
Verified Translation Validation of Static Analyses

Gilles Barthe∗, Sandrine Blazy†, Vincent Laporte∗, David Pichardie‡ and Alix Trieu†
∗IMDEA Software Institute

Madrid, Spain

Email: gilles.barthe@imdea.org, vlaporte@imdea.org
†CNRS IRISA - University of Rennes 1 - Inria

Rennes, France

Email: sandrine.blazy@irisa.fr, alix.trieu@irisa.fr
‡CNRS IRISA - ENS Rennes - Inria

Rennes, France

Email: david.pichardie@ens-rennes.fr

Abstract—Motivated by applications to security and high effi-
ciency, we propose an automated methodology for validating on
low-level intermediate representations the results of a source-level
static analysis. Our methodology relies on two main ingredients:
a relative-safety checker, an instance of a relational verifier
which proves that a program is “safer” than another, and a
transformation of programs into defensive form which verifies
the analysis results at runtime. We prove the soundness of the
methodology, and provide a formally verified instantiation based
on the Verasco verified C static analyzer and the CompCert
verified C compiler. We experiment with the effectiveness of
our approach with client optimizations at RTL level, and static
analyses for cache-based timing side-channels and memory usage
at pre-assembly levels.

Index Terms—verified compilation; Coq proof assistant; pro-
gram analysis; constant-time programming

I. INTRODUCTION

Static analysis based on abstract interpretation [1] is a

principled approach for proving program properties and en-

suring program safety. Traditionally, abstract interpretation

is performed at source level, partly because source programs

have a more explicit control flow and contain more information

than intermediate representations or machine code. However,

there are many scenarios where it is preferable for analyses

to consider intermediate representations or machine code. In

particular, analyses of intermediate representations are useful

in compilers for detecting opportunities to optimize programs.

Likewise, analyses of assembly code or machine code are

more appropriate for applications in security, because of the

correctness-security gap in compilers [2], [3].

In principle, the need for analyzing lower-levels could be

addressed directly, by building abstract interpreters that operate

over intermediate representations of interest. However, building

an abstract interpreter for a realistic language is a challenging

engineering task. It involves implementing symbolic algorithms

(e.g., fixpoint computation), numerical computations used

by different abstract domains (including a memory abstract

domain) that communicate together, and finally a sufficiently

precise abstract semantics that keeps track of different kinds

of properties, including symbolic equalities between Boolean

expressions, values contained in memory cells (including points-

to information), and alignment of memory accesses. Moreover,

the analysis of lower-level representations may turn out to be

less precise than the analysis of the original source programs.

A. Contributions

We propose a new methodology for carrying the results

of an abstract interpreter for a source language to lower-level

representations. Our methodology does not impact the efficiency

of generated code, and it does not require to develop new

abstract interpreters for lower-level representations. Instead,

our methodology exploits two well-known paradigms:

• inlining enforceable properties: enforceable properties are

a general class of program properties that can be enforced

using runtime monitors [4]; inlining these monitors yields

defensive forms, i.e., programs instrumented with runtime

checks for enforcing properties of interest [5].

• relative safety: relative safety is an instance of relational

verification. Its goal is to establish safety of a program

p1, under the knowledge that a program p2 is safe [6].

Relative safety plays an increasingly prominent role, in

particular in the context of cross-version verification of

real-life software [7]–[9].

Our approach combines these two ideas in a novel way

that overcomes efficiency issues with defensive programs;

specifically, defensive programs are only used as proof artefacts,

and the guarantees we get are on the unmodified code generated

by the compiler. In more detail, we instrument a source-

level analyzer so that it produces defensive programs which

verify the results of the analysis using runtime checks, and we

define an algorithm that takes as inputs a target program and

the annotations for which validation is sought, and returns a

defensive target program.

Both defensive programs will fail with a safety violation

whenever an annotation fails during execution. The relative-

safety checker is applied on the defensive form of the

compilation of the original program, and on the compilation of

the defensive form of the original program—using in the first

case the annotations that must be validated, and in the second

case the output of the static analyzer. If the relative safety

checker accepts both programs, and the compiler preserves

2017 IEEE 30th Computer Security Foundations Symposium

© 2017, Gilles Barthe. Under license to IEEE.

DOI 10.1109/CSF.2017.16

407

2017 IEEE 30th Computer Security Foundations Symposium

© 2017, Gilles Barthe. Under license to IEEE.

DOI 10.1109/CSF.2017.16

405

safety, then the annotations are correct. Note that our relative-

safety checker needs not to be adapted for any specific property

supported by the source-level analyzer, so we only need a single

relative-safety checker per target language, rather than per class

of properties verified.

We instrument our approach on top of the CompCert

compiler [10], and use it in combination with the Verasco static

analyzer [11] for proving properties of low-level programs.

Furthermore, we implement and formally verify a relative-

safety checker based on a simple but effective notion of

product program. We prove the correctness of the relative-

safety checker and the transformation into defensive form, and

obtain a soundness proof of the overall approach.

We validate our methodology with three use cases. The

first use case is optimizing compilation. We demonstrate that

lowering the results of the points-to analysis from Verasco

and exploiting these results in the common subexpression

elimination (CSE) optimization pass of CompCert leads to

substantial improvements on the number of loads that can be

eliminated: on the set of examples considered, the original

CSE from CompCert eliminates less than 60% of the loads,

whereas our modified optimization eliminates 85% of the loads.

The second use case is security and more specifically analysis

of timing side-channels. One standard methodology used for

thwarting timing and cache attacks, especially but not only in

cryptographic implementations, is the “constant-time” approach,

which mandates that branches and memory accesses do not

depend on secrets. We demonstrate that lowering the results

of the points-to analysis from Verasco and exploiting these

results in an information-flow type system for “cryptographic

constant-time” developed by Barthe and others [12] yields

major improvements, avoiding the need to rewrite programs

extensively and allowing to deal with much larger programs.

Our third use case is a resource analysis for stack usage.

We show that our method can be used for lowering resource

annotations and provides an alternative to the direct approach

developed by Carbonneaux and co-workers [13].

B. Summary of contributions

In this paper, we make the following contributions:

• a general methodology to validate the compilation of high-

level assertions (such as the properties inferred by a static

analyzer), and a proof of its soundness;

• a realization of this methodology, building on the Comp-

Cert verified compiler and on the Verasco verified static

analyzer;

• a defensive transformation for points-to assertions for C-

like and low-level languages. In the case of the low-level

language, the defensive form is formally verified (there

is no need to verify the defensive form for the source

language);

• a relative-safety checker for a low-level language that

relies on a simple but effective notion of product program

and on a weakest precondition (WP) calculus. The relative-

safety checker is also formally verified;

p
Φ

pΦ

[p]〈Φ〉〈Φ〉

DefS

DefT

SafeC

[·] 〈·〉

CosafeT

[pΦ][p]

[·]

SafeC

TCB

[p] |=T 〈Φ〉

safeT ([p])

safeS(p)

safeT ([p]〈Φ〉)

safeT ([pΦ])

safeS(pΦ)

Figure 1. Overview of our methodology

• experimental evaluations on three use cases: the CSE

optimization, a “cryptographic constant-time” analysis,

and a stack usage resource analysis.

The paper is organized as follows. First, Section II presents

our methodology. Then Sections III and IV detail the two main

components of our methodology, respectively a relative-safety

checker and a generator of defensive forms of programs. Sec-

tion V shows various intermediate results of the methodology

applied to one example program. Section VI describes the

experimental evaluation of our methodology. Related work is

described in Section VII, followed by conclusions.

Our development is available at the companion website

http://www.irisa.fr/celtique/ext/csf17/; in this document links to

the Coq formalization for a given definition or theorem are

marked with the following symbol: �.

II. TECHNICAL OVERVIEW

In this section, we outline our methodology and describe its

instantiation based on the verified CompCert compiler and the

verified Verasco static analyzer.

A. Methodology

Our methodology is illustrated in Figure 1. Consider a

compiler [·] : ProgS → ProgT mapping programs from a

source language S to programs in a target language T , and a

translation 〈·〉 : SpecS → SpecT mapping properties of source

programs to properties of target programs. Our goal is to define

a lightweight and automated method for checking that compiled

programs satisfy properties in the image of 〈·〉, i.e., to check

[p] |=T 〈Φ〉, where |=T denotes validity.

We assume given notions of safety safeS and safeT for

source and target programs, and suppose that the compiler pre-

serves safety, i.e., for every source program p, if safeS(p) then

safeT ([p]). We also assume algorithms that compute defensive

programs for source and target levels. These algorithms take

as inputs a program p together with a property Φ, and return

408406

a so-called defensive program pΦ that augments the original

program p with additional instructions for checking at runtime

that the property Φ is valid. Given a target program q and a

target property Ψ, we let qΨ denote the defensive form of q
with respect to Ψ. We assume that the defensive form on target

programs is precise, i.e. for every target program q and target

property Ψ, if safeT (qΨ) then q |=T Ψ.

B. Associated proofs

Our methodology is based on the following observation:

thanks to compiler correctness, proofs of [p] |=T 〈Φ〉 can

be decomposed into a safety proof safeS(pΦ), and a relative

safety proof safeT ([pΦ]) ⇒ safeT ([p]〈Φ〉). The first proof can

be obtained automatically from a safety checker safeC for

source programs—in other words, safeC is a Boolean-valued

function such that for every source program p, safeC(p) = true
implies safeS(p).

For the second proof, observe that relative safety is a

relational property and can be established via the construction

and verification of a product program. Informally, product

programs are executable representations of relative safety proofs

between target programs. Product programs are written in an

extension of T with assert statements and havoc statements,

and their validity is captured by the following conditions: if

q× is a valid product program for q1 and q2, and q× does not

raise assertion failures, then safety of q1 entails safety of q2.

In line with recent developments [14], the validity of

product programs is verified in two steps. First, we develop

a product-program checker productC, which takes as inputs

two target programs q1 and q2 and a product program q×
and performs structural verifications to check whether q×
is a well-formed product program of q1 and q2. The cor-

rectness of productC is given by the following implication:

if productC(q1, q2, q×) = true, and safeT (q1), then either

safeT (q2) or q× raises assertion failures. Second, we develop

an assertion verifier unfailC for product programs; it checks

that the product program will not raise any assertion failure

at runtime. The combination of these two algorithms provides

a (partial) method for checking relative safety between two

programs q1 and q2, given a product program q×. Indeed,

relative safety follows from productC(q1, q2, q×) = true and

unfailC(q×) = true. To complete the method, we implement a

product program generator productG that takes as inputs target

programs q1 and q2 and computes a product program q×. This

generator together with the method for checking relative safety

are represented in Figure 1 by the box called cosafeτ .

In summary, we propose an algorithmic method for formally

verifying properties of target programs, based on the following

components: defensive forms for source and target programs,

and generator of product programs, and three checkers: a safety

checker safeC for source programs, a product program checker

productC relating target and product programs, and a verifier

unfailC for product programs.

C. Instantiation of the methodology

We develop a verified instantiation of our method on top of

the CompCert compiler. In this setting, safety has a precise

meaning: a program is safe if it has no undefined behavior

according to the CompCert semantics.

Our source language is the C-like language C#minor;

C#minor is the intermediate form considered by the verified

static analyzer Verasco, and therefore we can use Verasco for

safety checking. Our target language is RTL (after CompCert

optimization passes). RTL is a natural trade-off, for two reasons.

First, choosing RTL over lower-level representations (which

assume finitely many registers) simplifies the instantiation,

both for the defensive form of target programs and also for

the construction and verification of product programs. Second,

most of the complexity of the compiler is found in its middle-

end; choosing RTL eliminates the need to prove correctness

of translation of annotations of middle-end optimizations.

Moreover, it is relatively direct (and done in this paper) to

prove correctness of the translation of annotations from RTL

to assembly-level.

We focus on a restricted class of properties, namely points-

to assertions. These assertions capture aliasing relationships

and are essential for detecting and validating optimizations

on intermediate representations and for carrying information-

flow analyses on assembly programs. Pleasingly, the CompCert

memory model is shared across the different intermediate lan-

guages, and therefore so are points-to assertions; in particular,

the function 〈·〉 is extremely simple. It should be noted however

that dealing with points-to annotations requires some ingenuity

because symbolic pointers computed by the static analysis refer

to call stacks, which must therefore be accounted in the code of

defensive programs. We solve this issue by introducing (only)

in the defensive program a shadow stack and ensuring that it

remains in line with the stack of the original program.

Regarding to the notations used in Figure 1, given a

source program p and its defensive form pΦ, we use twice

the Verasco formally verified static analyzer to prove both

properties safeS(p) and safeS(pΦ). Properties safeT ([p]) and

safeT ([pΦ]) are ensured by the CompCert formally verified

compiler. Moreover, the property safeT ([p]〈Φ〉) is ensured by

our relative-safety checker that we detail in section III.

As required by our methodology, we prove that the defensive

form at target level is precise, under the additional assumption

that the target program is safe. Making this additional assump-

tion does not affect the generality of our approach, since the

target program is obtained via CompCert and hence is safe.

The product checker is novel, and optimized for the purpose

of proving relative safety between programs that are structurally

similar in a strong sense. Finally, the verifier uses standard

techniques for generating a set of verification conditions, to-

gether with simple (but effective) custom tactics for discharging

verification conditions automatically.

D. Trusted computing base

The Trusted Computing Base (TCB) of our methodology

includes the generator of target defensive forms, the safety

409407

checker, the relative-safety checker, and the product program

checker for validity and non-failure (see Figure 1). On

the contrary, the generators of product program and source

defensive form are not in the TCB and may be incorrect—as

usual, it may limit the usefulness of our approach, but it will

not affect its soundness.

An important aspect of our instantiation is mechanization:

in order to eliminate the compiler, target defensive form, and

checkers from the TCB, they are programmed in a proof assis-

tant, that is also used to formally prove the assumptions used for

justifying our method: preservation of safety for the compiler,

precision of defensive form on target programs, correctness

of the checkers. Thus, our instantiation is foundational, in the

sense that the TCB solely consists of the CompCert compiler.

III. RELATIVE-SAFETY CHECKING

One main component of our methodology is a checker for

relative safety. This section describes the design and formal

verification of a checker for a slightly more powerful property,

namely equivalence.

A. Overview

The purpose of this component is to prove the safety of

a program R knowing that another program L is safe. In

our setting, the two programs to compare are two low-level

defensive programs that, by construction, are very similar.

Therefore, we prove a much stronger property: a simulation,

which in turn implies program equivalence, hence relative

safety. Specifically, the relative safety checker generates an

obligation for all control-flow instructions and potentially

unsafe instructions (instructions in any of these two sets are

called “critical”): each time the R program branches, the L
program must take the same path; this ensures that the programs

have the same (local) control flow. Moreover, each time the R
program attempts to perform a potentially-unsafe step, the L
program can perform the same potentially-unsafe step. Knowing

that the L program is safe, we can conclude that the step in

R is also safe.

In addition, the similarity in the structure of the two programs

enables us to do a modular proof. Indeed, they execute the same

functions, in the same order, with equal arguments. Therefore,

it suffices to check equivalence of each pair of individual

functions: checking can thus be performed intra-procedurally,

and can be applied even if the call-graph is unknown — e.g.,

due to function pointers and recursion.

The equivalence proof of two functions L and R is built from

a product program f . Such a program — expressed in a simple

language called RTL� (see Figure 2) — over-approximates

the behaviors of the two initial functions L and R: it features

the safe instructions of both L and R, and is decorated with

assertions claiming that the critical steps of L are the same

as the critical steps in R. This means that the two functions

may arbitrarily differ on their safe sides, provided their critical

parts match. Since we expect the two functions to have similar

loop structures, we consider as critical the instructions whose

execution may be stuck — i.e., may have undefined behavior

Instructions:

i ::= skip(l) no operation (go to l)
| op(optarget , �r, r, l) arithmetic operation

| if(optarget , �r, ltrue, lfalse) if statement

| return function end

| load(α, κ, addr , �r, r, l) memory load

| store(α, κ, addr , �r, r, l) memory store

| call(sig , id , �r, r, l) function call

| return r function return

Control-flow graphs:

f, g : l �→ i finite map

Functions:

L,R ::= {param �r; stack n; start l; graph g}

RTL only

Figure 2. Syntax of the RTL and RTL� languages

in the RTL small-step semantics defined in CompCert — but

also those that appear as loop headers or contribute to the

call-graph (calls and returns).

If the product is valid, i.e., if none of its executions can

violate the assertions, then the two functions are equivalent.

In this way, we effectively reduce the problem of checking

equivalence to the problem of validating that a RTL� program

is well-annotated. Of course, since equivalence checking is in

general undecidable, the product construction may fail.

B. The language for product programs

The equivalence checker operates on programs written

in the RTL language of CompCert. Its formal syntax is

given in Figure 2. The RTL intermediate language represents

programs by control-flow graphs with explicit program points,

is structured in functions and instructions, and uses machine-

dependent operations and addressing modes (optarget). Instruc-

tions correspond roughly to elementary instructions of the target

processor, but operate over temporaries (i.e., pseudo-registers,

where infinitely many pseudo-registers are available) [10]. Each

instruction lists explicitly the nodes of its successors.

So as to implement our methodology, we have added to

the syntax of load and store instructions a named annotation

(represented by the α meta-variable in Figure 2). Such

annotations do not affect the semantics of the RTL language:

we will later define the meanings of a particular instantiation of

these annotations and use them to prove invariants of annotated

programs (see Section IV-B).

The language RTL� in which the product programs are

expressed is basically a subset of RTL. Thanks to the great

similarity of the two programs to compare, the products need

not to call functions, to return values, or to access the memory.

To model these features, we rely on an extra havoc operator for

non-deterministic assignment. Thus only four instructions are

used in RTL�: skip, operations (including the havoc operator),

conditional branches and return without value. Nodes of a

product program are decorated with sets of assertions: first-

order formulas involving claims about symbolic expressions se .

410408

Symbolic expressions:

se ::= r | id | optarget(�se)
Assertions:

a ::= True | se | se1 = se2 | a1 =⇒ a2 | ¬a | ∀r, a

SEρ(r) = ρ(r)

SEρ(id) = id

SEρ(optarget(�se)) = E(optarget ;SEρ(�se))

�True�(ρ) = true

�se�(ρ) = SEρ(se) = 1

�se1 = se2�(ρ) = SEρ(se1) = SEρ(se2)

�a1 =⇒ a2�(ρ) = �a1�(ρ) =⇒ �a2�(ρ)

�¬a�(ρ) = ¬�a�(ρ)

�∀r, a�(ρ) = ∀v, �a�(ρ[r �→ v])

Figure 3. Syntax and semantics of RTL� assertions

Their syntax is formally given in Figure 3: expressions are

made of registers, identifiers and RTL operations applied to

such expressions; assertions claim that a symbolic expression

evaluates to true, that two expressions evaluates to the same

value, or are composed of assertions using implication, negation,

and universal quantification over the value of a given register.

Universal quantification is not expected to appear in assertions

generated during the product construction. However, it is

introduced when we compute weakest preconditions of havoc
instructions. The semantics of these expressions is defined by

a partial evaluation function SE ·(·), also defined in Figure 3,

which itself relies on the evaluation E(·; ·) of RTL operations.

Finally, the semantics of assertions is formally defined at the

bottom of Figure 3 as predicates over register valuations ρ.

The semantics of a product function f is expressed as a

small-step relation between execution states 〈l; ρ〉 in which l is

the program point of the next instruction to execute and ρ is the

current valuation of the registers. It is given in Figure 4, where

E(e;�a) denotes the evaluation of operation or condition e on

arguments �a. Notice that there is no call-stack nor memory

in the state. There is also a particular state • that denotes a

terminated execution. Notation f [l] represents the instruction

at program point l in control-flow graph f , if any.

Execution starts at node 1, and registers initially have

arbitrary values, which may be constrained by some precondi-

tion. Execution of instruction return results in the final state.

Instruction skip(l′) leaves the registers unchanged and moves

to program point l′. To execute instruction op(o,�a, d, l′), in

which o is a RTL operator, this operator is first applied to

the values of registers �a in the current state; this yields a

value v that is assigned to register d; execution then moves to

program point l′. The havoc operator takes no arguments and

evaluates to any (unspecified) value v. To execute instruction

if(c,�a, ltrue, lfalse), the condition c is first evaluated on the

values of registers �a in the current state; depending on the

f [l] = return
〈l; ρ〉 → •

f [l] = skip(l′)
〈l; ρ〉 → 〈l′; ρ〉

f [l] = op(o,�a, d, l′) E(o; ρ(�a)) = v

〈l; ρ〉 → 〈l′; ρ[d �→ v]〉
f [l] = op(havoc, [], d, l′)
〈l; ρ〉 → 〈l′; ρ[d �→ v]〉

f [l] = if(c,�a, ltrue, lfalse) E(c; ρ(�a)) = true

〈l; ρ〉 → 〈ltrue; ρ〉
f [l] = if(c,�a, ltrue, lfalse) E(c; ρ(�a)) = false

〈l; ρ〉 → 〈lfalse; ρ〉

Figure 4. Semantics of product programs

y = 2× x

z = x+ 1

return z

y = 2× x

z = x+ 1

return z

assume x̀ = x́

ỳ = 2× x̀

z̀ = x̀+ 1
ý = 2× x́
ź = x́+ 1

assert z̀ = ź
return

Figure 5. A function and its self-product

Boolean result, execution proceeds, with unchanged registers,

either to program point ltrue or to program point lfalse.

C. Well-formed products

To be able to reason about product programs without

reasoning on the exact procedure that builds them, we first

give a formal specification of a well-formed product f of two

functions L and R.

The registers of a product program mirror the registers of

the original programs; to make this link more visible, we note

r̀ the register which mirrors register r of the left program, and

ŕ the register which mirrors register r of the right program.

(We assume that for all names x and y, the names x̀ and ý
are distinct.)

The property that we intend to prove is asymmetric: if

L is safe, then so is R. Similarly, the specification of well-

formed products, which justifies this fact, is asymmetric.

This specification is built on the notion of cuts, acting as

synchronization points on critical instructions in the product

program (which interleaves the instructions of the two initial

functions). A cut is a triple (p̀c, π, ṕc) of related program points,

where p̀c is a program point of function L, ṕc is a program

point of function R, and π is a program point of the product f .

Figure 5 gives an example of a product program and shows

its associated cuts. It presents a function with parameter x
and body y = 2 × x; z = y + 1; return z — once on the left,

411409

and once on the right — and a possible well-formed product

of this function with itself — in the middle. For the sake of

readability, we took some liberty with the syntax. The dotted

lines represent the cuts.

With this notion of cuts, there is some freedom in how similar

the two programs must be. In particular, the control-flow is only

required to be locally similar, which makes the relative-safety

checker robust to various kinds of loop unrollings.

The entry points must form a cut, and the product has a

precondition that states that the function arguments are equal;

in the example, x̀ = x́.

The path from one cut to the following one corresponds to the

parallel execution of the three functions, from the corresponding

program points. Along such a path, the L function executes

exactly one step. For the R function, there are two cases:

• either the step in L is safe, then R executes an arbitrary

number of safe steps (none, one or many, like in the first

two cuts in Figure 5);

• or the step in L is critical, then R executes a similar step

followed by an arbitrary number of safe steps (e.g., the

return step in Figure 5).

In the first case (a left step that is not critical), we require

that the product has the following shape: one instruction that

models the (safe) instruction from L, followed by a sequence

of (safe) instructions that model the instructions from R. This

definition captures any kind of reordering and interleaving of

non-critical instructions.

In the second case (critical left step), the product obeys some

constraints, that are specific to each instruction, and described

in Figure 6. These constraints have the following shape:

• the left instruction and the right one must be similar;

• the product is decorated with assertions that claim that

the arguments of the instructions are equivalent (in the

example, that the returned values are equal);

• one or more instructions model the common instruction;

• the product features register to register copies that capture

the property that both original instructions have obtained

the same result.

It must be noted that only the shape of the critical instructions

must match; they can be applied to dissimilar arguments (for

instance to variables with unrelated names).

In both cases, the nodes that are reached at the end of the

paths that are related at a cut must also form a cut.

More specifically, for loads, addresses must be equal, the

read value is indeterminate (hence the havoc operator), yet both

loads read the same value, as shown in Figure 61. For stores,

addresses must be equal, written values must be equal, and the

statement has no effect. For conditional branches, the branching

conditions must be equivalent (cnz is the RTL operation which

turns its integer argument into a Boolean value). A function

1This product construction can be adjusted to express weaker invariants of
the memories: for instance that the two memories only agree on a low part
but may arbitrarily differ on a high part. Such an invariant could be useful to
prove non-interference of a program. But such a use of a product program is
way beyond the scope of this paper.

Left Right Product

x = loadκ p y = loadκ q
assert p̀ = q́
x̀ = havoc

ý = x̀

storeκ(p, u) storeκ(q, v)
assert p̀ = q́
assert ù = v́

if (x) if (y)
assert cnz(x̀) = cnz(ý)

if (x̀)

x = p(�u) y = q(�v)

assert p̀ = q́−−−−−−−−→
assert ù = v́
x̀ = havoc

ý = x̀

return return return

return x return y
assert x̀ = ý
return

Figure 6. Product of critical instructions

call is similar to the load and store cases at once, but with

a more sophisticated address computation: called functions

must be equal and arguments must be equal. For returns, the

returned values must be equal, if any.

Finally, we need to ensure that both functions eventually

progress, i.e., that none is waiting forever. Since critical steps

are always synchronized due to the previous rules, problems

may only arise with safe steps. On the one hand, the conditional

branches and loop headers are considered as critical steps: this

ensures that safe paths are free of branches and cycles, hence

that the left program does not wait forever. On the other hand,

to justify that the right program does not wait forever, cuts

have a height that counts how many left steps will be executed

before the right function makes progress. These heights are

computed when checking the well-formedness of the product,

along with the property that heights actually decrease on every

left step. On Figure 5, the first cut has height one (as the right

function waits for one step), and the two other cuts have height

zero.

So as to prove that our product construction yields well-

formed products, we have implemented a checker for well-

formedness and proved it correct.

D. Valid products

The key of relational verification using product programs

is to reduce relational properties to properties about a single

program: relational invariants (about the running states of two

programs) are expressed as invariants of a single program (the

product).

The validity of the assertions within the product programs

(as program invariants) justifies the simulation between the

two initial functions. We thus formally define the validity of

products and how this property is automatically checked.

Definition III.1 (Valid state, valid function �). Given a RTL�

function f decorated with assertions δ (where δ maps nodes to

sets of predicates), an execution state 〈l; ρ〉 is valid when the

412410

valuation of the registers satisfies all assertions a at the current

program point l: ∀a, a ∈ δ(l) =⇒ �a�(ρ). Function f is valid
under precondition P , noted f |=P δ, when all reachable states

are valid, i.e., when the “valid state” predicate is an invariant

under precondition P .

So as to prove the standard verification problem that a

function is valid, we implemented a weakest-precondition

(WP) calculus for the RTL� language as well as a verification-

condition generator (VC-gen). To this end, we need to infer

loop invariants. These invariants must reflect the transformation

which links the two programs. In our use cases, the invariants

correspond to equality of the variables that are live at the loop

headers of the initial programs. We use the liveness analysis that

is available in CompCert for RTL functions to automatically

infer these invariants. The resulting verification conditions,

expressed in the assertion language presented in Figure 3 are

then automatically discharged by a simplification procedure,

that we implemented and proved correct in Coq.

The formal correctness of the implementation of the checker

for product validity is made explicit by the following theorem.

Theorem III.1 (Correctness of the VC-gen �). Given a RTL�

function f decorated with assertions δ and a precondition P ,
the verification-condition generator returns a set of verification
conditions such that the conjunction of all these properties
implies that the decorated function is valid under the given
precondition:

∧

a∈VC-gen(f,δ,P)

(∀ρ, �a�(ρ)) =⇒ f |=P δ.

E. Simulation

The correctness theorem of the product construction ex-

presses that the assertions in the product functions capture the

relative safety of the two initial programs.

Theorem III.2 (�). Given two programs L and R, if they
have the same global variables and if for every function L
in L, there exists a function R in R, with same name and
signature, such that there exists a well-formed product f of L
and R, then, if all such products are valid, there is a simulation
between L and R.

The proof sketch is the following. We introduce a simulation

relation between states that extends the notion of cuts (program

points in related states belong to some cut). Formally, related

states have equal memories and equal stack pointers; their

program counters (respectively p̀c and ṕc) as well as their

register banks (respectively r̀s and ŕs) are related through a

program point l and a register bank ρ such that: the state 〈l; ρ〉
is reachable in the product; program points p̀c, ṕc, and l form

a cut; and the content of the register banks agree:

∀x, r̀s(x) = ρ(x̀) ∧ ŕs(x) = ρ(x́).

Notice that in this relation, the content of the registers of

the left program and of the right program are not directly

related. When the simulation reaches a program point decorated

char G[3], H;
void init(char *p, int *q) {

p += any_int() % 3;
*p = 0; // G: [0; 2]
*q = 1; } // 1.x: [0; 0]

int main(void) {
int x;
init(G, &x);
return x; // 0.x: [0; 0]

}

Figure 7. A simple program

with assertions about the state of the product program, the

validity of an assertion entails a relation between the contents

of the registers of the initial programs. For instance, if the next

instruction to execute in the left program is return x, then the

well-formedness of the product function implies that the next

instruction in the right program also has the shape return y (for

some unspecified register y) and the validity of the assertion

x̀ = ý in the product implies that the returned values in the

two programs are equal.

IV. DEFENSIVE ENCODING OF ANNOTATIONS

This section details the second main component on which

our methodology relies, namely the generation of defensive

programs from annotated programs. This component has two

goals: first it must precisely encode the assertions, so that the

defensive programs always fail when they detect an assertion

violation; second, and this is more specific to this methodology,

the two defensive programs must be sufficiently similar, to

ensure the success of the relative-safety check. We first describe

its implementation and then its formal verification.

A. Annotation syntax

We focus on points-to annotations: each instruction that

accesses the memory (i.e., every load and store) is annotated

with an optional set of symbolic pointers. Moreover, during

compilation, local variables of functions are forgotten and

simply allocated in a single stack frame at different offsets

during the compilation from C#minor (i.e., before generating

RTL code, on which our defensive transformation operates).

Thus, we define a symbolic pointer as a symbolic block (either

a global variable name or a depth in the call stack) together with

a concrete range that denotes the pointer offset. Syntactically

speaking, we use the annotation (d.x: [l; h]) to represent pointers

to the variable x in the stack frame at relative depth d in the

call stack and whose offsets are between l and h; and the

annotation (G: [l; h]) to represent the pointers to the global

variable G whose offsets are between l and h.

As an example, consider the program of Figure 7; it is

shown using C syntax for easier reading but the annotation

inference is done at the C#minor level. The three annotations

that are automatically inferred by the Verasco static analyzer

are shown as comments in the figure. There are three memory

accesses in this program: the store through pointer p, the store

through pointer q, and the load of x at the end of the main

function. The first one writes global variable G at some offset

between 0 and 2 (because of the %3 computation); it can thus

be annotated with (G: [0; 2]) in the init function. The second

413411

one writes the local variable x of the main function; when this

store is run, the main function is at relative depth 1 in the call

stack; therefore this store is annotated with (1.x: [0; 0]). The

third memory access loads the local variable x of the main
function (i.e., at relative depth 0 in the call stack); it is thus

annotated with (0.x: [0; 0]).

B. Annotation semantics

Each annotation represents a set of concrete pointers. The

program2 allows us to statically compute the concrete addresses

of global variables, but the addresses of the stack frames depend

on the actual execution state when an annotated instruction is

about to be executed. Therefore, to dynamically interpret an

annotation, we extract the call stack from the current execution

state.

C. Annotation encoding

The aim of this component is to produce a defensive

program which dynamically checks the validity of all assertions.

Therefore, for each memory access through a pointer p
annotated with a set α of symbolic pointers, the defensive

program checks that p is actually one of the pointers in the

denotation of α.

There are two cases, depending whether the block of the

pointer is definitely known or not. If the block is known, an

annotation is encoded as two inequality comparisons with the

range boundaries (or a disjunction of such tests, when there are

several ranges). For instance, the annotation (G: [0; 2]) attached

to the read through pointer p in Figure 7 is encoded as the

assertion G � p ∧ p � G + 2.

If the block is unknown — since the inequality comparison

is not well-defined for pointers of different blocks, but equality

comparison is — the defensive program enumerates all the

pointers in the denotation of α and compares each of them

for equality to p. For example, if the set of annotations was

the set { (G: [0; 2]); (H: [0; 0]) }, it would be encoded by the

assertion p = G ∨ p = G + 1 ∨ p = G + 2 ∨ p = H.

This second encoding might look very inefficient, but

remember that the defensive program is not meant to be ever

executed; it is only an intermediate artifact that witnesses the

validity of the annotations.

D. Forging pointers: the shadow stack

In order to build defensive tests, we need to compute some

concrete pointers that are symbolically given by the annotations.

This is an issue when the annotation refers to a local variable of

some suspended function. To forge such a pointer is generally

not possible without any runtime support: there is a priori no

direct way to forge a pointer to a stack frame of an arbitrary

suspended function. Therefore, we make each function leak a

pointer to its stack frame into a global variable (the so-called

shadow stack).

The shadow stack is a global array that records a pointer

to the stack frames of all currently running functions. The

top of the shadow stack always holds a pointer to the stack

2A global environment, in CompCert parlance

frame of the current function. To maintain this stack, we add to

each function a prologue whose execution pushes the current

stack pointer atop the shadow stack and an epilogue whose

execution pops a value from the shadow stack. Such an epilogue

is actually inserted before every return instruction.

E. Correctness theorem and proof
An execution state is said to be correctly annotated when

either the next instruction to be executed is not an annotated

memory access, or it is a memory access through a pointer p
and it is annotated with a symbolic set of pointers α, such that

pointer p belongs to the denotation of α.
The correctness theorem of the defensive encoding of

a program ensures that the validity of the annotations is

completely assessed by the safety of the defensive program.

Theorem IV.1 (Precision of the defensive form �). Given a
safe annotated RTL program p, if the defensive version of p is
also safe, then every reachable state in the execution of p is
correctly annotated.

This theorem is only proven at the RTL level and not at

the C#minor level as we do not need it for our methodology.

Indeed, we only require the defensive program to be safe. In

order to prove this theorem, we equip the original program

p with a blocking semantics which refines the original RTL

semantics to dynamically check, before every execution step

that the current state is correctly annotated. Thus, proving that

p is safe with regards to the blocking semantics entails that

every reachable state of the program is correctly annotated.
The standard technique used throughout CompCert to prove

that safety is preserved is to show a simulation between both

programs. However, the corresponding compiler transforma-

tions need only to prove a forward simulation (i.e., that a safe

original program results into a safe transformed program), while

we need to prove the opposite direction. We thus have to directly

show a backward simulation between the transformed program

p′ and the original program p. This cannot be obtained from a

forward simulation as usually done in CompCert, as we would

need to be able to match one step in the defensive program

with steps in the original program, which is not possible for

steps involved in the defensive checks. As always with such

simulation proofs, the gist of our proof is to define the matching

relation between execution states of both programs.

F. Compatibility of the two defensive programs
We produce two low-level defensive programs from a single

high-level source: on the one hand we compile and then

produce the defensive program; on the other hand, we first

produce the defensive program and then compile it. These two

operations (transformation into defensive form and compilation)

do not necessarily commute. The equivalence checker can

accommodate for some difference between the two compared

programs, but the closer they are, the simpler is the work for

the equivalence checker. Therefore we try to avoid unnecessary

differences between the two programs. However, we have

identified the following factors which contribute to such

differences.

414412

a) Wrong interleaving of the defensive checks: All critical

operations must appear in the two programs in exactly the same

order. Therefore, when producing the high-level defensive code

corresponding to a single instruction with several annotations

(e.g., ++*p;) the interleaving of the two defensive checks and

the two memory accesses need to be guessed. In other words,

the compilation of complex instructions needs to be correctly

anticipated. Indeed, the low-level program has an annotated

load and an annotated store as two distinct instructions. So, the

(high-level) defensive check corresponding to the annotation

of the store must appear after the code for the load.

b) Impact of the defensive transformation on the opti-
mizations: Our defensive transformation affects the ability of

the compiler to fully optimize the defensive program, which

is thus possibly less optimized than the original program. It

should be emphasized that the use of our methodology should

not affect how the original program gets optimized: we should

neither turn off the optimizations nor weaken them.

The major issue comes from the shadow stack: without

it, some optimizations exploit the fact that the stack pointer

does not escape, and therefore that calling a function cannot

modify the local variables. Since the very purpose of the

shadow stack is to make pointers to all stack frames available

to all functions, there is no longer a way for the optimizer

to prove that some stack pointer does not escape. Thus some

optimizations that could be performed are hampered by the

defensive transformation.

If the optimizer was aware of the shadow stack and of

the fact that the leaked pointers are never used to access to

the memory but only in comparisons, it could treat the leaks

through the shadow stack as benign and proceed as if they

were not there. This suggests that a proper implementation of

shadow memory requires some support from the compiler. We

have left the tackling of this issue as future work.

c) Optimizations of the defensive transformation: The

defensive program which is produced at high-level undergoes

the same optimizations as the original program. But the

defensive program produced at low level (i.e., after the RTL

optimizations passes) does not undergo these optimizations.

This ends up with different defensive programs. To overcome

this issue, we have investigated two different approaches.

On the one hand, we have restrained the optimizations that

are applied to the high-level defensive programs, so that they

do not target the added defensive code. For instance, the CSE

optimization would remove many loads from the shadow stack

and replace them by simple move instructions. Thus, to prove

that the two defensive programs are equivalent, the equivalence

checker would have to perform complex reasoning about the

memory to justify that the loads on the left return the same

values as the moves on the right. This reasoning is the same

as the one that is performed during the CSE pass to justify the

optimization; it is a reasoning on a single program rather than

a relational property. Therefore, to avoid adding extra burden

to the equivalence checker, we make the CSE pass aware of

the shadow stack and prevent it, when optimizing the defensive

transformation, to propagate the values read from the shadow

#include <verasco.h>

int t[10];
int main(void)
{

unsigned bound = verasco_any_int() & 0xFFFF;
for (signed i = 0; i < bound; ++i) {

t[i % 4] = i * i; /* (t: [0; 12]) */
}
return t[0] - 4;

}

Figure 8. Example: source code

stack.

On the other hand, when producing the low-level defensive

program, we optimistically apply some optimizations to directly

produce an “optimized” program. The selection pass, which

occurs just before the generation of RTL code, replaces some

instructions (e.g., bitwise or with the immediate value zero)

with more specific ones (e.g., a simple move). We apply these

transformations on the fly as we produce the low-level defensive

code.

V. A FULL EXAMPLE

The program shown on Figure 8 writes within a loop

some cells of an array t. An analysis at high level can

straightforwardly infer that the pointer offset of this memory

access is between zero and twelve (as the array contains four-

bytes integer values, and the high-level index, because of

the modulo operation, is between zero and three). Thus, this

access is annotated with (t: [0; 12]), as shown as a comment

next to the write instruction. The defensive version of this

program implements this annotation as a check that the pointer

is between t + 0 and t + 12.

The Figure 9 shows the main loop of this defensive program,

after compilation to RTL (and after all optimizations that are

applied on this intermediate representation). Here the syntax

uses named labels to ease readability. We can notice that

the pointer computation — within the first highlighted block

(reddish) — appears as a complex sequence of operations;

analyzing it is much more difficult than at a higher level.

The second highlighted block (blueish) corresponds to the

defensive check: the pointer value is computed (in register x5)

and compared to the two predicted bounds. If both comparisons

succeed, the program execution goes through; otherwise, it

jumps to some bogus code at label FAIL (not shown).

Part of the product program corresponding to this example

is shown on Figure 10. The loop header is annotated with two

invariants; they state that live variables are equal. Registers

x4 and x5 correspond to the source variable i and registers

x6 and x7 to the source variable bound. Since branching is a

critical instruction, there is only one instance of it; but it is

preceded by an assertion which ensures that the guards of the

two programs are equivalent. The first highlighted sequence

415413

LOOP:
if (x2 <u x3) goto BODY else goto END
BODY:
x28 = x2
x30 = x28 >>x 2
x29 = x30 * 4 + 0
x27 = x28 - x29
x5 = t + 0 + x27 * 4
x26 = t + 0
x23 = x26 <=u x5
x25 = t + 12
x24 = x5 <=u x25
x22 = x23 & x24
if (x22 !=u 0) goto OK else goto FAIL
OK:
x14 = x27
x15 = x2 * x2
int32[t + 0 + x14 * 4] = x15
x2 = x2 + 1
goto LOOP
END:

x28 = x2
x30 = x28 >>x 2
x29 = x30 * 4 + 0
x27 = x28 - x29
x5 = t + 0 + x27 * 4
x26 = t + 0
x23 = x26 <=u x5
x25 = t + 12
x24 = x5 <=u x25
x22 = x23 & x24
if (x22 !=u 0) goto OK else goto FAIL

Offset computation

Defensive check

Figure 9. Example: high-level instrumentation, compiled to RTL (loop only)

LOOP: invariant x4 === x5 ∧ x6 === x7
assert ((x4 <u x6) !=u 0) === ((x5 <u x7) !=u 0)
if x4 <u x6 then BODY else END
BODY:
x16 = x4
x57 = x5

assert x16 === x57

x20 = x16 >>x 2

x61 = x20
x18 = x20 * 4 + 0
x12 = x16 - x18
x14 = x4 * x4

x34 = t + 0 + x12 * 4
x36 = t + 0
x38 = t + 12
x36 = x36 <=u x34
x38 = x34 <=u x38
x36 = x36 & x38
x34 = x36
x59 = x61 * 4 + 0
x55 = x57 - x59
x11 = t + 0 + x55 * 4
x53 = t + 0
x47 = x53 <=u x11
x51 = t + 12
x49 = x11 <=u x51
x45 = x47 & x49
assert (x34 !=u 0) === (x45 !=u 0)
if x34 !=u 0 then OK else FAIL
OK:
x29 = x55
x31 = x5 * x5

assert (t + 0 + x12 * 4) === (t + 0 + x29 * 4)
assert x14 === x31
x4 = x4 + 1
x5 = x5 + 1
goto LOOP
END:

Synch. loop header

Synchronous critical computation

Left code

Right code

Synchronous branch

Right code

Synch. memory store

Figure 10. Example: product program

(greenish) corresponds to the two first instructions of the

loop body in Figure 9. Since the right shift instruction is

a critical one, there is only a single copy of it, guarded by an

assertion claiming that the two programs run this instruction

on equal values. Then there is a long sequence of non-critical

instructions: they correspond to a mix of the instructions

computing the array offset, the written value, and the condition

for the defensive check. The first instructions come from one

program whereas the last ones come frow the other program.

Interestingly, the instructions of both programs are not

exactly in the same order. For instance, the highlighted (reddish)

lines which compute the written value are in one case before

the defensive check and in the other case after this check. This

is due to the fact that one program gets optimized before being

put in defensive form, but the other program gets optimized

after. The generator of verification conditions and the assorted

solver are robust enough to handle such interleavings.

Finally, the critical memory access is modeled in the product

as two assertions only: the first one ensures that the accessed

address is the same; the second one ensures that the written

value is the same.

VI. EXPERIMENTAL RESULTS

We have implemented in Coq the instantiation of the

methodology that we have described in the previous sections;

we have in particular proved the theorems shown in sections III

and IV. We have also proved that the backend, (i.e., the

compilation from RTL to Mach), preserves the validity of

the annotations. Thanks to the extraction mechanism of Coq,

we have extracted OCaml programs out of our development.

The Coq development is about 6.6k lines of specification and

over 10k lines of proof, excluding blanks and comments. The

parts reused from CompCert and Verasco are not counted.

The full development is available at the companion web-

site http://www.irisa.fr/celtique/ext/csf17/.
This section describes some experiments that we have

performed with these programs. First, we show that on a

selection of diverse C programs we are able to infer, compile

and validate the compilation of points-to invariants. The

availability of points-to annotations at various levels of the

compilation chain enables us to improve significantly other

analyses. Thus, we show three use cases of our methodology:

a client optimization at RTL level, an analysis of cache-based

timing side-channels at pre-assembly level, and an analysis of

stack resource usage at pre-assembly level.

A. Lowering points-to facts

Some measurements of execution time of test C programs

(up to thousands of lines) are gathered in Figure 11. For each

test program, we report its size in terms of number of C#minor

instructions, the duration of inferring the annotations (first run

of the Verasco analyzer), the duration of checking the safety of

the high-level defensive program (second run of Verasco), and

the duration of proving the equivalence of the two defensive

programs. One cell in the “Check” column contains ∞. This

means that the validation of the high-level defensive program

416414

Program Size Infer (s) Check (s) Equiv (s)

blowfish 177 29.2 32.4 0.01
des 230 2.8 4.9 0.84
donna 1214 515 ∞ 310
RC4 94 4.6 5.1 0.02
salsa20 342 6.0 10.4 0.56
snow 871 2.7 8.2 0.12
tea 121 3.43 3.9 0.01

core (1) 166 0.05 0.29 0.03
core (2) 142 0.04 0.28 0.03
core (4) 198 0.06 0.35 0.04

aes 1147 38.3 119 137
almabench 266 6.2 24.7 3.5
fft 229 0.02 0.08 0.03
fftw 97 7.0 80.2 3.1
nbody 163 0.88 1.52 0.06
sha3 457 62.5 207 3.1
siphash24 321 0.68 2.1 0.21

random (1) 378 1.57 1.69 0.03
random (2) 1890 23.4 23.5 0.32
random (3) 2836 20.1 24.5 0.24
random (4) 746 10.1 11.2 0.05

Figure 11. Timings

was not possible due to current limitations of the Verasco

analyzer.

The timing measurements have been performed on an

otherwise idle Linux system on a x86_64 architecture clocked

at 2.0 GHz, with 8 Gio of RAM. The figures are the average

of ten measurements; variance was observed to be low at the

displayed precision.

The first block of lines gathers test cases for the imple-

mentations of various cryptographic primitives within the

PolarSSL library. The second block reports on test programs

from the NaCl cryptography library [15]. The third block lists

six programs derived from the CompCert benchmarks; they run

numerical computations or cryptographic routines. The fourth

block gathers C programs that were randomly generated by

the Csmith tool [16].

This table shows that on various C programs, we are able to

automatically infer, verify, propagate, and validate at low level,

points-to information for every memory access. In most cases,

the running times of this full process are affordable (from

fractions of seconds up to a few seconds); unfortunately, in

some cases, they are rather high (tens or hundreds of seconds).

This occurs when there is a lot of aliasing, so that the defensive

encoding must enumerate all pointers in the annotation ranges,

and also when there are many 64-bit operations. This suggests

some optimizations of our implementation.

For instance, the product construction could be aware of

the compiler intrinsics; as an example, 64-bit integer addition

is represented in RTL as an opaque builtin call and could be

p
Φ

pΦ

[p]〈Φ〉〈Φ〉 [pΦ][p]

Verasco VerascoPoints-to defensive
encoder (C#minor)

Points-to
defensive

encoder (RTL)

CompcertCompcert Points-to
translator

RTL
relative-safety

checkerRTL CSE
optimization

Figure 12. First use case: improving CSE

considered as an innocuous local operation rather than as an

unknown (and maybe critical) system call.

B. First use case: improving CSE

CSE is an optimization pass that is implemented in particular

in the CompCert compiler. It operates on (extended) basic

blocks and relies on an intra-procedural value analysis. This

optimization attempts to remove redundant computations and

memory loads. It is safe to remove a load when, in the same

extended basic-block, the same load (i.e., same address, same

chunk) occurs before, and no overlapping store happens in-

between. Therefore, the efficiency of this optimization (with

respect to eliminated redundant loads3) lies in the ability to

prove that two memory accesses cannot overlap.

The value analysis of CompCert computes some invariants on

the RTL program that allows us to prove such facts. However,

this analysis has some precision limitations 4: in particular,

guards of conditional branches are ignored. Indeed, it is intra-

procedural and cannot infer relational invariants. A more precise

analysis can help to improve the disjointedness check in the

CSE pass. Indeed, the Verasco analyzer can infer more fine-

grained points-to invariants. Thanks to our methodology, we

can propagate these invariants to the RTL language, further

in the compilation chain, and prove that they are still correct,

even after the other optimization passes that are performed

before CSE5.

Figure 12 shows the instantiation of our methodology with

CompCert and Verasco, the results can then be used to

implement a new CSE pass. Figure 13 illustrates how the

precise points-to annotations help significantly to recognize

redundant loads in some programs. For each function, the “Size”

column lists the static number of loads before the CSE pass,

the “CSE” column tells how many of these loads are removed

3 We are not concerned by the performance of the compiled program,
but rather by the fact that the propagated annotations yield more precise
information than what can be inferred at low level.

4 These limitations are understandably justified by other requirements of
the compiler such as efficiency and separate compilation.

5 Namely, tail-call introduction, inlining, renumbering and constant propa-
gation.

417415

Function Size CSE CSE+annot

matmult 29 4 15
snow_keystream_fast 240 32 47
SHA256_Transform 1742 1223 1664
dfft 26 8 10
keccakf 131 25 85
fcontract 74 18 60

Figure 13. The CSE benchmark (numbers of loads)

p
Φ

pΦ

[p]〈Φ〉〈Φ〉 [pΦ][p]

Verasco VerascoPoints-to defensive
encoder (C#minor)

Points-to
defensive

encoder (RTL)

CompcertCompcert Points-to
translator

RTL
relative-safety

checker

Mach
constant-time

analyzer

Compcert Points-to
translator

Figure 14. Second use case: cryptographic constant-time

by CompCert’s CSE, and the “CSE+annot” column tells how

many of these loads are removed with our variant of CSE that

relies on annotations rather than on the RTL value-analysis. The

matmult function performs matrix multiplication; its inner loop

has been fully unrolled, so that there are many redundant loads

in a single basic block. These loads are interleaved with stores

(to write the result), so the intra-procedural value-analysis of

CompCert cannot prove that loads and stores are disjoint. On

the contrary, the annotations of our methodology can. The

other functions feature similar interleavings of loads and stores,

and the annotations help to prove that they do not overlap.

Considering these selected examples as a whole, the original

CSE removes about 60% of the loads whereas our enhanced

CSE removes nearly 85% of them. A manual inspection of

the code shows that this result is close to optimal: hardly any

additional load could be eliminated by such an optimization.

C. Second use case: cryptographic constant-time

The second use case is a security analysis that aims at

proving that a program is “cryptographically constant-time”,

a programming discipline used by practitioners to minimize

the risks of cache-based timing attacks against cryptographic

libraries. Informally, a program achieves cryptographic constant-

time if its control flow and sequence of memory accesses

are independent of some of its inputs, which users tag as

confidential. Previous work by [12] develops an information-

flow analysis for cryptographic constant-time, focusing on

the Mach intermediate language of CompCert. However, the

information-flow analysis is based on a weak points-to analysis,

requiring that off-the-shelf implementations from standard

cryptographic libraries such as PolarSSL undergo manual

rewriting before being analyzed. In addition, the analysis

requires that programs are fully inlined, and as a consequence

some programs like donna cannot be analyzed with this

approach.

We developed an information-flow type system for verifying

cryptographic constant-time. Our type system operates on Mach

pre-assembly programs6, and is very similar to [12]: each

register and each memory location are given a (flow-sensitive)

security level: low (public) or high (secret). Then, the type

system performs a data-flow analysis to check that the targets of

conditional jumps and memory accesses do not depend on high

values. In order to keep track of the security levels of values

in memory, we use the points-to information derived from

analyzing the C#minor programs using the Verasco analyzer.

Lowering of points-to annotations is justified in two steps:

the lowering to RTL is justified by translation validation using

the methodology presented in this paper, whereas the lowering

from RTL to Mach is justified by a direct proof as illustrated

in Figure 14. The results obtained with the methodology of

this paper improve on [12] in two directions; first, there is

no need to perform code rewriting before analyzing programs.

Second, programs that were previously out of reach can be

proved to verify cryptographic constant-time. More specifically,

we have analyzed the cryptographic programs that appear in

the first block of the table in Figure 11, as well as the AES

and SHA-3 implementations from CompCert benchmarks. We

are able to automatically prove that they verify the constant-

time policy, or the stealth constant-time policy, a variant also

considered in [12] and inspired by stealth memory [17], [18].

All programs are analyzed in a few milliseconds, except donna

whose analysis requires a few seconds.

D. Third use case: resource analysis

Memory usage is another potential source of information

leakage. As a consequence, it is important to make sure that

memory usage does not depend dramatically on secrets. As a

first step in this direction, we have instantiated our methodology

to a resource analysis based on stack space usage [13] illustrated

in Figure 15. This yields an alternative method to recover

the results of [13] (which uses a certification, rather than

validation; see below for a longer comparison) and shows that

our methodology is not only limited to points-to analysis.

Each function in the analyzed program is annotated with

the size of the stack space it uses at assembly level. Given

a memory usage bound N that the program is not allowed to

exceed, we add a global variable that is initialized to N in

the defensive version of the program. Each annotation is then

transformed as follows:

6Mach is the last intermediate language of CompCert, where programs are
represented by lists of low-level instructions operating over machine registers
and memory locations.

418416

p
Φ

pΦ

[p]〈Φ〉〈Φ〉 [pΦ][p]

Verasco Verasco
Stack-bound

defensive encoder
(C#minor)

Stack-bound
defensive

encoder (RTL)

CompcertCompcert Stack-bound
translator

RTL
relative-safety

checker

Figure 15. Third use case: resource analysis

• We add code at the beginning of each function to test

if the corresponding stack space usage is lower than the

remaining memory space modeled by the global counter,

the counter is then decreased if it is true and the program

crashes otherwise.

• We add code at the end of each function to increase back

the counter by the appropriate value.

We prove that if the defensive program at high level is validated

and if the equivalence checker agrees, then the compiled

program will not stack overflow if the available memory

space is larger than the given bound. Moreover, we have

carried an experimental evaluation of our approach on a subset

of examples from [13] and from the MiBench embedded

benchmark suite [19], and obtained comparable results.

We briefly compare the two approaches: by using validation

rather than verification, we avoid the need to make extensive

changes to CompCert and rework the proof of every compilation

pass. On the other hand, we note that our bounds are not

automatically inferred yet. However, it would be possible to

instrument Verasco to obtain the call-stack traces of programs

and thus easily infer their stack bounds. Moreover, our method

can only verify constant bounds and does not handle symbolic

ones yet such as those manually verified in [13]. However, we

should be able to accommodate this extension with minimal

changes.

Some of our results are reported in Figure 16. For each

program, we report its size in terms of number of C#minor

instructions and the duration needed for verifying the given

bound.

VII. RELATED WORK

A. Verified and verifying compilation

Verified compilation is an active area of research whose goal

is to build a (machine-checked) proof of compiler correctness.

However, most verified compilers, including CompCert [20] and

CakeML [21] prove preservation of safety, and cannot be used

directly for lowering analysis results. Verified compilers that

go beyond preservation of safety exist for specific properties,

File Name Size Time Verified Stack
(s) Bound (B)

nbody.c 105 7.81 148
mandelbrot.c 53 0.11 28
mibench/auto/bitcnt_1.c 24 0.03 40
mibench/auto/bitcnt_2.c 20 0.03 40
mibench/auto/bitcnt_3.c 31 0.28 56
mibench/auto/bitstrng.c 37 0.20 136
custom/fact_sq.c 14 0.03 472
custom/sum.c 19 0.03 340

Figure 16. Verified stack-bounds

such as resource consumption [13]. Our approach yields a

promising alternative to [13], as mentioned previously.

Verifying compilation enforces properties of target programs

through a full static analyzer at target level [22], [23]. In

this way, the results of the source-level static analysis are not

even used, and so there is no need to develop sound methods

for carrying evidence from source to target level. Certifying

compilation is typically restricted to safety properties.

Certificate translation [24], [25] is an alternative approach

inspired from proof-carrying code [26], in which the compiler

comes equipped with an automated translator which maps

correctness proofs of the source program into correctness

proofs of the target program. However, this approach is hard

to implement for realistic languages.

B. Verified static analysis

Early works on verified static analysis consider interval

analyses for toy languages [27]–[29]. More recent works target

intermediate representations of CompCert. Blazy et al. propose

a value analysis at RTL level [30], with a naive approach for

memory abstraction. [31] verifies a points-to analysis at the

same RTL level. Like the current work, they consider points-to

information but without numerical information about offsets.

[11] operate over source level (C#minor) with a complex

memory abstraction [32]. They do not provide translation

mechanism, but our current work is based on their static

analysis. The CompCert compiler itself [20] has been recently

extended with a memory-aware value analysis at RTL level.

This analysis is used several times in the CompCert backend for

code optimization. However, CompCert is not able to propagate

the inferred information. Instead, the analysis is relaunched

several times, after each program transformation. This analysis

is less precise than Verasco, as shown in section VI-B.

Outside CompCert, several verified static analyses have been

proposed for the Java bytecode language. Klein and Nipkow

verify a Java bytecode verifier [33]. Cachera et al. verify an

inter-procedural class analysis [34].

Our work allows us to generate sound points-to information

at assembly level. [35] proposes a direct verified static analysis

at binary level but for a toy imperative language and memory

model. This paper focuses on the hard problem of disassembling

self-modifying programs, that we do not consider here.

419417

C. Differential verification by product programs
Approaches built on product program have been consid-

ered for different purposes, notably translation validation of

compiler optimizations and information-flow security (see for

instance [14], [36]–[39]). This approach is also featured in the

Symdiff tool [8], [40] which applies a very simple product

construction inspired from self-composition, and in the CTverif

tool [41] which applies a product construction inspired from

cross-products. Handling loops often requires using “mostly

synchronous” product constructions (with inference of loop

invariants). Approaches built on formalisms that inherently

support relational verification include a spate of specialized

formalisms tailored to properties such as information flow,

continuity, and reliability; see for instance [42]–[44].
Our approach is more closely related to works that focus on

regression verification [45], [46] or equivalence checking [47],

[48]. None of this work is formally verified.

VIII. CONCLUSION AND PERSPECTIVES

We have proposed a method that combines in an original way

defensive programs and relative safety to validate the results

of source-level static analyzes on low-level programs, and

instantiated this method with the CompCert compiler and the

Verasco C static analyzer. The outcome is a formally verified

translation to lower intermediate representations of points-to

assertions computed by Verasco.
There are multiple directions for further work. One possible

direction is to implement other analyses. As a concrete example,

we could use our methodology to bound the number of iteration

of each loop. Such an analysis is especially useful for worst

case execution time analysis which is necessary for critical

systems where programs need to provide an answer in a limited

time. Such an analysis can be implemented by annotating each

loop by a bound on the number of iterations it must not

exceed, and adding code before a loop to initialize a counter

to this value and add code at the beginning of a loop to

decrement this counter and test that it is still positive. Another

direction is to build more general relative-safety checkers and

equivalence checkers for RTL or assembly programs. This

would have multiple benefits, both for the approach considered

in this paper, and in general for a posteriori validation of

compiler optimizations, and verification of relational properties

of compiled programs.

REFERENCES

[1] P. Cousot and R. Cousot, “Abstract interpretation: A unified
lattice model for static analysis of programs by construction or
approximation of fixpoints,” in Conference Record of the Fourth ACM
Symposium on Principles of Programming Languages, Los Angeles,
California, USA, January 1977, R. M. Graham, M. A. Harrison,
and R. Sethi, Eds. ACM, 1977, pp. 238–252. [Online]. Available:
http://doi.acm.org/10.1145/512950.512973

[2] G. Balakrishnan and T. W. Reps, “WYSINWYX: what you see is not
what you execute,” ACM Trans. Program. Lang. Syst., vol. 32, no. 6,
2010. [Online]. Available: http://doi.acm.org/10.1145/1749608.1749612

[3] V. D’Silva, M. Payer, and D. X. Song, “The correctness-security
gap in compiler optimization,” in 2015 IEEE Symposium on Security
and Privacy Workshops, SPW 2015, San Jose, CA, USA, May 21-22,
2015. IEEE Computer Society, 2015, pp. 73–87. [Online]. Available:
http://dx.doi.org/10.1109/SPW.2015.33

[4] F. B. Schneider, “Enforceable security policies,” ACM Trans. Inf.
Syst. Secur., vol. 3, no. 1, pp. 30–50, 2000. [Online]. Available:
http://doi.acm.org/10.1145/353323.353382

[5] M. Dam, B. Jacobs, A. Lundblad, and F. Piessens, “Provably correct
inline monitoring for multithreaded java-like programs,” Journal of
Computer Security, vol. 18, no. 1, pp. 37–59, 2010. [Online]. Available:
http://dx.doi.org/10.3233/JCS-2010-0365

[6] S. He, S. K. Lahiri, and Z. Rakamarić, “Verifying relative safety, accuracy,
and termination for program approximations,” in Proceedings of the
8th NASA Formal Methods Symposium (NFM), ser. Lecture Notes in
Computer Science, S. Rayadurgam and O. Tkachuk, Eds., vol. 9690.
Springer, 2016, pp. 237–254.

[7] C. Hawblitzel, S. K. Lahiri, K. Pawar, H. Hashmi, S. Gokbulut,
L. Fernando, D. Detlefs, and S. Wadsworth, “Will you still compile
me tomorrow? static cross-version compiler validation,” in Proceedings
of the Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, ESEC/FSE’13, B. Meyer, L. Baresi, and M. Mezini, Eds.
ACM, 2013, pp. 191–201.

[8] S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebêlo, “Symdiff:
A language-agnostic semantic diff tool for imperative programs,” in
Computer Aided Verification. Springer, 2012, pp. 712–717.

[9] F. Logozzo, S. K. Lahiri, M. Fähndrich, and S. Blackshear, “Verification
modulo versions: towards usable verification,” in Proceedings of 2014
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI’14, M. F. P. O’Boyle and K. Pingali, Eds. ACM,
2014, p. 32.

[10] X. Leroy, “Formal certification of a compiler back-end, or: programming
a compiler with a proof assistant,” in 33rd symposium Principles of
Programming Languages. ACM Press, 2006, pp. 42–54.

[11] J.-H. Jourdan, V. Laporte, S. Blazy, X. Leroy, and D. Pichardie, “A
formally-verified C static analyzer,” in Proc. of the 42th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2015. ACM, 2015.

[12] G. Barthe, G. Betarte, J. D. Campo, C. Luna, and D. Pichardie, “System-
level non-interference for constant-time cryptography,” in ACM SIGSAC
Conference on Computer and Communications Security, CCS’14. ACM,
2014.

[13] Q. Carbonneaux, J. Hoffmann, T. Ramananandro, and Z. Shao, “End-to-
end verification of stack-space bounds for C programs,” in ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
’14, Edinburgh, United Kingdom - June 09 - 11, 2014, M. F. P. O’Boyle
and K. Pingali, Eds. ACM, 2014, p. 30.

[14] G. Barthe, J. M. Crespo, and C. Kunz, “Relational verification using
product programs,” in Formal Methods, ser. Lecture Notes in Computer
Science, M. J. Butler and W. Schulte, Eds., vol. 6664. Springer, 2011,
pp. 200–214.

[15] D. J. Bernstein, T. Lange, and P. Schwabe, “The security impact of a new
cryptographic library,” in Progress in Cryptology - LATINCRYPT 2012 -
2nd International Conference on Cryptology and Information Security in
Latin America, Santiago, Chile, October 7-10, 2012. Proceedings, 2012,
pp. 159–176.

[16] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in C compilers,” in Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI 2011, San Jose, CA, USA, June 4-8, 2011, 2011, pp. 283–294.

[17] U. Erlingsson and M. Abadi, “Operating system protection against side-
channel attacks that exploit memory latency,” Microsoft Research, Tech.
Rep. MSR-TR-2007-117, 2007.

[18] T. Kim, M. Peinado, and G. Mainar-Ruiz, “Stealthmem: system-level
protection against cache-based side channel attacks in the cloud,” in
USENIX Security 2012. Berkeley, CA, USA: USENIX Association,
2012, pp. 11–11.

[19] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in Proceedings of the Workload Characterization,
2001. WWC-4. 2001 IEEE International Workshop, ser. WWC ’01.
Washington, DC, USA: IEEE Computer Society, 2001, pp. 3–14.
[Online]. Available: http://dx.doi.org/10.1109/WWC.2001.15

[20] X. Leroy, “A formally verified compiler back-end,” J. Automated
Reasoning, vol. 43, no. 4, pp. 363–446, 2009.

[21] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens, “Cakeml: a verified
implementation of ML,” in The 41st Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’14,

420418

San Diego, CA, USA, January 20-21, 2014, S. Jagannathan and
P. Sewell, Eds. ACM, 2014, pp. 179–192. [Online]. Available:
http://doi.acm.org/10.1145/2535838.2535841

[22] G. C. Necula and P. Lee, “The design and implementation of a certifying
compiler,” in Proceedings of the ACM SIGPLAN ’98 Conference on
Programming Language Design and Implementation (PLDI), Montreal,
Canada, June 17-19, 1998, J. W. Davidson, K. D. Cooper, and A. M.
Berman, Eds. ACM, 1998, pp. 333–344.

[23] G. C. Necula, “Translation validation for an optimizing compiler,” in
Proceedings of the 2000 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), Vancouver, Britith
Columbia, Canada, June 18-21, 2000, M. S. Lam, Ed. ACM, 2000, pp.
83–94.

[24] G. Barthe, B. Grégoire, C. Kunz, and T. Rezk, “Certificate translation for
optimizing compilers,” ACM Trans. Program. Lang. Syst., vol. 31, no. 5,
2009. [Online]. Available: http://doi.acm.org/10.1145/1538917.1538919

[25] G. Barthe and C. Kunz, “An abstract model of certificate translation,”
ACM Trans. Program. Lang. Syst., vol. 33, no. 4, p. 13, 2011. [Online].
Available: http://doi.acm.org/10.1145/1985342.1985344

[26] G. C. Necula, “Proof-carrying code,” in Conference Record of POPL’97:
The 24th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, Papers Presented at the Symposium, Paris, France,
15-17 January 1997, P. Lee, F. Henglein, and N. D. Jones, Eds. ACM
Press, 1997, pp. 106–119.

[27] D. Pichardie, “Interprétation abstraite en logique intuitionniste: extraction
d’analyseurs Java certifiés,” Ph.D. dissertation, U. Rennes 1, 2005.

[28] Y. Bertot, “Structural abstract interpretation: A formal study using Coq,”
in Language Engineering and Rigorous Software Development, LerNet
Summer School. Springer, 2008, pp. 153–194.

[29] T. Nipkow, “Abstract interpretation of annotated commands,” in ITP, ser.
LNCS, vol. 7406. Springer, 2012, pp. 116–132.

[30] S. Blazy, V. Laporte, A. Maroneze, and D. Pichardie, “Formal verification
of a C value analysis based on abstract interpretation,” in SAS, ser. LNCS,
vol. 7935. Springer, 2013, pp. 324–344.

[31] X. Leroy and V. Robert, “A formally-verified alias analysis,” in Proc. of
CPP 2012, ser. LNCS, vol. 7679. Springer, 2012, pp. 11–26.

[32] S. Blazy, V. Laporte, and D. Pichardie, “An abstract memory functor
for verified c static analyzers,” in Proc. of the 21st ACM SIGPLAN Int.
Conference on Functional Programming (ICFP 2016). ACM, 2016.

[33] G. Klein and T. Nipkow, “A machine-checked model for a Java-like
language, virtual machine, and compiler,” ACM Trans. Program. Lang.
Syst., vol. 28, no. 4, pp. 619–695, 2006.

[34] D. Cachera, T. P. Jensen, D. Pichardie, and V. Rusu, “Extracting a data
flow analyser in constructive logic,” Theor. Comput. Sci., vol. 342, no. 1,
pp. 56–78, 2005.

[35] S. Blazy, V. Laporte, and D. Pichardie, “Verified abstract interpretation
techniques for disassembling low-level self-modifying code,” Journal of
Automated Reasoning, vol. 56, no. 3, pp. 283–308, 2016.

[36] G. Barthe, P. D’Argenio, and T. Rezk, “Secure Information Flow by

Self-Composition,” in Proceedings of 17th IEEE Computer Security
Foundations Workshop, CSFW’04, R. Foccardi, Ed., 2004, pp. 100–114.

[37] A. Darvas, R. Hähnle, and D. Sands, “A theorem proving approach to
analysis of secure information flow,” in Security in Pervasive Computing,
D. Hutter and M. Ullmann, Eds., vol. 3450. Springer, 2005, pp. 193–209,
preliminary version in the informal proceedings of WITS’03.

[38] T. Terauchi and A. Aiken, “Secure information flow as a safety problem,”
in Static Analysis Symposium, C. Hankin and I. Siveroni, Eds., vol. 3672.
Springer, 2005, pp. 352–367.

[39] A. Zaks and A. Pnueli, “CoVaC: Compiler Validation by Program
Analysis of the Cross-Product,” in Formal Methods, ser. Lecture Notes
in Computer Science, J. Cuéllar, T. S. E. Maibaum, and K. Sere, Eds.,
vol. 5014. Springer, 2008, pp. 35–51.

[40] S. K. Lahiri, R. Sinha, and C. Hawblitzel, “Automatic rootcausing for
program equivalence failures in binaries,” in Computer Aided Verification.
Springer, 2015, pp. 362–379.

[41] J. C. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi,
“Verifying constant-time implementations,” in 25th USENIX Security
Symposium (USENIX Security 16). Austin, TX: USENIX Association,
Aug. 2016. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/almeida

[42] S. Chaudhuri, S. Gulwani, and R. Lublinerman, “Continuity analysis of
programs,” in Proceedings of the 37th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ser. POPL ’10.
New York, NY, USA: ACM, 2010, pp. 57–70.

[43] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C. Rinard,
“Chisel: reliability- and accuracy-aware optimization of approximate
computational kernels,” in Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages &
Applications, OOPSLA 2014, part of SPLASH 2014, Portland, OR, USA,
October 20-24, 2014, A. P. Black and T. D. Millstein, Eds. ACM, 2014,
pp. 309–328.

[44] A. Nanevski, A. Banerjee, and D. Garg, “Verification of information
flow and access control policies with dependent types,” in 32nd IEEE
Symposium on Security and Privacy, S&P 2011, 22-25 May 2011,
Berkeley, California, USA. IEEE Computer Society, 2011, pp. 165–179.

[45] B. Godlin and O. Strichman, “Regression verification: proving the
equivalence of similar programs,” Softw. Test., Verif. Reliab., vol. 23,
no. 3, pp. 241–258, 2013.

[46] D. Felsing, S. Grebing, V. Klebanov, P. Rümmer, and M. Ulbrich,
“Automating regression verification,” in ACM/IEEE International
Conference on Automated Software Engineering, ASE ’14, Vasteras,
Sweden - September 15 - 19, 2014, I. Crnkovic, M. Chechik, and
P. Grünbacher, Eds. ACM, 2014, pp. 349–360. [Online]. Available:
http://doi.acm.org/10.1145/2642937.2642987

[47] S. Kundu, Z. Tatlock, and S. Lerner, “Proving optimizations correct
using parameterized program equivalence,” vol. 44, no. 6, pp. 327–337,
2009.

[48] R. Sharma, E. Schkufza, B. Churchill, and A. Aiken, “Data-driven
equivalence checking,” in OOPSLA. ACM Press, 2013, pp. 391–406.

421419

