that (1) ϕ0 |= I and (2) I, ϕ1 |= False.

For all formulas ϕ0 and ϕ1 that are mutually unsatisfiable,

ϕ0 and ϕ1 have an interpolant. It is unknown whether there is

interpolant of size less than exponential in the combined sizes

of ϕ0 and ϕ1. However, in practice, SAT solvers can often

generate interpolants of size close to the size of their input

formulas [39, 41]. SIMAREL is defined using a procedure ITP

that, given two mutually-unsatisfiable SAT formulas ϕ0 and

ϕ1, returns an interpolant of ϕ0 and ϕ1.

IV. TECHNICAL APPROACH

In this section, we give a language STREAMS for expressing

information-flow policies of cores (§IV-A). We then give an

algorithm SIMAREL for verifying that a given core satisfies a

given STREAMS policy (§IV-B).

A. A policy language for flow security of sequential cores

1) Syntax: The syntax of STREAMS is given in Figure 3

as a grammar in Extended Bachus Normal Form (EBNF). In

particular, a policy is (1) a sequence of clauses that declare

a flows-to relation over levels, (2) a sequence of clauses that

each binds an I/O wire to a level, and (3) a sequence of clauses

that each associate a level with an enabling condition (Eqn. 1).

A condition is a Boolean combination of binary predicates over

input wires (Eqn. 2). The space of operations OP contains

standard bitwise comparisons.

2) Semantics: The semantics of STREAMS define if a given

core satisfies a given STREAMS policy. The level declarations

of a STREAMS policy F define a flows-to relation over levels.

Let the relation →⊆ Lvs × Lvs be such that for all levels

L0, L1 ∈ Lvs, if L0 < L1 ∈ F , then L0 → L1. For each

w ∈ IOs and L ∈ Lvs such that w has L ∈ F , w has level L
in F , denoted Lv[F](w) = L. For each condition En ∈ Conds
and level L ∈ Lvs such that En => L is in F , L has enabling

condition En in F , denoted alternatively as En[F,L]. For F to

be well-formed, → must be a partial order and the has-level

and enabling-condition relations must be functions. For the rest

of the paper, we only consider policies that are well-formed.

For the remainder of this section, let C ∈ Cores, F ∈
STREAMS, and L ∈ Lvs be a fixed core, flow policy, and level.

Let the set of all input wires with L′ ∈ Lvs in F such that

L′ →∗ L be denoted LvIns, and let the set of all output wires

with such a level be denoted LvOuts.

For each trace t (§III-A), the subtrace of t visible at L in

F is the sequence of all input-output pairs in t in which the

input satisfies the enabling condition of L in F .

Definition 2. For t, t′ ∈ Traces, let t′ be the maximal subse-
quence of t such that for each i ∈ Evals[I] and o ∈ Evals[O]
with (i, o) ∈ t′, it holds that i � En[F,L]. Then t′ is the
subtrace of t visible at L in F .

Traces t0 and t1 are input-equivalent at level L in F if their

corresponding inputs are equal at each input wire that flows

to L in F .

Definition 3. Let t0, t1 ∈ Traces with n = |t0| = |t1| be such
that for each 0 ≤ k < n, and i0, i1 ∈ Evals[I] and o0, o1 ∈ O
with (i0, o0) = t0[k] and (i1, o1) = t1[k], and each input wire
w ∈ LvIns, it holds that i0(w) = i1(w). Then t0 and t1 are
input equivalent at L in F .

Output equivalence is defined similarly.

C satisfies F at L if all of its traces with visible subtraces

at L that are input equivalent at L are output-equivalent at L.

Definition 4. If for all t0, t1 ∈ Traces[C] with subtraces t′0
and t′1 visible at L in F (Defn. 2) that are input equivalent
at L (Defn. 3), t′0 and t′1 are output-equivalent at L, then C
satisfies F at L.

The fact that C satisfies F at L is denoted C �L F . If for

each L′ ∈ Lvs, C �L′ F , then C satisfies F . For the remainder

of this paper, we will only consider the problem of determining

if a given core satisfies a given flow policy at a given level, in

order to simplify the presentation.

Our definition of policy satisfaction models an attacker who

can directly observe the outputs of a circuit C at each step

in which a condition does not satisfy an enabling condition.

The attacker succeeds if they can distinguish two sequences of

input-equivalent traces using only such observations. Note that

the attacker can only observe the output at particular steps, not

the time taken by C to generate such outputs.

Our actual implementation of SIMAREL supports a richer

syntax with several constructs that are useful for expressing

a policy succinctly. In particular, the full language supports

clauses that bind all wires to a default level and a default

semantics that sets the enabling condition of each level not

set explicitly to be True. Conditions can also be defined over

inputs received in previous time steps of execution.

B. Verifying policy satisfaction

1) Relational invariants: SIMAREL, given C, F , and L, de-
termines if C �L F . SIMAREL operates on symbolic relations

over a vocabulary that models pairs of circuit runs, denoted as

run 0 and run 1. The relation is represented as a formula over

variables that model the current state of each run in the pair,

along with auxiliary variables InEq and OutEq that track if the

subtraces of the runs visible at L in F are input-equivalent and

output-equivalent, respectively. The space of auxiliary variables

is denoted Eqs = InEq ∪ OutEq. The space of symbolic

426424

relations is denoted SymRels = Forms[Wires0, Wires1,Eqs].
The enabling condition of L in F is denoted En.

Indexed relational invariants are a map from pairs of step

indices to symbolic relations that soundly model (1) the initial

condition of C, (2) & (3) steps on inputs not visible at L in

F , and (4) steps in a pair of runs on inputs visible at L in

F , for pairs of runs of length up to k. The space of indexed

symbolic relations is denoted IdxRels = N× N ↪→ SymRels.

Definition 5. Let I ∈ IdxRels be such that (1)
IsInitC [Q0], IsInitC [Q1], InEq,OutEq |= I(0, 0)

(2) for i < k−1 and j < k such that (i, j), (i+1, j) ∈ Dom(I)
(where Dom(I) denotes the domain of I),

I(i, j), ψC [I0, Q0, Q
′
0],¬En[I0] |= I(i+ 1, j)[Q′0/Q0]

(3) for i < k and j < k−1 such that (i, j), (i, j+1) ∈ Dom(I),
I(i, j), ψC [I1, Q1, Q

′
1],¬En[I1] |= I(i, j + 1)[Q′1/Q1]

(4) for i, j < k − 1 such that (i, j), (i+ 1, j + 1) ∈ Dom(I),
I(i, j), ψC [I0, Q0, Q

′
0], ψC [I1, Q1, Q

′
1],

En[I0],En[I1], (InEq ∧ LvIns0 = LvIns1 =⇒ InEq′),
(OutEq ∧ LvOuts0 = LvOuts1 =⇒ OutEq′) |=

I(i+ 1, j + 1)[Q′0, Q
′
1,Eqs

′]
Then I are indexed relational invariants.

The space of indexed relational invariants is denoted IdxInvs.
For I ∈ IdxInvs, if (1) I contain a symbolic relation for

the initial index 0 paired with itself and (2) for each pair of

indices i and j, either I(i, j) entails the relation at a distinct

pair of indices or the successor of steps (i, j) in run 0 or run

1 is defined by I , then I are inductive indexed invariants.

Definition 6. Let I ∈ IdxInvs be such that (1) (0, 0) ∈ Dom(I)
and (2) there is some anti-symmetric C ⊆ (N×N)× (N×N)
such that for each i, j ∈ N such that (i, j) ∈ Dom(I), either
(a) there are some i′, j′ ∈ N such that ((i, j), (i′, j′)) ∈ C and
I(i, j) |= I(i′, j′), (b) (i+1, j) ∈ Dom(I), or (c) (i, j +1) ∈
Dom(I). Then I are inductive indexed relational invariants.

Indexed relational invariants I satisfy F at L if they map

each pair of indices to a symbolic relation that implies that

along all pairs of runs, if inputs are equivalent at L in F , then

outputs are equivalent at L in F .

Definition 7. Let I ∈ IdxInvs be such that for all i, j < k
such that (i, j) ∈ Dom(I),

I(i, j), LvIns0 = LvIns1 |= LvOuts0 = LvOuts1
Then I satisfies F at L.

For I ∈ IdxInvs, the fact that I satisfies F and L is denoted

I �L F .

Inductive relational invariants of C that satisfy F at L are

evidence that C satisfies F at L (see §A, Lemma 4). As a

result, SIMAREL proves or disprove that C satisfies F at L
by searching for inductive indexed relational invariants that

satisfy F at L.
2) Verification algorithm: Alg. 1 contains pseudocode for

SIMAREL, which given C ∈ Cores, F ∈ STREAMS, and L ∈
Lvs, determines if C satisfies F at L. SIMAREL defines a

recursive procedure SIMREC that takes a natural number k and

returns either (1) False to denote that C does not satisfy F at

Input :C ∈ Cores, F ∈ STREAMS, L ∈ Lvs
Output : Decision as to whether C �L F .

1 Procedure SIMAREL (C, F , L)
2 Procedure SIMREC(k)
3 switch CHK(C,F, L, k) do
4 case Unsafe: return False ;

5 case I ∈ IdxRels:
6 if HASIND(I) then return True ;

7 else return SIMREC(k + 1) ;

8 end
9 endsw

10 return SIMREC(0) ;
Algorithm 1: SIMAREL: given C ∈ Cores, F ∈ STREAMS,

and L ∈ Lvs, determines if C �L F .

L for some pair of runs of length no less than k or (2) True
to denote that C satisfies F at L (line 2—line 9). SIMAREL

calls SIMREC on 0 and returns the result (line 10).

SIMREC, given input k, runs a procedure CHK on C, F ,

L, and k which returns either Unsafe to denote that C does

not satisfy F at L on all pair of runs of length k or indexed

relational invariants up to k that satisfy F (line 3). The design of

CHK is given in §IV-B3. If CHK returns Unsafe, then SIMREC

returns that C does not satisfy F at L (line 4).

Otherwise, if CHK returns indexed relational invariants I
that satisfy F at L, then SIMREC runs procedure HASIND on I .
If HASIND returns that I contain inductive indexed relational

invariants, then SIMREC returns that C satisfies F at L (line 6;

the implementation of HASIND is given in §IV-B4). Otherwise,

SIMREC recurses on k + 1 and returns the result (line 7).

3) Finding indexed relational invariants up to a bound:
CHK, given k ∈ N, attempts to construct indexed relational

invariants I from the results of a series of interpolation queries

(§III-B, Defn. 1), defined as follows. For each n ∈ {0, 1} and

j < k, let Inj model the values read by run i in step j, and let

Qnj model the state of run n after taking step j.

For all i, j < k, the symbolic relation in I at i and j is

constructed from an interpolant of two formulas: (1) the pre-
formula at (i, j), denoted ϕ−i,j , and (2) the post-formula at

(i, j), denoted ϕ+
i,j . Each pair of i steps of run 0 and j steps

of run 1 corresponds to a model of ϕ−i,j , defined casewise on i

and j as follows. ϕ−0,0 is the initial condition of C instantiated

on the state variables of (1) run 0 and (2) run 1, combined with

(3) the fact that initially, the (empty) visible suffixes of all pairs

of runs after 0 steps are input-equivalent and output-equivalent

in F at L. I.e., ϕ−0,0 is

(1)IsInitC [Q
0
0] ∧ (2)IsInitC [Q

1
0] ∧ (3)InEq0,0 ∧ OutEq0,0

For pairs of indices (i, j) �= (0, 0) ∈ N×N, ϕ−i,j is defined as

follows. For each 0 ≤ i, j < k − 1, InvisStep0i,j relate (1) the

states of run 0 after i steps and run 1 after j steps, combined

with (2) the semantics of run 0 taking a step, on (3) inputs

invisible at L to the resulting states after run 0 takes i + 1

427425

steps and run 1 takes j steps. I.e., InvisStep0i,j is

(1)I(i, j + 1) ∧ (2)ψC [Q
0
i , I

0
i+1, Q

0
i+1]∧

(3)¬En[I0i+1] ∧ Eqsi+1,j+1 = Eqsi,j+1

InvisStep1i,j is defined symmetrically. For 0 ≤ i < k−1, ϕ−i+1,0

is InvisStep0i,0. For 0 ≤ j < k − 1, ϕ−0,j+1 is InvisStep10,j .

VisStepsi,j relates (1) the states after i steps of run 0 and j
steps of run 1, combined with the semantics of (2) run 0 and

(3) run 1 taking a step on (4) inputs visible at in F at L to

states after run 0 takes i+ 1 steps and run 1 takes j + 1 steps.

I.e., VisStepsi,j is

(1)I(i, j) ∧ (2)ψC [Q
0
i , I

0
i+1, Q

0
i+1] ∧ (3)ψC [Q

1
j , I

1
j+1, Q

1
j+1]∧

(4)En[I0i+1] ∧ En[I1j+1]∧
(InEqi,j ∧ LvIns0i+1 = LvIns1j+1 =⇒ InEqi+1,j+1)∧
(OutEqi,j ∧ LvOuts0i+1,j+1 = LvOuts1i+1,j+1 =⇒
OutEqi+1,j+1)
For 0 ≤ i, j < k − 1, ϕ−i+1,j+1 is

InvisStep0i,j+1 ∨ InvisStep1i+1,j ∨ VisStepsi,j
Each suffix of run 0 after step i and run 1 after step j of

runs that do not satisfy F at L corresponds to a model of the

post-formula ϕ+
i,j , defined as follows. Each suffix of run n

from step j to step k corresponds to a model of the formula

Restnj : ∧

j≤j′<k−1

ψC [Q
n
j′ , I

n
j′ , Q

n
j′+1]

Each pair of suffixes that correctly updates Eqs corresponds

to a model of UpdEqsi,j , defined as follows. UpdInInvis0i,j
constrains that if at steps i and j (of runs 0 and 1), runs 0 and

1 have read input streams equivalent at L and run 0 next reads

an input invisible at L, then at i+ 1 and j, the runs have read

input streams equivalent at L:
InEqi,j ∧ ¬En[I0i+1] =⇒ InEqi+1,j

UpdInInvis1i,j constrains InEqi,j and InEqi,j+1 symmetrically

to model steps of run 1.

UpdInVisi,j constraints that if runs 0 and 1 both next read

inputs visible at L, then at i+1 and j +1, the runs have read

input streams equivalent at L. I.e., UpdInVisi,j is

InEqi,j ∧ En[I0i+1] ∧ En[I1j+1] ∧ LvIns0i+1 = LvIns1j+1 =⇒
InEqi+1,j+1

UpdOutInvisni,j and UpdOutVisi,j symmetrically constrain

OutEqi,j . UpdEqsi,j is∧

i<i′<n−1
j<j′<n

UpdInInvis0i,j ∧ UpdOutInvis0i,j∧

∧

i<i′<n
j<j′<n−1

UpdInInvis1i,j ∧ UpdOutInvis1i,j∧

∧

i<i′<n−1
j<j′<n−1

UpdInVisi,j ∧ UpdOutVisi,j

Each pair of suffixes that satisfy F at L after each step

corresponds to a model of PolSati,j , defined as∧

i<i′<n,j<j′<n

InEqi′,j′ =⇒ OutEqi′,j′

The complete post-formula ϕ+
i,j is:

Rest0i ∧ Rest1j ∧ UpdEqsi,j ∧ ¬PolSati,j

Input : I ∈ IdxInvs
Output : Decision as to whether I contains inductive

indexed relational invariants.

1 Procedure HASIND(I)
2 Procedure HASINDAUX(O,D)
3 if O = ∅ then return True ;

4 ((i, j), O′) := CHOOSE(O) ;

5 if (i, j) /∈ Dom(I) then return False ;

6 D′ :=D ∪ {(i, j)} ;

7 if
∨{I(i, j) |= I(i′, j′) | (i′, j′) ∈ D} then

8 return HASINDAUX(O′, D′)
9 end

10 ι0 := HASINDAUX(O′ ∪ {(i+ 1, j)}, D′) ;

11 ι1 := HASINDAUX(O′ ∪ {(i, j + 1)}, D′) ;

12 return ι0 ∨ ι1 ;

13 return HASINDAUX({(0, 0)}, ∅) ;
Algorithm 2: HASIND: given I ∈ IdxInvs, returns whether

or I contains inductive indexed relational invariants.

CHK first runs ISSAT on ϕ−0,0 ∧ ϕ+
0,0, and if ISSAT returns

that the formula is satisfiable, returns Unsafe. Otherwise, CHK

iteratively computes relational invariants for each 0 ≤ i, j < n
in any topological ordering of the space of pairs in Zk × Zk.

In each iteration, CHK sets I(i, j) to be ITP(ϕ−i,j , ϕ
+
i,j)[Q0, Q1].

The correctness of SIMAREL is supported by the fact that,

given k ∈ N, if CHK returns Unsafe, then C does not satisfy

F at L (§B, Lemma 5), and otherwise returns indexed relations

that prove that all pairs of runs of C up to length k satisfy F
at L (§B, Lemma 6).

4) Finding inductive indexed relational invariants: HASIND

(Alg. 2), given I ∈ IdxRels, returns whether or not I contains

inductive indexed relational invariants. HASIND contains a

procedure HASINDAUX (Alg. 2, line 2—line 12) that, given

obligation and discharged pairs of indices O,D ⊆ N × N,

returns whether I contains inductive indexed relational invari-

ants that must contain O and may contain any elements in D.

HASIND runs HASINDAUX on obligations consisting of only

0 paired with itself and no discharged pairs, and returns the

result (line 13).

HASINDAUX, checks if O is empty, and if so, returns True
(line 3). Otherwise, if O is not empty, then HASINDAUX

removes a pair of indices (i, j) from O to generate obligations

O′ (line 4), and checks if (i, j) have invariants in I; if not,

then HASINDAUX returns False (line 5).

Otherwise, if (i, j) have invariants in I , then HASINDAUX

extends D with (i, j) to generate discharged pairs D′ (line 6),

and checks if there are indices (i′, j′) such that I(i, j) entails

I(i′, j′) (line 7); if so, then HASINDAUX recurses on O′ and
D′, and returns the result (line 8).

Otherwise, if there are no such indices i′ and j′, HASIN-

DAUX recurses on O′ extended with index pair (i′ + 1, j)
and D′ (line 10), recurses on O′ extended with index pair

(i, j +1) and D′ (line 11), and returns True if either recursive

call returns True (line 12).

HASIND soundly determines if given indexed relational

428426

invariants contain inductive indexed relational invariants (§A,

Lemma 7).

5) Synthesizing policy violations: To simplify the presen-

tation of SIMAREL, we have presented it as an algorithm

that takes a given core C, flow policy F , and level L and

returns only a decision as to whether C satisfies F at L. Our

actual implementation of SIMAREL, when given a core C that

does not satisfy F at level L, returns a counterexample that

witnesses non-satisfaction, represented as a pair of runs of C
that are input-equivalent at L, but not output-equivalent at L.
In particular, if CHK runs ISSAT on ϕ−0,0 ∧ ϕ+

0,0 and ISSAT

determines that the formula has a model m, then CHK returns

the pair of runs of C that correspond to m.

C. Discussion

SIMAREL is a sound flow verifier.

Theorem 1. If SIMAREL(C,F, L) = True, then C �L F .

For a proof of Thm. 1, see §D.

SIMAREL is also a complete flow verifier.

Theorem 2. If SIMAREL(C,F, L) = False, then C ��L F .

In principle, SIMAREL will eventually terminate on any

given core C and flow policy F . Termination follows from the

observation that each circuit is a finite-state machine. Thus if

SIMAREL considers a sufficiently large number n of steps, it

will either find a pair of runs of C that do not satisfy F , or

it will synthesize invariants that imply that each pair of runs

of length less than n must reach some state in a cycle. Such

a cycle manifests in SIMAREL as inductive indexed relational

invariants. The maximum number of steps that SIMAREL may

need to consider is bounded by the number of pairs of states

in a given circuit (i.e., by |22|Q||). In practice, when SIMAREL

successfully verifies flow security or finds a policy violation,

it typically finds a proof of pairs of runs up to a bound that it

significantly lower than the maximum number of steps required

to verify a core.

One approach for verifying that a program P satisfies a

property F over a bounded number of runs is to verify that the

self-composition of P , denoted P 2 satisfies a safety property

F 2 derived from F [7, 59]. In particular, (1) P 2 reads an initial

state and stores it in variables vars0. (2) P 2 runs P on the

initial state and stores the final result in variables vars′0. (3)
P 2 reads a second initial state and stores it in variables vars1.

(4) P 2 runs P on the second initial state and stores the result

in variables vars′1. A safety verifier is then run to determine

if P 2 satisfies F 2 ≡ ϕF [vars0, vars1] =⇒ vars′0 = vars′1.
Self-composition can potentially verify the flow security of

programs that take a bounded vector of inputs, such as a finite

tuple of bounded integers. However, applying the approach

to verify flows that operate over unbounded streams of inputs

would be non-trivial: a key operation of the self-composition

is to sequentially store two complete copies of its input and

test them under a relational predicate only after executing a

second run of the program.

The inability of self-composition to verify flow-security of

programs that operate over unbounded inputs implies that it

cannot be directly adapted to verify non-trivial flow security

properties of sequential hardware circuits, all of which operate

on unbounded streams of inputs. Moreover, we found that

the technique could not be directly applied to verify the flow

security of any of the cores and flow policies that we collected

from sources of actual cores (§V), including the example core

and policy introduced in §II.

V. EVALUATION

We performed an empirical evaluation of our approach

to answer the following research questions. (1) Can the

information-flow security requirements of practical, security-

critical cores be expressed in STREAMS? (2) If practical,

security-critical cores and their flow policies are given to

SIMAREL, can SIMAREL efficiently either verify that the cores

satisfy their policies or generate inputs on which they do not?

In summary, our results answer the above questions positively.

We used STREAMS to express the flow requirements of 12

open-source cores drawn from different application domains

and hosted on the open-source repositories OpenCores [47]

and AxBench [1], and used SIMAREL to attempt to either

verify the flow security of the cores or find flow vulnerabilities.

SIMAREL verified flow security of six modules and found flow

vulnerabilities in six other modules.

The sources of the found vulnerabilities are either in the

implementation of particular modules from individual sources

(in five cases) or in logic that integrates modules from multiple

sources (in one case). Such sources of vulnerabilities are critical

concerns in the design of FPGA’s, which typically rely on

reusing cores from different sources to implement complex

system-level functionality, or which attempt to optimize a

core after integrating multiple cores. These results not only

shows the efficacy of our approach but also the necessity

of our solution at a time when FPGAs are being deployed

and integrated in both data centers and embedded devices.

We also implemented patches that address the vulnerabilities

found using our technique and have submitted the patches to

OpenCores and AxBench.

A. Methodology

We implemented SIMAREL by extending the ABC hardware

model checker [10] to solve interpolation queries and check for

inductive proofs, as described in §IV-B. The input to ABC is

a low-level logic representation of the core in Berkeley Logic

Interchange Format (BLIF) [9]. We used the Yosys open source

synthesis tool [64] to generate the BLIF file from the high-level

Verilog description of the cores.

We collected a set of open-source cores from OpenCores

and AxBench. the features of the benchmarks are summarized

in Table I. OpenCores is a large collection of open-source

hardware cores; a wide verity of customers already deploy

the cores that it hosts [48]. AxBench is another open source

repository of cores developed in hardware-design research [1].

429427

Benchmark Features Policy Features Performance

Name Domain Origin LoC KLoC Levels Clauses Secure Time Mem.
(Verilog) (BLIF) (s) (MB)

Wishbone flash cntrl. Embedded Comp.

opencore

129 7 2 1

No

0.18 12
SD card controller Storage mgmt. 4,080 36 2 11 26.05 652
UART Debugging 253 6 2 1 0.16 23
Ethernet controller Comm. controller 205 2 2 1 1.10 29
AntiLog2 DSP 110 3 2 1 0.69 27
F-kinematics Robotics axbench 18,282 1,755 2 4 44.15 1,010

Wishbone flash cntrl. (patch) Embedded Comp.

opencore

130 7 2 1

Yes

0.26 15
SD card controller (patch) Storage mgmt. 4,147 36 2 11 39.85 650
UART (patch) Debugging 267 927 2 1 6.27 310
Ethernet controller (patch) Comm. controller 223 2 2 1 1.19 29
AntiLog2 (patch) DSP 122 3 2 1 2.29 30
F-kinematics (patch) Robotics axbench 18,426 1,823 2 4 - - -

Reed-Solomon Error correction

opencore

4,054 119 2 1

Yes

254.44 765
RR arbiter H/W controller 268 0.3 2 1 0.11 16
Gaussian noise gen. DSP 1,064 26 2 1 2.78 92
Interrupt controller System controller 248 2 2 1 1.16 57
FIR-filter Communication

axbench
101 191 2 1 1.77 66

Sobel filter Image processing 386 404 2 1 3.39 146

TABLE I: The results of our evaluation. Under heading “Benchmark Features,’ ’ column “Name” contains the name of the benchmark;
column “Origin” contains the benchmark’s origin of development; column “LoC” contains the number of lines of Verilog code and BLIF
code for the benchmark core’s design. Under the heading “Policy Features”, column “Levels” contains the number of levels used in the
policy; “Clauses” contains the number of allows and prohibits. Under the heading “Performance”, column “Time” contains the time SIMAREL

consumed for each benchmark; column “Mem.” contains the peak amount of memory that SIMAREL used.

The benchmarks we collected implement complete hardware

cores and follow industry standards. Thus, they are suitable for

integration with other cores inside an FPGA for industrial

purposes. To measure the complexity of each benchmark,

we counted the number of lines of code (LoC) of both the

original Verilog file and synthesized BLIF file. Because a core’s

BLIF file represents the actual physical structure of hardware

synthesized, the size of the BLIF file is a more consistent

metric of complexity than Verilog, which describes the core at

comparatively high level.

For each benchmark core, we wrote an information-flow

policy in STREAMS that describes on which inputs the core

may release a information about its sensitive inputs, based on

the core’s documentation. We wrote policies using an extension

of STREAMS as described in §IV-A that additionally supports

references to values read in a time step that is some constant

offset before the current step. We then checked that each

core satisfies its corresponding policy by running SIMAREL

on the target core and policy. For each benchmark, we ran

SIMAREL on a machine running as its operating system Linux

Ubuntu with kernel 3.16.0-38-generic. The machine used for

benchmarks contains an Intel Core i7 4720HQ processor that

runs at 2.4 GHz and contains 8 GB of memory.

B. Results

In this section, we describe insecure benchmark cores that

STREAMS specified, the STREAMS policy that we wrote for

the cores, and the results of running SIMAREL on the cores

and their policies. We omit the SD card controller example

because we discussed it in §II.

1) Insecure benchmarks:
a) Wishbone flash memory controller: The Wishbone flash

memory controller implements a critical subsystem that enables

an FPGA to access the main storage of an embedded platform,

which can be, for example, an IoT device. The inputs to the

Wishbone controller are read or write commands and addresses

generated by other modules in the FPGA. The output is the

control signals that let the flash storage perform the FPGA’s

read or write commands. The core implements a finite state

machine with 16 states that generates the control signals.

We wrote a STREAMS policy that only allows information

to flow from the input data port to flash when the controller

receives a write-enable signal. If the controller does not satisfy

this policy, several attacks are feasible. In particular, a malicious

circuit processing sensitive information on the FPGA can use

the Wishbone flash controller to leak the information to the

flash storage. Also, when the FPGA implements a processor,

software executing on the processor that polls the write data

can gain the complete information about the data written.

SIMAREL found that the controller does not satisfy such a

policy in less than a second. The results confirm that each of

the attacks given above is indeed feasible.

b) Universal asynchronous receiver/transmitter: A Uni-
versal Asynchronous Receiver Transmitter (UART) is a widely

used serial communication mechanism [46]. UART connects

systems with different clock domains using a shift register,

which prevents unexpected data loss from clock timing synchro-

nization failure during data exchange. UART prepares data for

transmission or retrieval using units that serialize and deserialize

messages. Some UART modules, including the module that

we analyzed, provide an interface for collecting debugging

information from systems. Given that debuggers typically are

granted near-complete access to a system’s internal data, it

is critical that the module satisfies expected requirements for

information flow. In a network router design, for instance, the

debug interface may leak the routing table entries that decide

where the router sends packets. Thus, attackers may track the

paths of packets and identify the senders and receivers.

430428

We wrote a STREAMS policy that specifies that a given

UART module must not reveal read data except on intended

clock cycles. If the module violates the policy, then an attacker

can observe internal data in a system, even after the system has

reverted to perform normal operations. SIMAREL revealed this

vulnerability using our STREAMS. We found that the leak is

due to incomplete case-handling logic, similar to the vulnerable

code for the SD card controller discussed in §II.

c) Ethernet controller: Modern FPGAs typically include

a physical Ethernet port. However, they usually do not include

a built-in Ethernet controller. Thus, FPGA cores that require

Ethernet functionality often use a third-party Ethernet controller

developed independently.

We analyzed an Ethernet-controller core with several submod-

ules. In particular, the receive (RX) module transfers incoming

data from outside of the system to the host. Because such

a module is typically shared by many users, it should only

provide information read in the most recent step to the system

agent issuing the current request. If the core does not satisfy

such a policy, then an attacker could learn information read

from the network in the past. That is, adversaries can access

data previously sent to other users.

We expressed the above information-flow policy as a

STREAMS policy and ran SIMAREL to determine if the RX

module satisfies the given policy. SIMAREL determined that

the module does not satisfy the policy, which indicates that

the RX module leaks the incoming data from the network to

the future time slots.

d) Forward kinematics for a robot arm: The forward
kinematics core takes the angles of the joints of a robot

arm and computes the coordinates of the end-point of the

arm by solving kinematics equations. In particular, the core

implements trigonometric functions and arithmetic operations.

The trigonometric functions are implemented as hard-coded

lookup tables. The arithmetic operations are implemented

using fast, optimized implementations developed in Aoki

Laboratories [31].

The core is pipelined into two stages, which means that it

generates an output for the input from the two clock cycles

before the current cycle. Hence, we wrote a policy that specifies

that only the input from the two clock cycles before the

current cycle may flow to the output. SIMAREL found inputs

on which the core does not satisfy the given policy. With

further investigations, we observed that the core’s output is

not initialized immediately and generates a large value under

a reset signal. As a result, an attacker can jerk the robot arm

by continuously commanding the module to reset since output

value directly affects the movement of the robot arm.

We identified that logic containing the vulnerability is in

a multiplier module deeply nested in the core. We compared

the multiplier in the core to the original implementation of

the multiplier provided by Aoki Laboratories [31]. From the

comparison, we found that the designer of the forward kine-

matics core made such an unintended vulnerability during the

optimization by pipelining. However, the optimized multiplier

leaks partial information about its arguments if they satisfy a

particular arithmetic constraint. Our experience analyzing the

forward kinematics module indicates that the integration and

optimization of even mature modules can result in unexpected

information leaks.

e) Antilogarithm operation: Computing the antilogarithm
(antilog) of a number is one of the most frequent operations

in scientific computing and multimedia applications [49]. If a

module that implements such a frequent operation leaks any

information, it will compromise the security of many cores

that include the module. In addition, because operands in such

an operation can be sensitive numeric values in many settings,

a malicious anti algorithm core can be one of the major source

of information leak in hardware design with the core.

We analyzed an open-source module that computes antilog-

arithms in two cycles. We wrote a STREAMS policy that only

allows the information flow from input data received two

cycles before the current cycle to the output. Otherwise, an

attacker can observe partial information about the history of the

values passed to this module. That is, an attacker could infer

information about previous values provided to the operator or

infer how frequently operator has been invoked.

We ran SIMAREL on the core and discovered it leaks

information about previous input values after computing and

outputting the desired result. We identified that the module does

not support reset and as a result, an attacker can easily observe

information about previous inputs. While resetting the state of

a module after each computation is a natural operation, it is not

supported by the module and is not upheld by default operation.

As a result, an attacker can easily observe information about

inputs given in previous invocations.

2) Secure benchmarks: We now describe the core designs

and policies on which we evaluated SIMAREL.

a) Round-robin arbiter: An arbiter manages multiple

requests to access a hardware resource such as a bus, buffer, or

I/O port. The arbiter ensures that only one requester at a time

gains access to the shared resource. The round-robin arbiter

ensures fairness by granting access based on a round-robin

schedule. The router has dedicated grant signal wires for each

requester. When it decides a winner, than the grant signal wire

for the winner becomes active.

When no agent requests to access a resource, the arbiter

should not reveal any information about the agents that were

granted access to the resource in previous rounds. If the arbiter

does not satisfy such a policy, then an agent that should not have

access to any information about the resource, and in particular

cannot request to access it, can still learn information about the

resource, in particular how often other agents have accessed it.

E.g., an attacker could count the number of requests made to

access a motion sensor and estimate how many people visited

a location under surveillance.

We wrote a STREAMS policy that formalizes the above

policy. SIMAREL verified that the arbiter module satisfies the

policy in less than a second.

b) Gaussian noise generator for random number gen-
eration: Generating a large number of normally distributed

random samples is a crucial process in molecular dynamics

431429

simulation or financial modeling [32]. A Gaussian noise

generator implemented in hardware can improve the efficiency

and performance of these modeling and simulation applications.

We analyzed a core that takes a one-bit request signal and

outputs random number.

We wrote a STREAMS policy that checks if the core

enumerates the random numbers independent of the number of

request signal. The request signal generates an output signal

that indicates the validity of current output. Such a valid signal

is common in hardware design for communication protocols

between modules, especially when generating requested data

takes longer than one cycle. Without the valid signal, the

requester does not know if the incoming data is the requested

data or intermediate data. Without the independence property,

the random number generator contains an information leak.

That is, an attacker can count the number of requests and infer

information about the application. SIMAREL verified that the

core satisfies its policy.

c) Reed-Solomon decoder for bitwise error correction: A

Reed-Solomon code is an error correcting code (ECC), which

contains redundant data to correct possible errors during data

communications [53]. This error correction system has been

an industry standard for a long time and is used for CDs and

DVDs [11], RAID systems [50], and other communication

protocols [33].

We analyzed a core that implements a Reed-Solomon decoder

as provided on OpenCores. This core takes encoded data as well

as several control and enable signals, and generates decoded

data. If the core does not receive an enable signal, it should

not leak any information from its input ports to the output port.

If the core does not satisfy such a policy, an attacker could

use the module as a passthrough channel to leak privileged

information when the enable signal is not set.

We wrote a STREAMS policy that expresses the above policy.

SIMAREL successfully verified that the module satisfied the

given STREAMS policy.

d) Programmable interrupt controller: Interrupts are

fundamental communication mechanism in modern computer

systems. Programmable interrupt controllers manage events

generated by different units. Critical I/O devices such as storage

and networking interfaces usually depend on such controllers

to communicate with a host system.

We analyzed an open-source core that implements an

interrupt controller that can service up to eight hardware

components. The interrupt request from hardware components

at the previous cycle should only affect whether the core

sends an interrupt signal to the CPU depending on the enable

signal. Simultaneously, the CPU’s interrupt mask should be

clear, and there should not be previously triggered pending

interrupts. If the core does not satisfy such a policy, then an

attacker could stall the processor by continuously injecting

void interrupt signals. Moreover, because the CPU prioritizes

interrupts over normal execution, such a vulnerability could

potentially compromise the security of the entire system.

We wrote a STREAMS policy that formalizes the above

policy. SIMAREL verified that the module satisfies the above

policy.

e) Edge detection in images using Sobel filter: The Sobel

filter takes a greyscale image as input and identifies pixels

depicting edges in the image. The Sobel filter slides a three-by-

three window over the image, and estimates the gradient of the

center with respect to the neighboring pixels. In other words,

the algorithm performs a two-dimensional convolution over the

image to calculate the gradient. If the gradient is greater than

a threshold, the filter identifies the pixel as part of an edge.

The implementation of a Sobel filter that we analyzed is a

prime target for attacks that might corrupt the memory (e.g.,

out-of-bound accesses) because it directly accesses its host’s

physical memory without mediation from the operating system.

Such a design is common in the FPGA design since the ability

to perform direct accesses is critical for the efficiency of the

module.

We wrote a STREAMS policy that specifies that information

from the accessible region of memory should only flow to the

specified output region. Such design is common in the FPGA

design since the ability to perform direct accesses is critical for

the efficiency of the module. Users can configure the prohibited

region in the input image of the Sobel filter implementation.

We wrote a STREAMS policy specifying that information

from the accessible region should only flow to the output. For

instance, some region inside the input image might belong to

kernel memory segment if a wrong image pointer is applied

or an attacker intentionally places a pointer near the memory

border. In such cases, the filter should exclude such region

during its operation. We ran SIMAREL on the design, and

SIMAREL proved that the design satisfies the policy.

f) Digital filter for radio communication: A Finite Im-
pulse Response (FIR) filter is one of the primary types of

filters used in Digital Signal Processing (DSP). FIR filters are

commonly used for communicating with Bluetooth devices.

We analyzed a design for a FIR filter available in the AxBench

repository [1]. The FIR filter takes an eight-bit signal as input

and chooses a frequency for radio communication based on the

signal. The filter samples the input signal over four consecutive

clock cycles. The filter then calculates a linear combination of

the four samples using a sequence of addition and multiplication

operations.

We wrote a STREAMS policy that specifies that the FIR

module may only sample an input signal for at most four clock

cycles. Alternatively, the attacker can cause an endpoint to

send information on a chosen frequency that is under their

control. We ran SIMAREL on the design of the FIR filter using

the above policy, and it proved that the filter indeed satisfies

the policy.

3) Patches for insecure benchmarks: We have implemented

patches for benchmarks that SIMAREL determined were in-

secure. SIMAREL proved that our patches for five insecure

benchmarks satisfy the STREAMS policy we wrote. SIMAREL

took slightly more time on the patches to verify the security

under given STREAMS policies than the original vulnerable

circuits. This is natural since patches do not involve any policy

432430

Fig. 4: Time time window of an information-flow policy for the Sobel
filter versus the time taken by SIMAREL to verify flow-security of
the filter.

violations that interrupts the model checker. Thus the model

checker runs until it finishes proving satisfaction.

One of the patches for forward kinematics could not be

verified within one hour. It generates an extraordinarily large set

of variables and clauses even in the first step of model checking.

In particular, it generated 45,882 variables and 169,648 clauses

at the first step, about four times as large as the second largest

core with 14,063 variables and 47,721 clauses. In addition,

the multiplier has 1,469 module definitions and there are even

more number of instances of those modules. Such complexity

dramatically increases the complexity as the size of generated

BLIF file for forward kinematics core indicates. Due to this

complexity, the model checker will require tremendous time

to give an answer if the model checker does not find any bug

or proof within a few steps.

C. Execution time as a function of policy features

The performance of SIMAREL does not appear to depend

directly on the size of a given core design or policy. E.g., the

patched SD card controller and Reed-Solomon decoder have

similar sizes, but SIMAREL uses significantly more time to

verify the decoder.

Based on our experience using SIMAREL, we suspect that

a key factor in determining its performance is the number

of cycles across which the policy relates input or output

values, which we refer to as the policy’s time window. To

explore the relationship between a policy’s time window and

the performance of SIMAREL, we wrote a tunable policy for

the Sobel filter that compares values across a parameterized

number of steps of its execution. We varied the size of time

window in the policy and measured the resulting verification

time of SIMAREL.

Figure 4 shows the results of the evaluation. The execution

time increases along a super-linear progression with the time

window of the given policy.

VI. RELATED WORK

a) Checking information flow in hardware: Several hard-

ware description languages and hardware designs have been

proposed for tracking the flow of information throughout a

hardware system [35, 60, 61]. The strength of such approaches

is that they can track the taint of information through large

hardware cores. However, such approaches are not an ideal

solution for checking information flow through FPGA circuits

for two key reasons. First, space on an FPGA is a precious

resource, and thus any approach that induces area overhead

is not desirable. Second, most practical FPGA cores must,

under particular conditions, release predicates about their

sensitive information under particular conditions. Our approach

to checking flow in FPGA cores was designed to directly

address these constraints. SIMAREL is completely static, thus

inducing no runtime overhead, and reasons about conditional

release policies accurately using an automatic theorem prover.

Other hardware description languages, such as Caisson,

extend traditional hardware description languages with mecha-

nisms for describing state machines [36]. Similar to STREAMS,

Caisson can be used to express some information flow policies

involving timed release of information. The key distinction of

our approach from Caisson is that our approach can be used to

verify critical flow properties of cores written in a conventional

hardware design language and integrated from multiple sources,

accompanied by a relatively small flow policy.

A hardware design can be written in SecVerilog [68] and

type-checked to prove that it conditionally releases sensitive

information. A programmer can only prove flow security by

labeling all registers in the design that may store such infor-

mation with dependent labels. In our approach, a programmer

only needs to declare expected conditional flows from input to

output. Then, SIMAREL automatically infers suitable relational

invariants over all internal state. For example, the STREAMS

policy for the Ethernet controller contains only one label

ordering and one clause clause. However, the same policy

could be enforced in SecVerilog would require three dependent

labels on three registers, in addition to 22 labels on other wires

and registers. An interesting direction for future work could be

to automatically extract valid dependently-typed designs from

the relational invariants synthesized by SIMAREL.

Star-logic [60] is a combination of static and dynamic

information flow checking used during software-hardware co-

design. It automatically generates a GLIFT [61] dynamic

information tracking circuit based on a security lattice given

by a programmer. Star-logic tests the information flow of a

target system considering target software. That is, it tests all

the possible execution cases of the target software. Star-logic

is designed, and well-suited, to verifiably enforce strict non-

interference. However, its label-based system cannot be applied

to verify conditional release of sensitive information.

Hardware description languages and analyses have been

proposed for detecting and mitigating timing attacks in hard-

ware [16, 30, 67, 68]. Previous work has also proposed

attacks and analyses for determining if an FPGA core leaks

sensitive information through the power that it uses [57, 58].

These approaches primarily address flow-checking problems

that are orthogonal to the one that we consider in this

work. However, while it is feasible that approaches developed

originally to mitigate timing channels could be adapted to

reason about partial release, the language-based approaches

developed in previous work require extensive annotations from

core developers. In contrast, SIMAREL is fully automatic.

433431

b) Verifying conditional information release: A taint-
tracking analysis takes a labeling of the system’s inputs as

tainted or untainted and determines how tainted information

explicitly flows through program memory over an execution.

Systems have been proposed that track the flow of tainted values

at runtime [20, 56] or statically [23]. Taint-tracking analyses

are well-suited for analyzing programs, which often use distinct

regions of memory operated on by distinct program regions to

handle sensitive or insensitive data. Similarly, such approaches

are likely well-suited to analyze large, fixed hardware cores

that may allocate different logical units accessed with different

channels to perform operations on sensitive or insensitive

data. However, such approaches cannot be easily adapted

or extended to precisely analyze cores for FPGA’s, which

typically treat the same input channel as a source of sensitive

or insensitive information, depending on application-specific

conditions on input values. When applied to analyze such

cores, such analyses would raise a prohibitive number of false

positives. SIMAREL is designed to precisely verify flow safety

for policies that express conditions on input data under which

sensitive information should be declassified. SIMAREL verifies

such cores and policies by finding inductive relational invariants

over pairs of core states, using precise symbolic techniques to

avoid such inaccuracies.

Several lines of work have pursued generalizing strict

non-interference to enable the expression of the release

of partial information about sensitive inputs that may be

declassified [5, 34, 55, 62, 66]. Policy languages and pro-

gramming languages have been proposed that generalize non-

interference by extending it with mechanisms that can be used

to express under what conditions sensitive information can

be declassified, to what channels it may be declassified, and

after what program operations it may be declassified [55].

Such policy languages are related in their goal to STREAMS,

in particular approaches that are formalized as equivalence

relations over system states [4]. However, many of the above

languages [34, 62, 66] were developed originally as extensions

to program type systems [5]; adapting the concepts developed

for such languages to specify properties of hardware systems

has not been fully developed. The conditioned directives in

STREAMS in particular are similar to features in such languages

that define after what actions information may be declassified.

The key distinction between STREAMS and such languages

is that in STREAMS, conditions can be arbitrary conditions

expressed in propositional logic, but such policies can be

verified fully automatically by SIMAREL.

Previous work has also developed proof calculi for proving

general relational properties of multiple program executions,

founded on relational Hoare-logic [8]. Relational Hoare logic

provides a powerful framework for proving rich properties of

programs, which need not necessarily use bounded storage.

However, it does not provide techniques for inferring proofs in

the system automatically. Our approach is related, in that we

view our policy-satisfaction problem as verifying a property

over all pairs of program runs. However, our approach is

restricted to a much more limited domain than that addressed by

relational Hoare logic, namely sequential circuits that operate

over a bounded space of memory. Focusing on this domain

has enabled us to develop a fully automatic prover.

Previous work has shown that the problem of verifying

that a program P satisfies a two-trace property Q can be

reduced to verifying that the self-composition of P satisfies

a safety property derived from Q [7, 59]. Self-composition is

primarily applicable to verifying the flow safety of programs

that do not operate over input streams; as a result, it is

not directly applicable to verifying conditional information

release of sequential circuits with bounded storage (see §IV-C).

Previous work has proposed that relational properties of

two programs P0 and P1 can be verified by constructing a

suitable product program of P0 and P1 and deriving inductive

invariants of the product [6]. SIMAREL, which considers pairs

of runs of a circuit, uses a similar observation. However,

previous work assumes that product programs are constructed

manually, whereas SIMAREL verifies the flow security of

circuits automatically.

c) Symbolic verification: Several model checkers have

been proposed that attempt to efficiently verify a core or

program by modeling the transition relation of the system as a

symbolic formula [14, 38, 41]. In particular, several approaches

have been proposed for finding a proof that a core satisfies

a specification by synthesizing interpolants that prove that

particular executions of the system are correct [27, 29, 39].

Interpolation problems have been introduced that accurately

model the problem of proving the safety of intraprocedural

traces [40], and interprocedural traces [26], to find flow-

sensitive invariants [2], and to simultaneously prove that

multiple traces of a program satisfy a given safety property [54].

SIMAREL is similar to the above approaches, in that it

proves that a give core C is flow-secure by generalizing

from proofs that bounded runs of C are flow-secure, which

are synthesized from interpolants. However, unlike the above

approaches, SIMAREL checks if a given core satisfies a property

defined over all pairs of runs. As a result, SIMAREL synthesizes

a proof that all pairs of runs up to a bound are flow secure,

using a novel procedure (§IV-B1) that cannot be efficiently

simulated using techniques proposed in the above work.

VII. CONCLUSION

We have presented a policy language, named STREAMS, for

expressing information flow policies with declassification for

sequential core designs. We have also presented an automatic

verifier, named SIMAREL, that determines if a given core design

satisfies a given STREAMS policy. Proving that a given system

satisfies such a property amounts to synthesizing invariants of

a suitable product system. SIMAREL finds relational invariants

for such a system efficiently by using a novel procedure for

efficiently synthesizing relational invariants that prove the flow

security of all pairs of runs of a system up to a bounded length.

We have written policies in STREAMS for cores that

implement several application and control subsystems. We used

SIMAREL to determine that several open-source cores satisfy

expected information flow policies. We also used it to prove

434432

that other designs, in particular a flash controller, an SD card

controller, a robotics controller, a DSP module, a debugging

interface, and an Ethernet controller, allow surprising leaks of

sensitive information.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their insightful

comments and feedback. We also thank David Heath and

Amir Yazdanbakhsh for their close and ongoing collaboration

on related work. This work was supported in part by NSF

awards CNS # 1526211, CCF # 1553192, ECCS # 1609823;

Semiconductor Research Corporation contract # 2015-TS-2636;

and gifts from Google, Qualcomm, and Microsoft.

REFERENCES

[1] AxBench: approximate computing benchmarks. http://axbench.
org, 2016.

[2] A. Albarghouthi, A. Gurfinkel, and M. Chechik. Craig interpre-
tation. In SAS, 2012.

[3] Altera Corporation. Altera SoCs. http://www.altera.com/devices/
processor/soc-fpga/overview/proc-soc-fpga.html, 2016.

[4] A. Askarov and A. Sabelfeld. Gradual release: Unifying
declassification, encryption and key release policies. In SP,
2007.

[5] A. Banerjee, D. A. Naumann, and S. Rosenberg. Expressive
declassification policies and modular static enforcement. In SP,
2008.

[6] G. Barthe, J. M. Crespo, and C. Kunz. Relational verification
using product programs. In FM, 2011.

[7] G. Barthe, P. R. D’Argenio, and T. Rezk. Secure information
flow by self-composition. In CSFW, 2004.

[8] N. Benton. Simple relational correctness proofs for static
analyses and program transformations. In POPL, 2004.

[9] U. Berkeley. Berkeley logic interchange format (BLIF). Oct
Tools Distribution, 2:197–247, 1992.

[10] R. K. Brayton and A. Mishchenko. ABC: an academic industrial-
strength verification tool. In CAV, 2010.

[11] H.-C. Chang, C. B. Shung, and C.-Y. Lee. A Reed-Solomon
product-code (RS-PC) decoder chip for DVD applications. SSC,
36(2):229–238, 2001.

[12] E. S. Chung, J. D. Davis, and J. Lee. LINQits: Big data on
little clients. In ISCA, 2013.

[13] E. S. Chung, J. C. Hoe, and K. Mai. CoRAM: An in-fabric
memory architecture for FPGA-based computing. In FPGA,
2011.

[14] E. M. Clarke, K. L. McMillan, S. V. A. Campos, and V. Hartonas-
Garmhausen. Symbolic model checking. In CAV, 1996.

[15] M. R. Clarkson and F. B. Schneider. Hyperproperties. Journal
of Computer Security, 18(6), 2010.

[16] B. Coppens, I. Verbauwhede, K. D. Bosschere, and B. D. Sutter.
Practical mitigations for timing-based side-channel attacks on
modern x86 processors. In SP, 2009.

[17] Crowd Supply. Snickerdoodle dev board boasts arm proces-
sor with onboard FPGA. https://www.crowdsupply.com/krtkl/
snickerdoodle, 2016.

[18] L. M. de Moura and N. Bjørner. Z3: an efficient SMT solver.
In TACAS, 2008.

[19] N. Eén and N. Sörensson. An extensible sat-solver. In SAT,
2003.

[20] W. Enck, P. Gilbert, B. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. Sheth. TaintDroid: An information-flow tracking system
for realtime privacy monitoring on smartphones. In OSDI, 2010.

[21] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam,
and D. Burger. Dark silicon and the end of multicore scaling.
In ISCA, 2011.

[22] J. Gantz and D. Reinsel. Extracting value from
chaos. http://www.emc.com/collateral/analyst-reports/idc-
extracting-value-from-chaos-ar.pdf.

[23] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and
M. C. Rinard. Information flow analysis of android applications
in droidsafe. In NDSS, 2015.

[24] J. Graf, M. Hecker, M. Mohr, and G. Snelting. Tool demonstra-
tion: Joana. In POST, 2016.

[25] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Toward
dark silicon in servers. In MICRO, 2011.

[26] M. Heizmann, J. Hoenicke, and A. Podelski. Nested interpolants.
In POPL, 2010.

[27] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan.
Abstractions from proofs. In POPL, 2004.

[28] Intel Corporation. Intel completes acquisition of Al-
tera. https://newsroom.intel.com/news-releases/intel-completes-
acquisition-of-altera/, 2015.

[29] R. Jhala and K. L. McMillan. Interpolant-based transition relation
approximation. In CAV, 2005.

[30] P. Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In CRYPTO, 1996.

[31] A. laboratory. ARITH project: High-level design methodology
for integer/Galois-field arithmetic circuits for embedded systems.
http://www.aoki.ecei.tohoku.ac.jp/arith/.

[32] D.-U. Lee, J. D. Villasenor, W. Luk, and P. H. Leong. A hardware
Gaussian noise generator using the Box-Muller method and its
error analysis. IEEE Computers, 55(6):659–671, 2006.

[33] H. Lee. A high-speed low-complexity Reed-Solomon decoder
for optical communications. TCAS-II, 52(8):461–465, 2005.

[34] P. Li and S. Zdancewic. Downgrading policies and relaxed
noninterference. In POPL, 2005.

[35] X. Li, V. Kashyap, J. K. Oberg, M. Tiwari, V. R. Rajarathinam,
R. Kastner, T. Sherwood, B. Hardekopf, and F. T. Chong. Sapper:
a language for hardware-level security policy enforcement. In
ASPLOS, 2014.

[36] X. Li, M. Tiwari, J. Oberg, V. Kashyap, F. T. Chong, T. Sherwood,
and B. Hardekopf. Caisson: a hardware description language
for secure information flow. In PLDI, 2011.

[37] D. Mahajan, J. Park, E. Amaro, H. Sharma, A. Yazdanbakhsh,
J. Kim, and H. Esmaeilzadeh. Tabla: A unified template-based
framework for accelerating statistical machine learning. In HPCA,
2016.

[38] K. L. McMillan. Applying SAT methods in unbounded symbolic
model checking. In CAV, 2002.

[39] K. L. McMillan. An interpolating theorem prover. In TACAS,
2004.

[40] K. L. McMillan. Lazy abstraction with interpolants. In CAV,
2006.

[41] K. L. McMillan. Interpolants and symbolic model checking. In
VMCAI, 2007.

[42] T. Moreau, M. Wyse, J. Nelson, A. Sampson, H. Esmaeilzadeh,
L. Ceze, and M. Oskin. SNNAP: Approximate computing on
programmable socs via neural acceleration. In HPCA, 2015.

[43] A. C. Myers. JFlow: Practical mostly-static information flow
control. In POPL, 1999.

[44] A. C. Myers and B. Liskov. A decentralized model for
information flow control. In SOSP, 1997.

[45] A. C. Myers and B. Liskov. Complete, safe information flow
with decentralized labels. In SP, 1998.

[46] J. Norhuzaimin and H. Maimun. The design of high speed
UART. In AEMC, pages 306–310, 2005.

[47] opencores.org. http://opencores.org/project, 2016.
[48] opencores.org. http://opencores.org/project,opencores,

announcement, 2016.
[49] S. Paul, N. Jayakumar, and S. P. Khatri. A fast hardware

approach for approximate, efficient logarithm and antilogarithm
computations. IEEE VLSI, 17(2):269–277, 2009.

435433

[50] J. S. Plank et al. A tutorial on Reed-Solomon coding for fault-
tolerance in RAID-like systems. Softw Pract Exp., 27(9):995–
1012, 1997.

[51] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Con-
stantinides, J. Demme, H. Esmaeilzadeh, J. Fowers, G. P.
Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil, A. Hormati,
J. Kim, S. Lanka, J. R. Larus, E. Peterson, S. Pope, A. Smith,
J. Thong, P. Y. Xiao, and D. Burger. A reconfigurable fabric for
accelerating large-scale datacenter services. In ISCA, 2014.

[52] A. R. Putnam, D. Bennett, E. Dellinger, J. Mason, and P. Sun-
dararajan. CHiMPS: A high-level compilation flow for hybrid
CPU-FPGA architectures. In FPGA, 2008.

[53] I. S. Reed and G. Solomon. Polynomial codes over certain
finite fields. Journal of the society for industrial and applied
mathematics, 8(2):300–304, 1960.

[54] P. Rümmer, H. Hojjat, and V. Kuncak. Disjunctive interpolants
for horn-clause verification. In CAV, 2013.

[55] A. Sabelfeld and D. Sands. Dimensions and principles of
declassification. In CSFW-18, 2005.

[56] E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ever
wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask). In
SP, 2010.

[57] F. Standaert, S. B. Örs, J. Quisquater, and B. Preneel. Power
analysis attacks against FPGA implementations of the DES. In
FPL, 2004.

[58] F. Standaert, L. van Oldeneel tot Oldenzeel, D. Samyde, and
J. Quisquater. Power analysis of FPGAs: How practical is the
attack? In FPL, 2003.

[59] T. Terauchi and A. Aiken. Secure information flow as a safety
problem. In SAS, 2005.

[60] M. Tiwari, J. K. Oberg, X. Li, J. Valamehr, T. Levin, B. Hard-
ekopf, R. Kastner, F. T. Chong, and T. Sherwood. Crafting a
usable microkernel, processor, and I/O system with strict and
provable information flow security. In ISCA, 2011.

[61] M. Tiwari, H. M. G. Wassel, B. Mazloom, S. Mysore, F. T.
Chong, and T. Sherwood. Complete information flow tracking
from the gates up. In ASPLOS, 2009.

[62] J. A. Vaughan and S. Chong. Inference of expressive declassifi-
cation policies. In SP, 2011.

[63] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin,
J. Lugo-Martinez, S. Swanson, and M. B. Taylor. Conservation
cores: Reducing the energy of mature computations. In ASPLOS,
2010.

[64] C. Wolf. Yosys open synthesis suite. http://www.clifford.at/
yosys/.

[65] Xilinx, Inc. All programmable SoC. http://www.xilinx.com/
products/silicon-devices/soc/, 2016.

[66] S. Zdancewic and A. C. Myers. Robust declassification. In
CSFW-14, 2001.

[67] D. Zhang, A. Askarov, and A. C. Myers. Language-based control
and mitigation of timing channels. In PLDI, 2012.

[68] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers. A hardware
design language for timing-sensitive information-flow security.
In ASPLOS, 2015.

APPENDIX

Let C ∈ Cores, F ∈ STREAMS, and L ∈ Lvs be fixed for the
remainder of this section, as in §IV. In this section, we provide a
correctness proof of SIMAREL by proving results concerning C, F ,
and L.

A. Indexed invariants as evidence of policy satisfaction
Relational invariants of C are a symbolic relation that (1) is entailed

by the initial condition of C and (2) combined with the semantics of
taking a step in each of two copies of state, entail itself.

Definition 8. Let R0, R1 ∈ SymRels be such that:
IsInitC [Q0], IsInitC [Q1], InEq,OutEq |= R0 ∨R1 (3)

R0, ψC [I0, Q0, Q
′
0],¬En[I0] |= (4)

(R0 ∨R1)[Q
′
0/Q0]

R1, ψC [I1, Q1, Q
′
1],¬En[I1] |= (5)

(R0 ∨R1)[Q
′
1/Q1]

R0 ∨R1, ψC [I0, Q0, Q
′
0], ψC [I1, Q1, Q

′
1],

En[I0],En[I1],
(InEq ∧ LvIns0 = LvIns1 =⇒ InEq′),

(OutEq ∧ LvOuts0 = LvOuts1 =⇒ OutEq′) |= (6)

R0 ∨R1[Q
′
0, Q

′
1,Eqs

′]
Then (R0, R1) are inductive relational invariants of C.

Relational invariants R satisfy F at L if R, combined with the
assumption that two arbitrary input streams visible at L are equivalent,
imply that the resulting output streams visible at L are equivalent.

Definition 9. For R ∈ SymRels such that R, InEq |= OutEq, R
satisfies F at L.

The fact that R satisfies F at L is denoted R �L F .
Inductive relational invariants of C that satisfy F at L are evidence

that C satisfies F at L.

Lemma 1. If there are R0, R1 ∈ SymRels such that (R0, R1) are
inductive relational invariants (Defn. 8) and R0 ∨ R1 �L F , then
C �L F (Defn. 4).

Proof. (Sketch) The claim can be established directly by double
induction on the pairs of runs of C. The inductive step follows from
the inductive hypothesis and the definitions of inductive relational
invariants (Defn. 8) and policy satisfaction by inductive relational
invariants (Defn. 9).

For I ∈ IdxRels, let R0
I be∨

{I(i, j) | i, j ∈ N, (i, j), (i+ 1, j) ∈ Dom(I)}
Let R1

I be∨
{I(i, j) | i, j ∈ N, (i, j), (i, j + 1) ∈ Dom(I)}

Lemma 2. For I ∈ IdxInvs, (R0
I , R

1
I) are inductive relational

invariants (Defn. 8).

Proof. (Sketch) Apply the definition of inductive relational invariants
(Defn. 8). Eqn. 3 holds by the fact that IsInitC entails I(0, 0) (§IV-B1,
Defn. 5) and the definition of R0

I and R1
I . For Eqn. 4—Eqn. 6 are

proven by applying the fact that R0
I and R1

I are disjunctions of clauses
indexed in I , and applying the fact that each clause in I satisfies an
analogous condition, by Defn. 5.

Lemma 3. For I ∈ IdxRels, if I �L F , then R0
I ∨R1

I �L F .

Proof. R0
I and R1

I are disjunctions of clauses. For each such clause
C, C, LvIns0 = LvIns1 |= LvOuts0 = LvOuts1. Thus, R

0
I , LvIns0 =

LvIns1 |= LvOuts0 = LvOuts1, and similarly for R1
I . Thus R

0
I ∨

R1
I �L F , by Defn. 9.

If C has inductive indexed relational invariants that satisfy F at
L, then C satisfies F at L.

436434

Lemma 4. If there are I ∈ IdxInvs such that I are inductive indexed
relational invariants of C (Defn. 6) and I �L F (Defn. 7), then
C �L F (Defn. 4).

Proof. (R0
I , R

1
I) are inductive invariants, by Lemma 2. R0

I∨R1
I �L F ,

by Lemma 3. Thus, C �L F , by Lemma 1.

B. Correctness of CHK

The following lemmas concerning CHK are sufficient to prove the
soundness and completeness of SIMAREL.

Lemma 5. For k ∈ N, if CHK(k) = Unsafe, then C ��L F .

Proof. (Sketch) If CHK(k) = Unsafe, then ϕ−
0,0 ∧ ϕ+

0,0 has a model
m, by the definition of CHK (§IV-B3). The interpretation of the
variables I0i , Q

0
i , and O

0
i defines a run r0 of C that starts in an initial

state, by the use of IsInitC in ϕ−
0,0, and the use of Rest00 in ϕ+

0,0.

Similarly, the interpretation of the variables I1i , Q
1
i , and O

1
i defines a

run r1 of C.
There are some indices i, j < k such that InEqi,j holds and

OutEqi,j does not hold. It can be established by induction on step

indices that the interpretations of I0i and I1j that satisfy the enabling
condition of L in F are equal, but the interpretations of O0i and O1j
are not equal. As a result, run 0 up to i and run 1 up to j are runs
of C on inputs that are equivalent at L that result in outputs that are
not equivalent at L. Thus, C does not satisfy F at L.

CHK, given k, only returns relational invariants if they are indexed
relational invariants of C, F , and L that prove that C satisfies F at
L up to k.

Lemma 6. For k ∈ N, if I = CHK(k) ∈ IdxRels, then (1) I ∈
IdxInvs (Defn. 6) and (2) I �L F (Defn. 7).

Proof. (Sketch) Conclusion (1) follows by induction on the topologi-
cal ordering T of Zk × Zk in which CHK finds relational invariants.
The claim established by induction is that at the current indices i and
j, I restricted to all pairs of indices in T up to (i, j) are inductive
relational invariants. The base case and inductive case both follow
from the construction of ϕ−

i,j and ϕ+
i,j (§IV-B3) and the definition of

interpolants (§III-B2, Defn. 1).
Conclusion (2) follows by induction on the topological ordering

of Zk × Zk. The claim established by induction is that the current
indices i and j, at all indices i′, j′ such that (i′, j′) occurs before (i, j)
in T , I(i′, j′) combined with LvIns0 = LvIns1, entails LvOuts0 =
LvOuts1. The claim is established in the inductive step by using the
definition of ϕ+

i,j , in particular PolSati,j .

C. Correctness of HASIND

The following lemma concerning HASIND is sufficient to prove
correctness of SIMAREL.

Lemma 7. For I ∈ IdxRels, if HASIND(I) = True, then I ∈ IdxInvs
(Defn. 6).

Proof. Proof by induction on the evaluation of HASINDAUX run
on obligations O and discharged pairs D. The claim established by
induction is that I , restricted to the index pairs in D and extended
with indexed symbolic relations that contain O, are inductive indexed
invariants. For the base case, HASIND is called on {(0, 0)} and ∅
(Alg. 2), which combined with the definition of inductive relational
invariants (Defn. 6), implies the claim.

For the inductive case, for each set of obligations O and discharged
indices D on which HASIND is called, it calls itself recursively on
a set of obligations O′, construted as O with some pair of indices
(i, j) removed. If I(i, j) entails I(i′, j′) for some i′, j′ ∈ N and
(i′, j′) ∈ D, then HASIND calls itself recursively on O′ and D′

(Alg. 2, line 8). In this case, the claim is established by Defn. 6,
clause (a). Otherwise, HASIND calls itself recursively on O′ extended
with the successor of (i, j) in run 0 (Alg. 2, line 10) or run 1 (Alg. 2,

line 11). In these cases, the claim is established by Defn. 6, clauses
(b) and (c), respectively.

HASIND returns True, which it implies that it was evaluated on
the empty set of obligations, by Alg. 2. This fact, combined with the
claim established by induction, implies that I ∈ IdxInvs.

D. Correctness of SIMAREL

A proof of Thm. 1 is as follows.

Proof. If SIMAREL(C,F, L) = True, then for some k ∈ N and
I ∈ IdxRels, I = CHK(C,F, L, k), by Alg. 1. I satisfies F at
L by Lemma 6. HASIND(I) = True, by Alg. 1. I are inductive
indexed relational invariants, by Lemma 7. C satisfies F at L, by
Lemma 4.

437435

