
Securing Databases from Probabilistic Inference

Marco Guarnieri
Institute of Information Security

Department of Computer Science

ETH Zurich, Switzerland

marco.guarnieri@inf.ethz.ch

Srdjan Marinovic
The Wireless Registry, Inc.

Washington DC, US

srdjan@wirelessregistry.com

David Basin
Institute of Information Security

Department of Computer Science

ETH Zurich, Switzerland

basin@inf.ethz.ch

Abstract—Databases can leak confidential information when
users combine query results with probabilistic data dependencies
and prior knowledge. Current research offers mechanisms that
either handle a limited class of dependencies or lack tractable
enforcement algorithms. We propose a foundation for Database
Inference Control based on PROBLOG, a probabilistic logic
programming language. We leverage this foundation to develop
ANGERONA, a provably secure enforcement mechanism that
prevents information leakage in the presence of probabilistic
dependencies. We then provide a tractable inference algorithm
for a practically relevant fragment of PROBLOG. We empirically
evaluate ANGERONA’s performance showing that it scales to
relevant security-critical problems.

I. INTRODUCTION

Protecting the confidentiality of sensitive data stored in data-

bases requires protection from both direct and indirect access.

The former happens when a user observes query results, and

the latter happens when a user infers sensitive information

by combining results with external information, such as data

dependencies or prior knowledge. Controlling indirect access

to data is often referred to as Database Inference Control [30]

(DBIC). This topic has attracted considerable attention in

recent years, and current research considers different sources

of external information, such as the database schema [15],

[38], [40], [43], [57], [63], [64], the system’s semantics [38],

statistical information [3], [16], [22]–[24], exceptions [38],

error messages [45], user-defined functions [45], and data

dependencies [10], [12], [55], [56], [67], [68], [72].

An important and relevant class of data dependencies

are probabilistic dependencies, such as those found in ge-

nomics [44], [48], [50], social networks [41], and location

tracking [53]. Attackers can exploit these dependencies to

infer sensitive information with high confidence. To effectively

prevent probabilistic inferences, DBIC mechanisms should

(1) support a large class of probabilistic dependencies, and

(2) have tractable runtime performance. The former is needed

to express different attacker models. The latter is necessary

for mechanisms to scale to real-world databases.

Most existing DBIC mechanisms support only precise data

dependencies [10], [12], [67], [68], [72] or just limited classes

of probabilistic dependencies [14], [15], [40], [46], [55], [56],

[71]. As a result, they cannot reason about the complex

probabilistic dependencies that exist in many realistic settings.

Mardziel et al.’s mechanism [52] instead supports arbitrary

probabilistic dependencies, but no complexity bounds have

been established and their algorithm appears to be intractable.

Contributions. We develop a tractable and practically useful

DBIC mechanism based on probabilistic logic programming.

First, we develop ATKLOG, a language for formalizing

users’ beliefs and how they evolve while interacting with the

system. ATKLOG builds on PROBLOG [20], [21], [31], a state-

of-the-art probabilistic extension of DATALOG, and extends

its semantics by building on three key ideas from [18], [47],

[52]: (1) users’ beliefs can be represented as probability distri-

butions, (2) belief revision can be performed by conditioning

the probability distribution based on the users’ observations,

and (3) rejecting queries as insecure may leak information.

By combining DATALOG with probabilistic models and belief

revision based on users’ knowledge, ATKLOG provides a

natural and expressive language to model users’ beliefs and

thereby serves as a foundation for DBIC in the presence of

probabilistic inferences.

Second, we identify acyclic PROBLOG programs, a class

of programs where probabilistic inference’s data complexity

is PTIME. We precisely characterize this class and develop

a dedicated inference engine. Since PROBLOG’s inference is

intractable in general, we see acyclic programs as an essential

building block to effectively using ATKLOG for DBIC.

Finally, we present ANGERONA1, a novel DBIC mechanism

that secures databases against probabilistic inferences. We

prove that ANGERONA is secure with respect to any ATKLOG-

attacker. In contrast to existing mechanisms, ANGERONA

provides precise tractability and completeness guarantees for

a practically relevant class of attackers. We empirically show

that ANGERONA scales to relevant problems of interest.

Structure. In §II, we illustrate the security risks associated

with probabilistic data dependencies. In §III, we present our

system model, which we formalize in §IV. We introduce

ATKLOG in §V and in §VI we present our inference engine

for acyclic programs. In §VII, we present ANGERONA. We

discuss related work in §VIII and draw conclusions in §IX.

An extended version of this paper with proofs of all results

is available at [36], whereas a prototype of our enforcement

mechanism is available at [37].

1Angerona is the Roman goddess of silence and secrecy, and She is the
keeper of the city’s sacred, and secret, name.

2017 IEEE 30th Computer Security Foundations Symposium

© 2017, Marco Guarnieri. Under license to IEEE.

DOI 10.1109/CSF.2017.30

343

II. MOTIVATING EXAMPLE

Hospitals and medical research centres store large quantities

of health-related information for purposes ranging from diag-

nosis to research. As this information is extremely sensitive,

the databases used must be carefully secured [13], [28]. This

task is, however, challenging due to the dependencies between

health-related data items. For instance, information about

someone’s hereditary diseases or genome can be inferred from

information about her relatives. Even seemingly non-sensitive

information, such as someone’s job or habits, may leak sen-

sitive health-related information such as her predisposition to

diseases. Most of these dependencies can be formalized using

probabilistic models developed by medical researchers.

Consider a database storing information about the smoking

habits of patients and whether they have been diagnosed with

lung cancer. The database contains the tables patient , smokes ,

cancer , father , and mother . The first table contains all

patients, the second contains all regular smokers, the third con-

tains all diagnosed patients, and the last two associate patients

with their parents. Now consider the following probabilistic

model: (a) every patient has a 5% chance of developing cancer,

(b) for each parent with cancer, the likelihood that a child

develops cancer increases by 15%, and (c) if a patient smokes

regularly, his probability of developing cancer increases by

25%. We intentionally work with a simple model since, despite

its simplicity, it illustrates the challenges of securing data with

probabilistic dependencies. We refer the reader to medical

research for more realistic probabilistic models [4], [69].

The database is shared between different medical re-

searchers, each conducting a research study on a subset of the

patients. All researchers have access to the patient , smokes ,

father , and mother tables. Each researcher, however, has

access only to the subset of the cancer table associated with

the patients that opted-in to his research study. We want to

protect our database against a malicious researcher whose goal

is to infer the health status of patients not participating in

the study. This is challenging since restricting direct access

to the cancer table is insufficient. Sensitive information may

be leaked even by queries involving only authorized data. For

instance, the attacker may know that the patient Carl , which

has not disclosed his health status, smokes regularly. From

this, he can infer that Carl ’s probability of developing lung

cancer is, at least, 30%. If, additionally, Carl ’s parents opted-

in to the research study and both have cancer, the attacker

can directly infer that the probability of Carl developing lung

cancer is 60% by accessing his parents’ information.

Security mechanisms that ignore such probabilistic depen-

dencies allow attackers to infer sensitive information. An

alternative is to use standard DBIC mechanisms and encode

all dependencies as precise, non-probabilistic, dependencies.

This, however, would result in an unusable system. Medical

researchers, even honest ones, would be able to access the

health-related status only of those patients whose relatives also

opted-in to the user study, independently of the amount of

leaked information, which may be negligible. Hence, to secure

PEP

PDP

Security
Policy

Attacker
Model

Users Database System

Query

Result/Denied

Query

Result

Query Permit/Deny

Fig. 1: System model.

the database and retain usability, it is essential to reason about

the probabilistic dependencies.

III. SYSTEM MODEL

Figure 1 depicts our system model. Users interact with

two components: a database system and an inference control

system, which consists of a Policy Decision Point (PDP) and

a Policy Enforcement Point (PEP). We assume that all com-

munication between users and the components and between

the components themselves is over secure channels.

Database System. The database system manages the system’s

data. Its state is a mapping from tables to sets of tuples.

Users. Each user has a unique account used to retrieve

information from the database system by issuing SELECT
commands. Note that these commands do not change the

database state. This reflects settings where users have only

read-access to a database. Each command is checked by the

inference control system and is executed if and only if the

command is authorized by the security policy.

Security policy. The system’s security policy consists of

a set of negative permissions specifying information to be

kept secret. These permissions express bounds on users’

beliefs, formalized as probability distributions, about the actual

database content. Negative permissions are formalized using

commands of the form SECRET q FOR u THRESHOLD l, where

q is a query, u is a user identifier, and l is a rational

number, 0 ≤ l ≤ 1. This represents the requirement that

“A user u’s belief in the result of q must be less than l.”
Namely, the probability assigned by u’s belief to q’s result

must be less than l. Requirements like “A user u is not

authorized to know the result of q” can be formalized as

SECRET q FOR u THRESHOLD 1. The system also supports

commands of the form SECRET q FOR USERS NOT IN {u1,
. . . , un} THRESHOLD l, which represents the requirement that

“For all users u �∈ {u1, . . . , un}, u’s belief in the result of q
must be less than l.”

Attacker. An attacker is a system user with an assigned user

account, and each user is a potential attacker. An attacker’s

goal is to violate the security policy, that is, to read or infer

information about one of the SECRETs with a probability of

at least the given threshold.

An attacker can interact with the system and observe its

behaviour in response to his commands. Furthermore, he

344

can reason about this information and infer information by

exploiting domain-specific relationships between data items.

We assume that attackers know the database schema as well

as any integrity constraints on it.

Attacker Model. An attacker model represents each user’s

initial beliefs about the actual database state and how he

updates his beliefs by interacting with the system and ob-

serving its behaviour in response to his commands. These

beliefs may reflect the attacker’s knowledge of domain-specific

relationships between the data items or prior knowledge.

Inference Control System. The inference control system

protects the confidentiality of database data. It consists of

a PEP and a PDP, configured with a security policy P and

an attacker model ATK . For each user, the inference control

system keeps track of the user’s beliefs according to ATK .

The system intercepts all commands issued by the users.

When a user u issues a command c, the inference control

system decides whether u is authorized to execute c. If c
complies with the policy, i.e., the users’ beliefs still satisfy P
even after executing c, then the system forwards the command

to the database, which executes c and returns its result to u.

Otherwise, it raises a security exception and rejects c.

IV. FORMAL MODEL

A. Database Model

We introduce here background and notation for databases

and queries. Our formalization follows [2].

Let R be a countably infinite set representing identifiers of

relation schemas. A database schema D is a pair 〈Σ,dom〉,
where Σ is a first-order signature and dom is a fixed domain.

For simplicity, we consider just a single domain. Extensions

to the many-sorted case are straightforward [2]. The signature

Σ consists of a set of relation schemas R ∈ R, each schema

with arity |R|, and one constant symbol for each constant in

dom. We interpret constants by themselves in the semantics.

A state s of D is a finite Σ-structure with domain dom
that interprets each relation schema R by an |R|-ary relation

over dom. We denote by ΩD the set of all states. Given

a schema R ∈ D, s(R) denotes the tuples that belong to

(the interpretation of) R in the state s. We assume that the

domain dom is finite, as is standard for many application

areas combining databases and probabilistic reasoning [20],

[33], [48], [65]. In this case, the set of all states ΩD is finite.

A query q over a schema D is of the form {x |φ}, where x
is a sequence of variables, φ is a relational calculus formula

over D, and φ’s free variables are those in x. A boolean query
is a query { |φ}, also written as φ, where φ is a sentence. The

result of executing a query q on a state s, denoted by [q]s, is

a boolean value in {�,⊥}, if q is a boolean query, or a set of

tuples otherwise. Furthermore, given a sentence φ, �φ� denotes

the set {s ∈ ΩD | [φ]s = �}. We denote by RC (respectively

RC bool) the set of all relational calculus queries (respectively

sentences). We consider only domain-independent queries and

we employ the standard relational calculus semantics [2].

patient
Alice
Bob
Carl

smokes
Bob
Carl

father
Bob Carl

mother
Alice Carl

Fig. 2: The template for all database states, where the content

of the cancer table is left unspecified.

An integrity constraint over D is a relational calculus

sentence γ over D. Given a state s, we say that s satisfies
the constraint γ iff [γ]s = �. Given a set of constraints Γ,

ΩΓ
D denotes the set of all states satisfying the constraints in

Γ, i.e., ΩΓ
D = {s ∈ ΩD | ∧γ∈Γ[γ]

s = �}.

Example IV.1. The database associated with the example

in §II consists of five relational schemas patient , smokes ,

cancer , father , and mother , where the first three schemas

have arity 1 and the last two have arity 2. We assume that

there are only three patients Alice, Bob, and Carl, so the

domain dom is {Alice, Bob, Carl}. The integrity constraints

are as follows:

• Alice, Bob, and Carl are patients.

patient(Alice) ∧ patient(Bob) ∧ patient(Carl)

• Alice and Bob are Carl’s parents.

∀x, y. (father(x, y) ↔ (x = Bob ∧ y = Carl))∧
∀x, y. (mother(x, y) ↔ (x = Alice ∧ y = Carl))

• Alice does not smoke, whereas Bob and Carl do.

¬smokes(Alice) ∧ smokes(Bob) ∧ smokes(Carl)

Given these constraints, there are just 8 possible database

states in ΩΓ
D, which differ only in their cancer relation. The

content of the cancer relation is a subset of {Alice, Bob,
Carl}, whereas the content of the other tables is shown in

Figure 2. We denote each possible world as sC , where the set

C ⊆ {Alice, Bob, Carl} denotes the users having cancer. �

B. Security Policies

Existing access control models for databases are inadequate

to formalize security requirements capturing probabilistic de-

pendencies. For example, SQL cannot express statements like

“A user u’s belief that φ holds must be less than l.” We

present a simple framework, inspired by knowledge-based

policies [52], for expressing such requirements.

A D-secret is a tuple 〈U, φ, l〉, where U is either a finite set

of users in U or a co-finite set of users, i.e., U = U \ U ′ for

some finite U ′ ⊂ U , φ is a relational calculus sentence over D,

and l is rational number 0 ≤ l ≤ 1 specifying the uncertainty

threshold. Abusing notation, when U consists of a single user

u, we write u instead of {u}. Informally, 〈U, φ, l〉 represents

that for each user u ∈ U , u’s belief that φ holds in the actual

database state must be less than l. Therefore, a command of the

form SECRET q FOR u THRESHOLD l can be represented as 〈u,
q, l〉, whereas a command SECRET q FOR USERS NOT IN {u1,
. . . , un} THRESHOLD l can be represented as 〈U\{u1, . . . , un},

345

q, l〉. Finally, a D-security policy is a finite set of D-secrets.

Given a D-security policy P , we denote by secrets(P, u) the

set of D-secrets associated with the user u, i.e., secrets(P,
u) = {〈u, φ, l〉 | 〈U, φ, l〉 ∈ P∧u ∈ U}. Note that the function

secrets is computable since the set U is always either finite

or co-finite.

Our framework also allows the specification of lower

bounds. Requirements of the form “A user u’s belief that φ
holds must be greater than l” can be formalized as 〈u,¬φ,
1− l〉 (since the probability of ¬φ is 1−P (φ), where P (φ) is

φ’s probability). Security policies can be extended to support

secrets over non-boolean queries. A secret 〈u, {x | φ(x)},
l〉 can be seen as a shorthand for the set {〈u, φ[x �→ t],
l〉 | t ∈ ⋃

s∈ΩΓ
D
[{x | φ(x)}]s}, i.e., u’s belief in any tuple

t being in the query’s result must be less than l.

Example IV.2. Let Mallory denote the malicious researcher

from §II and D be the schema from Example IV.1. Consider

the requirement from §II: Mallory’s belief in a patient hav-

ing cancer must be less than 50%. This can be formalized

as 〈Mallory , cancer(Alice), 1/2〉, 〈Mallory , cancer(Bob),
1/2〉, and 〈Mallory , cancer(Carl), 1/2〉, or equivalently as

〈Mallory , {p | cancer(p)}, 1/2〉. In contrast, the requirement

“For all users u that are not Carl , u’s belief in Carl hav-

ing cancer must be less than 50%” can be formalized as

〈U \{Carl}, cancer(Carl), 1/2〉, where Carl denotes the user

identifier associated with Carl. �

C. Formalized System Model

A system configuration is a tuple 〈D,Γ〉, where D is a

database schema and Γ is a set of D-integrity constraints. Let

C = 〈D,Γ〉 be a system configuration. A C-system state is a

tuple 〈db, U, P 〉, where db ∈ ΩΓ
D is a database state, U ⊂ U is

a finite set of users, and P is a D-security policy. A C-query
is a pair 〈u, φ〉 where u ∈ U is a user and φ is a relational

calculus sentence over D.2 We denote by ΩC the set of all

system states and by QC the set of all queries.

A C-event is a triple 〈q, a, res〉, where q is a C-query in

QC , a ∈ {�,⊥} is a security decision, where � stands for

“authorized query” and ⊥ stands for “unauthorized query”,

and res ∈ {�,⊥, †} is the query’s result, where � and ⊥
represent the usual boolean values and † represents that the

query was not executed as access was denied. Given a C-

event e = 〈q, a, res〉, we denote by q(e) (respectively a(e)
and res(e)) the query q (respectively the decision a and the

result res). A C-history is a finite sequence of C-events. We

denote by HC the set of all possible C-histories. Moreover,

given a sequence h, |h| denotes its length, h(i) its i-th element,

and hi the sequence containing the first i elements of h. We

also denote by h0 the empty sequence ε, and · denotes the

concatenation operator.

2Without loss of generality, we focus only on boolean queries [2]. We can
support non-boolean queries as follows. Given a database state s and a query
q := {x | φ}, if the inference control mechanism authorizes the boolean
query

∧
t∈[q]s φ[x �→ t] ∧ (∀x. φ → ∨

t∈[q]s x = t), then we return q’s

result, and otherwise we reject q as unauthorized.

We now formalize Policy Decision Points. A C-PDP is a

function f : ΩC × QC × HC → {�,⊥} taking as input a

system state, a query, and a history and returning the security

decision, accept (�) or deny (⊥).

Let C be a system configuration, s = 〈db, U, P 〉 be a C-

state, and f be a C-PDP. A C-history h is compatible with
s and f iff for each 1 ≤ i ≤ |h|, (1) f(s, q(h(i)), hi−1) =
a(h(i)), (2) if a(h(i)) = ⊥, then res(h(i)) = †, and (3) if

a(h(i)) = �, then res(h(i)) = [φ]db , where q(h(i)) = 〈u,
φ〉. In other words, h is compatible with s and f iff it was

generated by the PDP f starting in state s.

A (C, f)-run is a pair 〈s, h〉, where s is a system state in

ΩC and h is a history in HC compatible with s and f . Since

all queries are SELECT queries, the system state does not

change along the run. Hence, our runs consist of a state and

a history instead of e.g., an alternating sequence of states and

actions (as is standard for runs). We denote by runs(C, f) the

set of all (C, f)-runs. Furthermore, given a run r = 〈〈db, U,
P 〉, h〉, we denote by ri the run 〈〈db, U, P 〉, hi〉, and we use

dot notation to access to r’s components. For instance, r.db
denotes the database state db and r.h denotes the history.

Example IV.3. Consider the run r = 〈〈db, U, P 〉, h〉, where

the database state db is the state s{A,B,C}, where Alice, Bob,

and Carl have cancer, the policy P is defined in Example IV.2,

the set of users U contains only Mallory , and the history h
is as follows (here we assume that all queries are authorized):

1) Mallory checks whether Carl smokes. Thus, h(1) =
〈〈Mallory , smokes(Carl)〉,�,�〉.

2) Mallory checks whether Carl is Alice’s and Bob’s

son. Therefore, h(2) is 〈〈Mallory , father(Bob, Carl) ∧
mother(Alice, Carl)〉,�,�〉.

3) Mallory checks whether Alice has cancer. Thus, h(3) =
〈〈Mallory , cancer(Alice)〉,�,�〉.

4) Mallory checks whether Bob has cancer. Thus, h(4) =
〈〈Mallory , cancer(Bob)〉,�,�〉. �

D. Attacker Model

To reason about DBIC, it is essential to precisely define

(1) how users interact with the system, (2) how they reason

about the system’s behaviour, (3) their initial beliefs about the

database state, and (4) how these beliefs change by observing

the system’s behaviour. We formalize this in an attacker model.

Each user has an initial belief about the database state.

Following [18], [19], [29], [52], we represent a user’s beliefs as

a probability distribution over all database states. Furthermore,

users observe the system’s behaviour and derive information

about the database content. We formalize a user’s observations

as an equivalence relation over runs, where two runs are

equivalent iff the user’s observations are the same in both runs,

as is standard in information-flow [7], [8]. A user’s knowledge

is the set of all database states that he considers possible

given his observations. Finally, we use Bayesian conditioning

to update a user’s beliefs given his knowledge.

Let C = 〈D,Γ〉 be a system configuration and f be a C-

PDP. A C-probability distribution is a discrete probability

346

distribution given by a function P : ΩΓ
D → [0, 1] such that∑

db∈ΩΓ
D
P (db) = 1. Given a set E ⊆ ΩΓ

D, P (E) denotes∑
s∈E P (s). Furthermore, given two sets E′, E′′ ⊆ ΩΓ

D such

that P (E′) �= 0, P (E′′ | E′) denotes P (E′′ ∩ E′)/P (E′) as

is standard. We denote by PC the set of all possible C-

probability distributions. Abusing notation, we extend prob-

ability distributions to formulae: P (ψ) = P (�ψ�), where

�ψ� = {db ∈ ΩΓ
D | [ψ]db = �}.

We now introduce indistinstinguishability, an equivalence

relation used in information-flow control [42]. Let C be a

system configuration and f be a C-PDP. Given a history h
and a user u ∈ U , h|u denotes the history obtained from h
by removing all C-events from users other than u, namely

ε|u = ε, and if h = 〈〈u′, q〉, a, res〉 · h′, then h|u = h′|u
in case u �= u′, and h|u = 〈〈u, q〉, a, res〉 · h′|u if u = u′.
Given two runs r = 〈〈db, U, P 〉, h〉 and r′ = 〈〈db′, U ′, P ′〉,
h′〉 in runs(C, f) and a user u ∈ U , we say that r and r′ are

indistinguishable for u, written r ∼u r′, iff h|u = h′|u. This

means that r and r′ are indistinguishable for a user u iff the

system’s behaviour in response to u’s commands is the same

in both runs. Note that ∼u depends on both C and f , which we

generally leave implicit. Given a run r, [r]∼u is the equivalence

class of r with respect to ∼u, i.e, [r]∼u
= {r′ ∈ runs(C,

f) | r′ ∼u r}, whereas �r�∼u
is set of all databases associated

to the runs in [r]∼u
, i.e., �r�∼u

= {db | ∃U,P, h. 〈〈db, U, P 〉,
h〉 ∈ [r]∼u}.

Definition IV.1. Let C = 〈D,Γ〉 be a configuration and f be

a C-PDP. A (C, f)-attacker model is a function ATK : U →
PC associating to each user u ∈ U a C-probability distribution

representing u’s initial beliefs. Additionally, for all users u ∈
U and all states s ∈ ΩΓ

D, we require that ATK (u)(s) > 0. The

semantics of ATK is �ATK �(u, r) = λs ∈ ΩΓ
D.ATK (u)(s |

�r�∼u
), where u ∈ U and r ∈ runs(C, f). �

The semantics of an attacker model ATK associates to each

user u and each run r the probability distribution obtained by

updating u’s initial beliefs given his knowledge with respect

to the run r. We informally refer to �ATK �(u, r)(�φ�) as u’s

beliefs in a sentence φ (given a run r).

Example IV.4. The attacker model for the example from

§II is as follows. Let XAlice, XBob, and XCarl be three

boolean random variables, representing the probability that the

corresponding patient has cancer. They define the following

joint probability distribution, which represents a user’s ini-

tial beliefs about the actual database state: P (XAlice, XBob,
XCarl) = P (XAlice) · P (XBob) · P (XCarl | XAlice, XBob).
The probability distributions of these variables are given in

Figure 3 and they are derived from the probabilistic model

in §II. We associate each outcome (x, y, z) of XAlice, XBob,
XCarl with the corresponding database state sC , where C is

the set of patients such that the outcome of the corresponding

variable is �. For each user u ∈ U , the distribution Pu is

defined as Pu(sC) = P (XAlice = x,XBob = y,XCarl = z),
where x (respectively y and z) is � if Alice (respectively Bob

and Carl) is in C and ⊥ otherwise. Figure 4 shows the prob-

XAlice

� 1/20
⊥ 19/20

XBob

� 6/20
⊥ 14/20

XCarl

XAlice XBob � ⊥
� � 12/20 8/20
� ⊥ 9/20 11/20
⊥ � 9/20 11/20
⊥ ⊥ 6/20 14/20

Fig. 3: Probability distribution for the random variables

XAlice, XBob, and XCarl from Example IV.4.

State Probability
s∅ 0.4655
s{A} 0.01925
s{B} 0.15675
s{C} 0.1995

State Probability
s{A,B} 0.006
s{A,C} 0.01575
s{B,C} 0.12825
s{A,B,C} 0.009

Fig. 4: Probability distribution over all database states. Each

state is denoted as sC , where C is the content of the cancer
table. Here we denote the patients’ names with their initials.

abilities associated with each state in ΩΓ
D, i.e., a user’s initial

beliefs. Finally, the attacker model is ATK = λu ∈ U .Pu. �

E. Confidentiality

We first define the notion of a secrecy-preserving run for a

secret 〈u, φ, l〉 and an attacker model ATK . Informally, a run

r is secrecy-preserving for 〈u, φ, l〉 iff whenever an attacker’s

belief in the secret φ is below the threshold l, then there is

no way for the attacker to increase his belief in φ above the

threshold. Our notion of secrecy-preserving runs is inspired

by existing security notions for query auditing [29].

Definition IV.2. Let C = 〈D,Γ〉 be a configuration, f be a C-

PDP, and ATK be a (C, f)-attacker model. A run r is secrecy-
preserving for a secret 〈u, φ, l〉 and ATK iff for all 0 ≤ i < |r|,
�ATK �(u, ri)(φ) < l implies �ATK �(u, ri+1)(φ) < l. �

We now formalize our confidentiality notion. A PDP pro-

vides data confidentiality for an attacker model ATK iff all

runs are secrecy-preserving for ATK . Note that our security

notion can be seen as a probabilistic generalization of opac-

ity [60] for the database setting. Our notion is also inspired

by the semantics of knowledge-based policies [52].

Definition IV.3. Let C = 〈D,Γ〉 be a system configuration,

f be a C-PDP, and ATK be a (C, f)-attacker model. We say

that the PDP f provides data confidentiality with respect to C
and ATK iff for all runs r = 〈〈db, U, P 〉, h〉 in runs(C, f),
for all users u ∈ U , for all secrets s ∈ secrets(P, u), r is

secrecy-preserving for s and ATK . �
A PDP providing confidentiality ensures that if an attacker’s

initial belief in a secret φ is below the corresponding threshold,

then there is no way for the attacker to increase his belief in

φ above the threshold by interacting with the system. This

guarantee does not however apply to trivial non-secrets, i.e.,

those secrets an attacker knows with a probability at least the

threshold even before interacting with the system. No PDP can

prevent their disclosure since the disclosure does not depend

on the attacker’s interaction with the database.

347

Example IV.5. Let r be the run given in Example IV.3,

ATK be the attacker model in Example IV.4, and u be

the user Mallory. In the following, φ1, φ2, and φ3 denote

cancer(Carl), cancer(Bob), and cancer(Alice) respectively,

i.e., the three secrets from Example IV.2. Furthermore, we

assume that the policy contains an additional secret 〈Mallory ,
φ4, 1/2〉, where φ4 := ¬cancer(Alice).

Figure 5 illustrates Mallory’s beliefs about φ1, . . . , φ4 and

whether the run is secrecy-preserving for the secrets φ1,
. . . , φ4. The probabilities in the tables can be obtained by

combining the states in �ri�∼u , for 0 ≤ i ≤ 4, and �φj�, for

1 ≤ j ≤ 4, with the probabilities from Figure 4. As shown in

Figure 5, the run is not secrecy-preserving for the secrets φ1

and φ2 as it completely discloses that Alice and Bob have

cancer, in the third and fourth steps respectively. Secrecy-

preservation is also violated for the secret φ1, even though r
does not directly disclose any information about Carl ’s health

status. Indeed, in the last step of the run, Mallory’s belief in

φ1 is 0.6, which is higher than the threshold 1/2, even though

his belief in φ1 before learning that Bob had cancer was below

the threshold. Note that φ4 is a trivial non-secret: even before

interacting with the system, Mallory’s belief in φ4 is 0.95. �

F. Discussion

Our approach assumes that the attacker’s capabilities are

well-defined. While this, in general, is a strong assumption,

there are many domains where such information is known.

There are, however, domains where this information is

lacking. In these cases, security engineers must (1) determine

the appropriate beliefs capturing the desired attacker models,

and (2) formalize them. The latter can be done, for instance,

using ATKLOG (see §V). Note however that precisely eliciting

the attackers’ capabilities is still an open problem in DBIC.

V. ATKLOG

A. Probabilistic Logic Programming

PROBLOG [20], [21], [31] is a probabilistic logic pro-

gramming language with associated tool support. An exact

inference engine for PROBLOG is available at [1].

Conventional logic programs are constructed from terms,

atoms, literals, and rules. In the following, we consider only

function-free logic programs, also called DATALOG programs.

In this setting, terms are either variable identifiers or constants.

Let Σ be a first-order signature, dom be a finite domain,

and Var be a countably infinite set of variable identifiers. A

(Σ,dom)-atom R(v1, . . . , vn) consists of a predicate symbol

R ∈ Σ and arguments v1, . . . , vn such that n is the arity of

R, and each vi, for 1 ≤ i ≤ n, is either a variable identifier

in Var or a constant in dom. We denote by AΣ,dom the

set {R(v1, . . . , v|R|) | R ∈ Σ ∧ v1, . . . , v|R| ∈ dom ∪ Var}
of all (Σ,dom)-atoms. A (Σ,dom)-literal l is either a (Σ,
dom)-atom a or its negation ¬a, where a ∈ AΣ,dom. We

denote by LΣ,dom the set AΣ,dom ∪ {¬a | a ∈ AΣ,dom} of

all (Σ,dom)-literals. Given a literal l, vars(l) denotes the set

of its variables, args(l) the list of its arguments, and pred(l)
the predicate symbol used in l. As is standard, we say that a

literal l is positive if it is an atom in AΣ,dom and negative
if it is the negation of an atom. Furthermore, we say that a

literal l is ground iff vars(l) = ∅.

A (Σ,dom)-rule is of the form h ← l1, . . . , ln, e1, . . . , em,

where h ∈ AΣ,dom is a (Σ,dom)-atom, l1, . . . , ln ∈ LΣ,dom

are (Σ,dom)-literals, and e1, . . . , em are equality and in-

equality constraints over the variables in h, l1, . . . , lm.3 Given

a rule r, we denote by head(r) the atom h, by body(r) the

literals l1, . . . , ln, by cstr(r) the constraints e1, . . . , em, and

by body(r, i) the i-th literal in r’s body, i.e., body(r, i) = li.
Furthermore, we denote by body+(r) (respectively body−(r))
all positive (respectively negative) literals in body(r). As is

standard, we assume that the free variables in a rule’s head

are a subset of the free variables of the positive literals in

the rule’s body, i.e., vars(head(r)) ⊆ ⋃
l∈body+(r) vars(l) ∪⋃

(x=c)∈cstr(r)∧c∈dom{x}. Finally, a (Σ,dom)-logic program
is a set of (Σ,dom)-ground atoms and (Σ,dom)-rules. We

consider only programs p that do not contain negative cycles

in the rules as is standard for stratified DATALOG [2].

To reason about probabilities, PROBLOG extends logic

programming with probabilistic atoms. A (Σ,dom)-proba-
bilistic atom is a (Σ,dom)-atom a annotated with a value

0 ≤ v ≤ 1, denoted v::a. PROBLOG supports both proba-

bilistic ground atoms and rules having probabilistic atoms in

their heads. PROBLOG also supports annotated disjunctions
v1::a1; . . . ; vn::an, where a1, . . . , an are ground atoms and(∑

1≤i≤n vi

)
≤ 1, which denote that a1, . . . , an are mutually

exclusive probabilistic events happening with probabilities v1,
. . . , vn. Annotated disjunctions can either be used as ground

atoms or as heads in rules. Both annotated disjunctions and

probabilistic rules are just syntactic sugar and can be expressed

using ground probabilistic atoms and standard rules [20], [21],

[31]; see Appendix A.

A (Σ,dom)-PROBLOG program p defines a probability

distribution over all possible (Σ,dom)-structures, denoted

�p�. Note that we consider only function-free PROBLOG

programs. Hence, in our setting, PROBLOG is a probabilistic

extension of DATALOG. Appendix A contains a formal account

of PROBLOG’s semantics.

Medical Data. We formalize the probability distribution

from Example IV.4 as a PROBLOG program. We reuse the

database schema and the domain from Example IV.1 as

the first-order signature and the domain for the PROBLOG

program. First, we encode the template shown in Fig-

ure 2 using ground atoms: patient(Alice), patient(Bob),
patient(Carl), smokes(Bob), smokes(Carl), father(Bob,
Carl), and mother(Alice, Carl). Second, we encode the

probability distribution associated with the possible values of

the cancer table using the following PROBLOG rules, which

have probabilistic atoms in their heads:

1/20::cancer(x) ← patient(x)

5/19::cancer(x) ← smokes(x)

3Without loss of generality, we assume that equality constraints involving
a variable v and a constant c are of the form v = c.

348

i
�ATK �(u, ri)(�φ�) �ATK �(u, ri+1)(�φ�) Secrecy

φ1 φ2 φ3 φ4 φ1 φ2 φ3 φ4 φ1 φ2 φ3 φ4

0 0.3525 0.3 0.05 0.95 0.3525 0.3 0.05 0.95 � � � ∗
1 0.3525 0.3 0.05 0.95 0.3525 0.3 0.05 0.95 � � � ∗
2 0.3525 0.3 0.05 0.95 0.495 0.3 1 0 � � X ∗
3 0.495 0.3 1 0 0.6 1 1 0 X X X ∗
4 0.6 1 1 0 – – – – – – – –

Fig. 5: Evolution of Mallory’s beliefs in the secrets φ1, . . . , φ4 for the run r and the attacker model ATK from Example IV.5.

In the table, X and � denote that secrecy-preservation is violated and satisfied respectively, whereas ∗ denotes trivial secrets.

3/14::cancer(y) ← father(x, y), cancer(x),

mother(z, y),¬cancer(z)
3/14::cancer(y) ← father(x, y),¬cancer(x),

mother(z, y), cancer(z)

3/7::cancer(y) ← father(x, y), cancer(x),

mother(z, y), cancer(z)

The coefficients in the above example are derived from §II.

For instance, the probability that a smoking patient x whose

parents are not not in the cancer relation has cancer is 30%.

The coefficient in the first rule is 1/20 since each patient has

a 5% probability of having cancer. The coefficient in the

second rule is 5/19, which is (6/20 − 1/20) · (1− 1/20)
−1

, i.e.,

the probability that cancer(x) is derived from the second rule

given that it has not been derived from the first rule. This

ensures that the overall probability of deriving cancer(x) is
6/20, i.e., 30%. The coefficients for the last two rules are

derived analogously.

Informally, a probabilistic ground atom 1/2::cancer(Bob)
expresses that cancer(Bob) holds with a probability 1/2.
Similarly, the rule 1/20::cancer(x) ← patient(x) states that,

for any x such that patient(x) holds, then cancer(x) can

be derived with probability 1/20. This program yields the

probability distribution shown in Figure 4.

B. ATKLOG’s Foundations

We first introduce belief programs, which formalize an

attacker’s initial beliefs. Afterwards, we formalize ATKLOG.

Belief Programs. A belief program formalizes an attacker’s

beliefs as a probability distribution over the database states.

A database schema D′ = 〈Σ′,dom〉 extends a schema

D = 〈Σ,dom〉 iff Σ′ contains all relation schemas in Σ. The

extension D′ may extend Σ with additional predicate sym-

bols necessary to encode probabilistic dependencies. Given

an extension D′, a D′-state s′ agrees with a D-state s iff

s′(R) = s(R) for all R in D. Given a D-state s, we denote

by EXT (s,D,D′) the set of all D′-states that agree with s.

A (Σ′,dom)-PROBLOG program p, where D′ = 〈Σ′,
dom〉 extends D, is a belief program over D. The D-
semantics of p is �p�D = λs ∈ ΩD.

∑
s′∈EXT(s,D,D′)�p�(s

′).
Given a system configuration C = 〈D,Γ〉, a belief program

p over D complies with C iff �p�D is a C-probability

distribution. With a slight abuse of notation, we lift the

semantics of belief programs to sentences: �p�D = λφ ∈
RCbool .

∑
s′∈{s∈ΩD|[φ]s=�}�p�D(s′).

ATKLOG. An ATKLOG model specifies the initial beliefs of

all users in U using belief programs.

Let D be a database schema and C = 〈D,Γ〉 be a system

configuration. A C-ATKLOG model ATK is a function associ-

ating to each user u ∈ U , where U ⊂ U is a finite set of users,

a belief program pu and to all users u ∈ U\U a belief program

p0, such that for all users u ∈ U , �ATK (u)�D complies with

C and for all database states s ∈ ΩΓ
D, �ATK (u)�D(s) > 0,

i.e., all database states satisfying the integrity constraints are

possible. Informally, a C-ATKLOG model associates a distinct

belief program to each user in U , and it associates to each user

in U \ U the same belief program p0.

Given a C-PDP f , a C-ATKLOG model ATK defines the

(C, f)-attacker model λu ∈ U .�ATK (u)�D that associates to

each user u ∈ U the probability distribution defined by the

belief program ATK (u). The semantics of this (C, f)-attacker

model is: λu ∈ U .λr ∈ runs(C, f).λs ∈ ΩΓ
D. �ATK (u)�D(s |

�r�∼u
). Informally, given a C-ATKLOG model ATK , a C-

PDP f , and a user u, u’s belief in a database state s, given a

run r, is obtained by conditioning the probability distribution

defined by the belief program ATK (u) given the set of

database states corresponding to all runs r′ ∼u r.

VI. TRACTABLE INFERENCE FOR PROBLOG PROGRAMS

Probabilistic inference in PROBLOG is intractable in gen-

eral. Its data complexity, i.e., the complexity of inference

when only the programs’ probabilistic ground atoms are part

of the input and the rules are considered fixed and not part

of the input, is #P -hard; see [36]. This limits the practical

applicability of PROBLOG (and ATKLOG) for DBIC. To

address this, we define acyclic PROBLOG programs, a class of

programs where the data complexity of inference is PTIME.

Given a PROBLOG program p, our inference algorithm

consists of three steps: (1) we compute all of p’s derivations,

(2) we compile these derivations into a Bayesian Network

(BN) bn , and (3) we perform the inference over bn . To

ensure tractability, we leverage two key insights. First,

we exploit guarded negation [9] to develop a sound over-

approximation, called the relaxed grounding, of all derivations

of a program that is independent of the presence (or absence)

of the probabilistic atoms. This ensures that whenever a

ground atom can be derived from a program (for a possible

assignment to the probabilistic atoms), the atom is also part of

this program’s relaxed grounding. This avoids grounding p for

each possible assignment to the probabilistic atoms. Second,

we introduce syntactic constraints (acyclicity) that ensure that

349

bn is a forest of poly-trees. This ensures tractability since

inference for poly-tree BNs can be performed in polynomial

time in the network’s size [48].

We also precisely characterize the expressiveness of acyclic

PROBLOG programs. In this respect, we prove that acyclic

programs are as expressive as forests of poly-tree BNs, one of

the few classes of BNs with tractable inference.

As mentioned in §V, probabilistic rules and annotated dis-

junctions are just syntactic sugar. Hence, in the following we

consider PROBLOG programs consisting just of probabilistic

ground atoms and non-probabilistic rules. Note also that we

treat ground atoms as rules with an empty body.

A. Preliminaries

Negation-guarded Programs. A rule r is negation-
guarded [9] iff all the variables occurring in negative literals

also occur in positive literals, namely for all negative literals

l in body−(r), vars(l) ⊆ ⋃
l′∈body+(r) vars(l

′). To illustrate,

the rule C(x) ← A(x),¬B(x) is negation-guarded, whereas

C(x) ← A(x),¬B(x, y) is not since the variable y does

not occur in any positive literal. We say that a program p
is negation-guarded if all rules r ∈ p are.

Relaxed Grounding. The relaxed grounding of a program

p is obtained by considering all probabilistic atoms as cer-

tain and by grounding all positive literals. For all negation-

guarded programs, the relaxed grounding of p is a sound over-

approximation of all possible derivations in p. Given a program

p and a rule r ∈ p, rg(p) denotes p’s relaxed grounding and

rg(p, r) denotes the set of r’s ground instances. We formalize

relaxed groundings in [36].

Example VI.1. Let p be the program consisting of the

facts 1/2::A(1), A(2), A(3), D(1), E(2), F (1), O(1, 2), and
2/3::O(2, 3), and the rules ra = B(x) ← A(x), D(x),
rb = B(x) ← A(x), E(x), and rc = B(y) ← B(x),¬F (x),
O(x, y). The relaxed grounding of p consists of the initial

facts together with B(1), B(2), and B(3), whereas rg(p, rc)
consists of B(2) ← B(1),¬F (1), O(1, 2) and B(3) ← B(2),
¬F (2), O(2, 3). �

Dependency and Ground Graphs. The dependency graph
of a program p, denoted graph(p), is the directed labelled

graph having as nodes all the predicate symbols in p and

having an edge a
r,i−→ b iff there is a rule r such that a

occurs in i-th literal in r’s body and b occurs in r’s head.

Figure 6 depicts the dependency graph from Example VI.1.

The ground graph of a program p is the graph obtained from

its relaxed grounding. Hence, there is an edge a
r,gr ,i−−−→ b

from the ground atom a to the ground atom b iff there is

a rule r and a ground rule gr ∈ rg(p, r) such that body(gr ,
i) ∈ {a,¬a} and head(gr) = b. Figure 7 depicts the ground

graph from Example VI.1. Note that there are no incoming or

outgoing edges from A(3) because the node is not involved

in any derivation.

Propagation Maps. We use propagation maps to track how

information flows inside rules. Given a rule r and a literal l ∈

A

B

F

D

O

E ra, 1rb, 1

rc, 1
rc,

2 rc , 3

rb , 2 ra,
2

Fig. 6: Dependency graph for the program in Example VI.1.

A(1) D(1)

B(1)

A(2) E(2)

F (1) O(1, 2)B(2)

F (2)A(3) O(2, 3)

B(3)

ra , r ′
a , 1 ra

, r
′
a
, 2

rc, r
1
c , 2

r
b , r ′

b , 1

r
c
,
r
2 c
,
1

rb
, r

′
b
, 2

rc, r
1
c , 3

rc , r 2
c , 2

r
c
,
r
2 c
,
1

rc
, r

2
c
, 3

Fig. 7: Ground graph for the program in Example VI.1. The

ground rules r′a, r′b, r1c , and r2c are as follows: r′a = B(1) ←
A(1), D(1), r′b = B(2) ← A(2), E(2), r1c = B(2) ← B(1),
¬F (1), O(1, 2), and r2c = B(3) ← B(2),¬F (2), O(2, 3).

body(r), the (r, l)-vertical map is the mapping μ from {1, . . . ,
|l|} to {1, . . . , |head(r)|} such that μ(i) = j iff args(l)(i) =
args(head(r))(j) and args(l)(i) ∈ Var . Given a rule r and

literals l and l′ in r’s body, the (r, l, l′)-horizontal map is the

mapping μ from {1, . . . , |l|} to {1, . . . , |l′|} such that μ(i) = j
iff args(l)(i) = args(l′)(j) and args(l)(i) ∈ Var .

We say that a path links to a literal l if information

flows along the rules to l. This can be formalized by posing

constraints on the mapping obtained by combining horizontal

and vertical maps along the path. Formally, given a literal

l and a mapping ν : N → N, a directed path pr1
r1,i1−−−→

. . .
rn−1,in−1−−−−−−→ prn ν-downward links to l iff there is a

0 ≤ j < n − 1 such that the function μ := μ′ ◦ μj ◦ . . . ◦ μ1

satisfies μ(k) = ν(k) for all k for which ν(k) is defined, where

for 1 ≤ h ≤ j, μh is the (rh, body(rh, ih))-vertical map, and

μ′ is the horizontal map connecting body(rj+1, ij+1) with l.

Similarly, a directed path pr1
r1,i1−−−→ . . .

rn−1,in−1−−−−−−→ prn ν-
upward links to l iff there is a 1 ≤ j ≤ n − 1 such that the

function μ := μ′−1◦μ−1
j+1◦. . .◦μ−1

n−1 satisfies μ(k) = ν(k) for

all k for which ν(k) is defined, where μh is the (rh, body(rh,
ih))-vertical map, for j < h ≤ n − 1, and μ′ is the (rj , l)-
vertical map. A path P links to a predicate symbol a iff there

is an atom a(x) such that P links to a(x).

Example VI.2. The horizontal map connecting A(x) and

D(x) in ra, i.e., the (ra, A(x), D(x))-horizontal map, is

350

{1 �→ 1}. The horizontal map connecting A(x) and E(x) in

rb is {1 �→ 1} as well. Hence, the path A
ra,1−−→ B downward

links to D and the path A
rb,1−−→ B downward links to E

for the mapping {1 �→ 1}. Furthermore, the path B
rc,1−−→ B

downward links to O for {1 �→ 1} since the (rc, B(x), O(x,

y))-horizontal map is {1 �→ 1}. Finally, the path B
rc,1−−→ B

upward links to O for {2 �→ 1} since the (rc, O(x, y))-vertical

map is {2 �→ 1}. �

B. Acyclic PROBLOG programs

A sufficient condition for tractable inference is that p’s

ground graph is a forest of poly-trees. This requires that p’s

ground graph neither contains directed nor undirected cycles,

or, equivalently, the undirected version of p’s ground graph

is acyclic. To illustrate, the ground graph in Figure 7 is a

poly-tree. The key insight here is that a cycle among ground

atoms is caused by a (directed or undirected) cycle among

p’s predicate symbols. In a nutshell, acyclicity requires that

all possible cycles in graph(p) are guarded. This ensures that

cycles in graph(p) do not lead to cycles in the ground graph.

Additionally, acyclicity requires that programs are negation-

guarded. This ensures that the relaxed grounding and the

ground graph are well-defined. In the following, let p be a

(Σ,dom)-PROBLOG program.

Annotations. Annotations represent properties of the relations

induced by the program p, and they are syntactically derived

by analysing p’s ground atoms and rules.

Let a, a′ ∈ Σ be two predicate symbols such that |a| =
|a′|. A disjointness annotation DIS (a, a′) represents that the

relations induced by a and a′ (given p’s relaxed grounding)

are disjoint. We say that DIS (a, a′) can be derived from p iff

no rules in p contain a or a′ in their heads, and there is no

v ∈ dom|a| where both a(v) and a′(v) appear as (possibly

probabilistic) ground atoms in p. Hence, the relations induced

by a and a′ are disjoint.

Let n ∈ N and A ⊆ Σ be a set of predicate symbols

such that |a| = 2n for all a ∈ A. An ordering annotation
ORD(A) represents that the transitive closure of the union

of the relations induced by predicates in A given p’s relaxed

grounding is a strict partial order over domn. The annotation

ORD(A) can be derived from the program p iff there is no

rule r ∈ p that contains any of the predicates in A in its head

and the transitive closure of
⋃

a∈A{((v1, . . . , vn), (vn+1, . . . ,
v2n)) | ∃k. k::a(v1, . . . , v2n) ∈ p} is a strict partial order

over domn. Hence, the closure of the relation
⋃

a∈A{((v1,
. . . , vn), (vn+1, . . . , v2n)) | a(v1, . . . , v2n) ∈ rg(p)} induced

by the relaxed grounding is a strict partial order.

Let a ∈ Σ be a predicate symbol and K ⊆ {1, . . . ,
|a|}. A uniqueness annotation UNQ(a,K) represents that the

attributes in K are a primary key for the relation induced by

a given the relaxed grounding. We say that UNQ(a,K) can

be derived from a program p iff no rule contains a in its head

and for all v, v′ ∈ dom|a|, if (1) v(i) = v′(i) for all i ∈ K,

and (2) there are k and k′ such k::a(v) ∈ p and k′::a(v′) ∈ p,

then v = v′. This ensures that whenever a(v), a(v′) ∈ rg(p)
and v(i) = v′(i) for all i ∈ K, then v = v′.

A Σ-template T is a set of annotations. In [36], we relax

our syntactic rules for deriving annotations.

Example VI.3. We can derive DIS (D,E) from the program

in Example VI.1 since no rule generates facts for D and E and

the relations defined by the ground atoms are {1} and {2}.

We can also derive ORD({O}) since the relation defined by

O’s ground atoms is {(1, 2), (2, 3)}, whose transitive closure

is a strict partial order. Finally, we can derive UNQ(O, {1}),
UNQ(O, {2}), and UNQ(O, {1, 2}) since both arguments of

O uniquely identify the tuples in the relation induced by O.�

Unsafe structures. An unsafe structure models a part of the

dependency graph that may introduce cycles in the ground

graph. We define directed and undirected unsafe structures

which may respectively introduce directed and undirected

cycles in the ground graph.

A directed unsafe structure in graph(p) is a directed cycle C
in graph(p). We say that a directed unsafe structure C covers
a directed cycle C ′ iff C is equivalent to C ′.

An undirected unsafe structure in graph(p) is quadruple

〈D1, D2, D3, U〉 such that (1) D1, D2, and D3 are directed

paths whereas U is an undirected path, (2) D1 and D2 start

from the same node, (3) D2 and D3 end in the same node, and

(4) D1 ·U ·D3 ·D2 is an undirected cycle in graph(p). We say

that an unsafe structure 〈D1, D2, D3, U〉 covers an undirected

cycle U ′ in graph(p) iff D1 ·U ·D3 ·D2 is equivalent to U ′.

Example VI.4. The cycle introduced by the rule rc is captured

by the directed unsafe structure B
rc,1−−→ B, while the cycle

introduced by ra and rb is captured by the structure 〈A ra,1−−→
B,A

rb,1−−→ B, ε, ε〉, where ε denotes the empty path. �

Connected Rules. A connected rule r ensures that a ground-

ing of r is fully determined either by the assignment to the

head’s variables or to the variables of any literal in r’s body.

Formally, a strongly connected rule r guarantees that for any

two groundings gr ′, gr ′′ of r, if head(gr ′) = head(gr ′′), then

gr ′ = gr ′′. In contrast, a weakly connected rule r guaran-

tees that for any two groundings gr ′, gr ′′ of r, if body(gr ′,
i) = body(gr ′′, i) for some i, then gr ′ = gr ′′. This is done by

exploiting uniqueness annotations and the rule’s structure.

Before formalizing connected rules, we introduce join trees.

A join tree represents how multiple predicate symbols in a rule

share variables. In the following, let r be a rule and T be a

template. A join tree for a rule r is a rooted labelled tree (N,
E, root , λ), where N ⊆ body(r), E is a set of edges (i.e., un-

ordered pairs over N2), root ∈ N is the tree’s root, and λ is the

labelling function. Moreover, we require that for all n, n′ ∈ N ,

if n �= n′ and (n, n′) ∈ E, then λ(n, n′) = vars(n)∩vars(n′)
and λ(n, n′) �= ∅. A join tree (N,E, root , λ) covers a literal

l iff l ∈ N . Given a join tree J = (N,E, root , λ) and a

node n ∈ N , the support of n, denoted support(n), is the

set vars(head(r)) ∪ {x | (x = c) ∈ cstr(r) ∧ c ∈ dom} ∪
{vars(n′) | n′ ∈ anc(J, n)}, where anc(J, n) is the set of n’s

351

ancestors in J , i.e., the set of all nodes (different from n) on

the path from root to n. A join tree J = (N,E, root , λ) is

T -strongly connected iff for all positive literals l ∈ N , there

is a set K ⊆ {i | x = args(l) ∧ x(i) ∈ support(l)} such that

UNQ(pred(l),K) ∈ T and for all negative literals l ∈ N ,

vars(l) ⊆ support(l). In contrast, a join tree (N,E, root , λ)
is T -weakly connected iff for all (a(x), a′(x′)) ∈ E, there are

K ⊆ {i | x(i) ∈ L} and K ′ ⊆ {i | x′(i) ∈ L} such that

UNQ(a,K),UNQ(a′,K ′) ∈ T , where L = λ(a(x), a′(x′)).
We now formalize strongly and weakly connected rules.

A rule r is T -strongly connected iff there exist T -strongly

connected join trees J1, . . . , Jn that cover all literals in r’s

body. This guarantees that for any two groundings gr ′, gr ′′ of

r, if head(gr ′) = head(gr ′′), then gr ′ = gr ′′.
Given a rule r, a set of literals L, and a template T , a literal

l ∈ body(r) is (r, T , L)-strictly guarded iff (1) vars(l) ⊆⋃
l′∈L∩body+(r) vars(l

′)∪{x | (x = c) ∈ cstr(r)∧c ∈ dom},

and (2) there is a positive literal a(x) ∈ L and an annotation

UNQ(a,K) ∈ T such that {x(i) | i ∈ K} ⊆ vars(l). A rule

r is weakly connected for T iff there exists a T -weakly con-

nected join tree J = (N,E, root , λ) such that N ⊆ body+(r),
and all literals in body(r) \N are (r, T , N)-strictly guarded.

This guarantees that for any two groundings gr ′, gr ′′ of r, if

body(gr ′, i) = body(gr ′′, i) for some i, then gr ′ = gr ′′.

Example VI.5. Let T be the template from Example VI.3.

The rule rc := B(y) ← B(x),¬F (x), O(x, y) is T -strongly

connected. Indeed, the join tree having O(x, y) as root and

B(x) and ¬F (x) as leaves is such that (1) there is a uniqueness

annotation UNQ(O, {2}) in T such that the second variable

in O(x, y) is included in those of rc’s head, (2) the variables

in B(x) and ¬F (x) are a subset of those of their ancestors,

and (3) the tree covers all literals in rc’s body. The rule is also

T -weakly connected: the join tree consisting only of O(x, y)
is T -weakly connected and the literals B(x) and ¬F (x) are

strictly guarded. Note that the rules ra and rb are trivially both

strongly and weakly connected. �

Guarded undirected structures. Guarded undirected

structures ensure that undirected cycles in the dependency

graph do not correspond to undirected cycles in the ground

graph by exploiting disjointness annotations. Formally, an

undirected unsafe structure 〈D1, D2, D3, U〉 is guarded by
a template T iff either (D1, D2) is T -head-guarded or

(D2, D3) is T -tail-guarded.
A pair of non-empty paths (P1, P2) sharing the same initial

node a is T -head guarded iff (1) if P1 = P2, all rules in P1

are weakly connected for T , or (2) if P1 �= P2, there is an

annotation DIS (pr , pr ′) ∈ T , a set K ⊆ {1, . . . , |a|}, and

a bijection ν : K → {1, . . . , |pr |} such that P1 ν-downward

links to pr and P2 ν-downward links to pr ′. Given two ground

paths P ′
1 and P ′

2 corresponding to P1 and P2, the first condition

ensures that P ′
1 = P ′

2 whereas the second ensures that P ′
1 or

P ′
2 are not in the ground graph.
Similarly, a pair of non-empty paths (P1, P2) sharing the

same final node a is T -tail guarded iff (1) if P1 = P2, all

rules in P1 are strongly connected for T , or (2) if P1 �= P2,

there is an annotation DIS (pr , pr ′) ∈ T , a set K ⊆ {1, . . . ,
|a|}, and a bijection ν : K → {1, . . . , |pr |}, such that P1

ν-upward links to pr and P2 ν-upward links to pr ′.

Example VI.6. The only non-trivially guarded undirected

cycle in the graph from Figure 6 is the one represented by the

undirected unsafe structure 〈A ra,1−−→ B,A
rb,1−−→ B, ε, ε〉. The

structure is guarded since the paths A
ra,1−−→ B and A

rb,1−−→ B
are head guarded by DIS (D,E). Indeed, for the same ground

atom A(v), for some v ∈ {1, 2, 3}, only one of ra and rb can

be applied since D and E are disjoint. �

Guarded directed structures. Guarded directed structures

exploit ordering annotations to ensure that directed cycles in

the dependency graph do not correspond to directed cycles

among ground atoms. A directed unsafe structure pr1
r1,i1−−−→

. . .
rn,in−−−→ pr1 is guarded by a template T iff there is

an annotation ORD(O) ∈ T , integers 1 ≤ y1 < y2 <
. . . < ye = n, literals o1(x1), . . . , oe(xe) (where o1, . . . ,
oe ∈ O), a non-empty set K ⊆ {1, . . . , |pr1|}, and a bijection

ν : K → {1, . . . , |o|/2} such that for each 0 ≤ k < e,

(1) pryk

ryk ,iyk−−−−−→ . . .
ryk+1−1,iyk+1−1−−−−−−−−−−−→ pryk+1

ν-downward

connects to ok+1(xk+1), and (2) pryk+1−1

ryk+1−1,iyk+1−1−−−−−−−−−−−→
pryk+1

ν′-upward connects to ok+1(xk+1), where ν′(i) =
ν(x) + |o1|/2 for all 1 ≤ i ≤ |o1|/2, and y0 = 1.

Example VI.7. The directed unsafe structure B
rc,1−−→ B is

guarded by ORD({O}) in the template from Example VI.3.

Indeed, the strict partial order induced by O breaks the cycle

among ground atoms belonging to B. In particular, the path

B
rc,1−−→ B both downward links and upward links to O(x, y);

see Example VI.2. �

Acyclic Programs. Let p be a negation-guarded program

and T be the template containing all annotations that can

be derived from p. We say that p is acyclic iff (a) for all

undirected cycles U in graph(p) that are not directed cycles,

there is a T -guarded undirected unsafe structure that covers

U , and (b) for all directed cycles C in graph(p), there is a T -

guarded directed unsafe structure that covers C. This ensures

the absence of cycles in the ground graph.

Proposition VI.1. Let p be a PROBLOG program. If p is
acyclic, then the ground graph of p is a forest of poly-trees.

Example VI.8. The program p from Example VI.1 is acyclic.

This is reflected in the ground graph in Figure 7. The pro-

gram q = p ∪ {E(1)}, however, is not acyclic: we cannot

derive DIS (D,E) from q and the undirected unsafe structure

〈A ra,1−−→ B,A
rb,1−−→ B, ε, ε〉 is not guarded. As expected, q’s

ground graph contains an undirected cycle between A(1) and

B(1), as shown in Figure 8. �

Expressiveness. Acyclicity trades off the programs

expressible in PROBLOG for a tractable inference procedure.

Acyclic programs, nevertheless, can encode many relevant

probabilistic models.

352

A(1) D(1)

E(1)B(1)

A(2) E(2)

F (1) O(1, 2)B(2)

F (2)A(3) O(2, 3)

B(3)

ra , r ′
a , 1

r
b , r ′

, 1

ra
, r

′
a
, 2

rb, r
′, 2

rc, r
1
c , 2

r
b , r ′

b , 1

r
c
,
r
2 c
,
1

rb
, r

′
b
, 2

rc, r
1
c , 3

rc , r 2
c , 2

r
c
,
r
2 c
,
1

rc
, r

2
c
, 3

Fig. 8: Ground graph for the program in Example VI.1

extended with the atom E(1). The additional edges and nodes

are represented using dashed lines. The ground rules r′a, r′b,

r1c , and r2c are as in Figure 7, and r′ = B(1) ← A(1), E(1).

X[B(2)] X[F (2)] X[O(2, 3)]

X[rc, r
2
c , B(3)]

Selected CPTs.

X[rc, r
2
c , B(3)]

X[B(2)] X[F (2)] X[O(2, 3)] � ⊥
� � � 0 1
� � ⊥ 0 1
� ⊥ � 1 0
� ⊥ ⊥ 0 1
⊥ � � 0 1
⊥ � ⊥ 0 1
⊥ ⊥ � 0 1
⊥ ⊥ ⊥ 0 1

Fig. 9: Portion of the resulting BN for the atoms B(2), F (2),
and O(2, 3), the rule rc = B(y) ← B(x),¬F (x), O(x, y), and

the ground rule r2c = B(3) ← B(2),¬F (2), O(2, 3), together

with the CPT encoding r2c ’s semantics.

Proposition VI.2. Any forest of poly-tree BNs can be repre-
sented as an acyclic PROBLOG program.

To clarify this proposition’s scope, observe that poly-tree

BNs are one of the few classes of BNs with tractable inference

procedures. From Proposition VI.2, it follows that a large class

of probabilistic models with tractable inference can be repre-

sented as acyclic programs. This supports our thesis that our

syntactic constraints are not overly restrictive. In [36], we relax

acyclicity to support a limited form of annotated disjunctions

and rules sharing a part of their bodies, which are needed to

encode the example from §V and for Proposition VI.2. We

also provide all the proofs.

C. Inference Engine

Our inference algorithm for acyclic PROBLOG programs

consists of three steps: (1) we compute the relaxed grounding

of p (cf. §VI-A), (2) we compile the relaxed grounding into a

Bayesian Network (BN), and (3) we perform the inference us-

ing standard algorithms for poly-tree Bayesian Networks [48].

Encoding as BNs. We compile the relaxed grounding rg(p)
into the BN bn(p). The boolean random variables in bn(p) are

as follows: (a) for each atom a in rg(p) and ground literal a
or ¬a occurring in any gr ∈ ⋃

r∈p rg(p, r), there is a random

variable X[a], (b) for each rule r ∈ p and each ground atom a
such that there is gr ∈ rg(p, r) satisfying a = head(gr), there

is a random variable X[r, a], and (c) for each rule r ∈ p, each

ground atom a, and each ground rule gr ∈ rg(p, r) such that

a = head(gr), there is a random variable X[r, gr , a].
The edges in bn(p) are as follows: (a) for each ground atom

a, rule r, and ground rule gr , there is an edge from X[r, gr , a]
to X[r, a] and an edge from X[r, a] to X[a], and (b) for each

ground atoms a and b, rule r, and ground rule gr , there is an

edge from X[b] to X[r, gr , a] if b occurs in gr ’s body.

Finally, the Conditional Probability Tables (CPTs) of the

variables in bn(p) are as follows. The CPT of variables of the

form X[a] and X[r, a] is just the OR of the values of their

parents, i.e., the value is � with probability 1 iff at least one

of the parents has value �. For variables of the form X[r,
gr , a] such that body(r) �= ∅, then the variable’s CPT encode

the semantics of the rule r, i.e., the value of X[r, gr , a] is �
with probability 1 iff all positive literals have value � and

all negative literals have value ⊥. In contrast, for variables of

the form X[r, gr , a] such that body(r) = ∅, then the variable

has value � with probability v and ⊥ with probability 1− v,

where r is of the form v::a (if r = a then v = 1).

To ensure that the size of the CPT of variables of the form

X[r, a] is independent of the size of the relaxed grounding,

instead of directly connecting variables of the form X[r, gr , a]
with X[r, a], we construct a binary tree of auxiliary variables

where the leaves are all variables of the form X[r, gr , a] and

the root is the variable X[r, a]. Figure 9 depicts a portion of

the BN for the program in Example VI.1.

Complexity. We now introduce the main result of this section.

Theorem VI.1. The data complexity of inference for acyclic
PROBLOG programs is PTIME.

This follows from (1) the relaxed grounding and the encod-

ing can be computed in PTIME in terms of data complexity,

(2) the encoding ensures that, for acyclic programs, the re-

sulting Bayesian Network is a forest of poly-trees, and (3) in-

ference algorithms for poly-tree BNs [48] run in polynomial

time in the BN’s size. In [36], we extend our encoding to

handle additional features such as annotated disjunctions, and

we prove its correctness and complexity.

VII. ANGERONA

ANGERONA is a DBIC mechanism that provably secures

databases against probabilistic inferences. ANGERONA is

parametrized by an ATKLOG model representing the attacker’s

capabilities and it leverages PROBLOG’s inference capabilities.

A. Checking Query Security

Algorithm 1 presents ANGERONA. It takes as input a system

state s = 〈db, U, P 〉, a history h, the current query q issued by

the user u, a system configuration C, and an ATKLOG model

353

Algorithm 1: ANGERONA Enforcement Algorithm.

Input: A system state s = 〈db, U, P 〉, a history h, an action
〈u, q〉, a system configuration C, and a C-ATKLOG
model ATK .

Output: The security decision in {�,⊥}.
begin

for 〈u, ψ, l〉 ∈ secrets(P, u) do
if secure(C,ATK , h, 〈u, ψ, l〉)

if pox (C,ATK , h, 〈u, q〉)
h′ := h · 〈〈u, q〉,�,�〉
if ¬secure(C,ATK , h′, 〈u, ψ, l〉)

return ⊥
if pox (C,ATK , h, 〈u,¬q〉)

h′ := h · 〈〈u, q〉,�,⊥〉
if ¬secure(C,ATK , h′, 〈u, ψ, l〉)

return ⊥
return �

function secure(〈D,Γ〉,ATK , h, 〈u, ψ, l〉)
p := ATK (u)
for φ ∈ knowledge(h, u) do

p := p ∪ PL(φ) ∪ {evidence(head(φ), true)}
p := p ∪ PL(ψ)
return �p�D(head(ψ)) < l

function pox (〈D,Γ〉,ATK , h, 〈u, ψ〉)
p := ATK (u)
for φ ∈ knowledge(h, u) do

p := p ∪ PL(φ) ∪ {evidence(head(φ), true)}
p := p ∪ PL(ψ)
return �p�D(head(ψ)) > 0

ATK formalizing the users’ beliefs. ANGERONA checks

whether disclosing the result of the current query q may violate

any secrets in secrets(P, u). If this is the case, the algorithm

concludes that q’s execution would be insecure and returns ⊥.

Otherwise, it returns � and authorizes q’s execution. Note that

once we fix a configuration C and an ATKLOG model ATK ,

ANGERONA is a C-PDP as defined in §IV-C.

To check whether a query q may violate a secret 〈u, ψ,
l〉 ∈ secrets(P, u), ANGERONA first checks whether the secret

has been already violated. If this is not the case, ANGERONA

checks whether disclosing q violates any secret. This requires

checking that u’s belief about the secret ψ stays below the

threshold independently of the result of the query q; hence,

we must ensure that u’s belief is below the threshold both in

case the query q holds in the actual database and in case q
does not hold (this ensures that the access control decision

itself does not leak information). ANGERONA, therefore, first

checks whether there exists at least one possible database state

where q is satisfied given h, using the procedure pox . If this

is the case, the algorithm extends the current history h with

the new event recording that the query q is authorized and its

result is � and it checks whether u’s belief about ψ is still

below the corresponding threshold once q’s result is disclosed,

using the secure procedure. Afterwards, ANGERONA checks

whether there exists at least a possible database state where q
is not satisfied given h, it extends the current history h with

another event representing that the query q does not hold, and

it checks again whether disclosing that q does not hold in the

current database state violates the secret. Note that checking

whether there is a database state where q is (or is not) satisfied

is essential to ensure that the conditioning that happens in

the secure procedure is well-defined, i.e., the set of states we

condition on has non-zero probability.

ANGERONA uses the secure subroutine to determine

whether a secret’s confidentiality is violated. This subroutine

takes as input a system configuration, an ATKLOG model

ATK , a history h, and a secret 〈u, ψ, l〉. It first computes

the set knowledge(h, u) containing all the authorized queries

in the u-projection of h, i.e., knowledge(h, u) = {φ |
∃i. h|u(i) = 〈〈u, φ〉,�,�〉} ∪ {¬φ | ∃i. h|u(i) = 〈〈u, φ〉,�,
⊥〉}. Afterwards, it generates a PROBLOG program p by ex-

tending ATK (u) with additional rules. In more detail, it trans-

lates each relational calculus sentence φ ∈ knowledge(h, u) to

an equivalent set of PROBLOG rules PL(φ). The translation

PL(φ) is standard [2]. For example, given a query φ = (A(1)∧
B(2)) ∨ ¬C(3), the translation PL(φ) consists of the rules

{(h1 ← A(1)), (h2 ← B(2)), (h3 ← ¬C(3)), (h4 ← h1, h2),
(h5 ← h4), (h5 ← h3)}, where h1, . . . , h5 are fresh predicate

symbols. We denote by head(φ) the unique predicate symbol

associated with the sentence φ by the translation PL(φ). In

our example, head(φ) is the fresh predicate symbol h5. The

algorithm then conditions the initial probability distribution

ATK (u) based on the sentences in knowledge(h, u). This is

done using evidence statements, which are special PROBLOG

statements of the form evidence(a, v), where a is a ground

atom and v is either true or false; see Appendix A. For

each sentence φ ∈ knowledge(h, u), the program p contains

a statement evidence(head(φ), true). Finally, the algorithm

translates ψ to a set of logic programming rules and checks

whether ψ’s probability is below the threshold l.

The pox subroutine takes as input a system configuration,

an ATKLOG model ATK , a history h, and a query 〈u, ψ〉.
It determines whether there is a database db′ that satisfies

ψ and complies with the history h|u. Internally, the routine

again constructs a PROBLOG program starting from ATK ,

knowledge(h, u), and ψ. Afterwards, it uses the program to

check whether the probability of ψ given h|u is greater than 0.

Given a run 〈s, h〉 and a user u, the secure and pox
subroutines condition u’s initial beliefs based on the sentences

in knowledge(h, u), instead of using the set �r�∼u
as in the

ATKLOG semantics. The key insight is that, as we prove

in [36], the set of possible database states defined by the

sentences in knowledge(h, u) is equivalent to �r�∼u , which

contains all database states derivable from the runs r′ ∼u r.

This allows us to use PROBLOG to implement ATKLOG’s

semantics without explicitly computing �r�∼u
.

Example VII.1. Let ATK be the attacker model in Exam-

ple IV.4, u be the user Mallory, the database state be s{A,B,C},

where Alice, Bob, and Carl have cancer, and the policy P
be the one from Example IV.2. Furthermore, let q1, . . . , q4 be

the queries issued by Mallory in Example IV.3. ANGERONA

permits the execution of the first two queries since they do

354

not violate the policy. In contrast, it denies the execution of

the last two queries as they leak sensitive information. �

Confidentiality. As we prove in [36], ANGERONA provides

the desired security guarantees for any ATKLOG-attacker.

Namely, it authorizes only those queries whose disclosure

does not increase an attacker’s beliefs in the secrets above the

corresponding thresholds. ANGERONA also provides precise

completeness guarantees: it authorizes all secrecy-preserving

queries. Informally, a query 〈u, q〉 is secrecy-preserving given

a run r and a secret 〈u, ψ, l〉 iff disclosing the result of 〈u, q〉
in any run r′ ∼u r does not violate the secret.

Theorem VII.1. Let a system configuration C and a C-
ATKLOG model ATK be given, and let ANGERONA be the C-
PDP f . ANGERONA provides data confidentiality with respect
to C and λu ∈ U . �ATK (u)�D, and it authorizes all secrecy-
preserving queries.

Complexity. ANGERONA’s complexity is dominated by the

complexity of inference. We focus our analysis only on data

complexity, i.e., the complexity when only the ground atoms in

the PROBLOG programs are part of the input while everything

else is fixed. A literal query is a query consisting either of a

ground atom a(c) or its negation ¬a(c). We call an ATKLOG

model acyclic if all belief programs in it are acyclic. Further-

more, a literal secret is a secret 〈U, φ, l〉 such that φ is a literal

query. We prove in [36] that for acyclic ATKLOG models,

literal queries, and literal secrets, the PROBLOG programs

produced by the secure and pox subroutines are acyclic. We

can therefore use our dedicated inference engine from §VI to

reason about them. Hence, ANGERONA can be used to protect

databases in PTIME in terms of data complexity. Literal queries

are expressive enough to formulate queries about the database

content such as “does Alice have cancer?”.

Theorem VII.2. For all acyclic ATKLOG attackers, for all
literal queries q, for all runs r whose histories contain only
literal queries and contain only secrets expressed using literal
queries, ANGERONA’s data complexity is PTIME.

Discussion. Our tractability guarantees apply only to acyclic

ATKLOG models, literal queries, and literal secrets. Never-

theless, ANGERONA can still handle relevant problems of

interest. As stated in §VI, acyclic models are as expressive

as poly-tree Bayesian Networks, one of the few classes of

Bayesian Networks with tractable inference. Hence, for many

probabilistic models that cannot be represented as acyclic

ATKLOG models, exact probabilistic inference is intractable.

Literal queries are expressive enough to state simple facts

about the database content. More complex (non-literal) queries

can be simulated using (possibly large) sequences of literal

queries. Similarly, policies with non-literal secrets can be

implemented as sets of literal secrets, and the Boole–Fréchet

inequalities [39] can be used to derive the desired thresholds.

In both cases, however, our completeness guarantees hold only

for the resulting literal queries, not for the original ones.

0 20000 40000 60000 80000 100000

50

100

150

200

250

300

Number of patients

T
im

e
[m

s
]

Fig. 10: ANGERONA execution time in seconds.

Finally, whenever our tractability constraints are violated,

ANGERONA can still be used by directly using PROBLOG’s

inference capabilities. In this case, one would retain the

security and completeness guarantees (Theorem VII.1) but

lose the tractability guarantees (Theorem VII.2).

B. Implementation and Empirical Evaluation

To evaluate the feasibility of our approach in practice, we

implemented a prototype of ANGERONA, available at [37].

The prototype implements our dedicated inference algorithm

for acyclic PROBLOG programs (§VI), which computes the

relaxed grounding of the input program p, constructs the

Bayesian Networks BN , and performs the inference over

BN using belief propagation [48]. For inference over BN ,

we rely on the GRRM library [66]. Observe that evidence

statements in PROBLOG are encoded by fixing the values of

the corresponding random variables in the BN. Note also that

computing the relaxed grounding of p takes polynomial time

in terms of data complexity, where the exponent is determined

by p’s rules. A key optimization is to pre-compute the relaxed

grounding and construct BN off-line. This avoids grounding p
and constructing the (same) Bayesian Network for each query.

In our experiments we measure this time separately.

We use our prototype to study ANGERONA’s efficiency

and scalability. We run our experiments on a PC with an

Intel i7 processor and 32GB of RAM. For our experiments,

we consider the database schema from §IV. For the belief

programs, we use the PROBLOG program given in §V, which

can be encoded as an acyclic program when the parent-child

relation is a poly-tree. We evaluate ANGERONA’s efficiency

and scalability in terms of the number of ground atoms in

the belief programs. We generate synthetic belief programs

containing 1,000 to 100,000 patients and for each of these

instances, we generate 100 random queries of the form R(t),
where R is a predicate symbol and t is a tuple. For each

instance and sequence of queries, we check the security of

each query with our prototype, against a policy containing

100 randomly generated secrets specified as literal queries.

Figure 10 reports the execution times for our case study.

Once the BN is generated, ANGERONA takes under 300

355

milliseconds, even for our larger examples, to check a query’s

security. During the initialization phase of our dedicated

inference engine, we ground the original PROBLOG program

and translate it into a BN. Most of the time is spent in

the grounding process, whose data complexity is polynomial,

where the polynomial’s degree is determined by the number

of free variables in the belief program. Our prototype uses

a naive bottom-up grounding technique, and for our larger

examples the initialization times is less than 2.5 minutes. We

remark, however, that the initialization is performed just once

per belief program. Furthermore, it can be done offline and its

performance can be greatly improved by naive parallelization.

VIII. RELATED WORK

Database Inference Control. Existing DBIC approaches

protect databases (either at design time [55], [56] or at

runtime [14], [15], [40]) only against restricted classes of

probabilistic dependencies, e.g., those arising from functional

and multi-valued dependencies. ATKLOG, instead, supports

arbitrary probabilistic dependencies, and even our acyclic

fragment can express probabilistic dependencies that are not

supported by [14], [15], [40], [55], [56]. Weise [71] proposes a

DBIC framework, based on possibilistic logic, that formalizes

secrets as sentences and expresses policies by associating

bounds to secrets. Possibility theory differs from probability

theory, which results in subtle differences. For instance, there

is no widely accepted definition of conditioning for possibility

distributions, cf. [11]. Thus, the probabilistic model from §II

cannot be encoded in Weise’s framework [71].
Statistical databases store information associated to dif-

ferent individuals and support queries that return statistical

information about an entire population [16]. DBIC solutions

for statistical databases [3], [16], [22]–[24] prevent leakages

of information about single individuals while allowing the

execution of statistical queries. These approaches rely on

various techniques, such as perturbating the original data,

synthetically generating data, or restricting the data on which

the queries are executed. Instead, we protect specific secrets in

the presence of probabilistic data dependencies and we return

the original query result, without modifications, if it is secure.

Differential Privacy. Differential Privacy [25], [26] is widely

used for privacy-preserving data analysis. Systems such as

ProPer [27] or PINQ [54] provide users with automated ways

to perform differentially private computations. A differentially

private computation guarantees that the presence (or absence)

of an individual’s data in the input data set affects the proba-

bility of the computation’s result only in limited way, i.e., by at

most a factor eε where ε is a parameter controlling the privacy-

utility trade-off. While differential privacy does not make any

assumption about the attacker’s beliefs, we assume that the

attacker’s belief is known and we guarantee that for all secrets

in the policy, no user can increase his beliefs, as specified

in the attacker model, over the corresponding thresholds by

interacting with the system.

Information Flow Control. Quantified Information Flow [6],

[17], [49], [51] aims at quantifying the amount of information

leaked by a program. Instead of measuring the amount of

leaked information, we focus on restricting the information

that an attacker may obtain about a set of given secrets.
Non-interference has been extended to consider probabil-

ities [5], [58], [70] for concurrent programs. Our security

notion, instead, allows those leaks that do not increase an

attacker’s beliefs in a secret above the threshold, and it can be

seen as a probabilistic extension of opacity [60], which allows

any leak except leaking whether the secret holds.
Mardziel et al. [52] present a general DBIC architecture,

where users’ beliefs are expressed as probabilistic programs,

security requirements as threshold on these beliefs, and the

beliefs are updated in response to the system’s behaviour.

Our work directly builds on top of this architecture. However,

instead of using an imperative probabilistic language, we

formalize beliefs using probabilistic logic programming, which

provides a natural and expressive language for formalizing de-

pendencies arising in the database setting, e.g., functional and

multi-valued dependencies, as well as common probabilistic

models, like Bayesian Networks.
Mardziel et al. [52] also propose a DBIC mechanism based

on abstract interpretation. They do not provide any precise

complexity bound for their mechanism. Their algorithm’s

complexity class, however, appears to be intractable, since

they use a probabilistic extension of the polyhedra abstract

domain, whose asymptotic complexity is exponential in the

number of program variables [62]. In contrast, ANGERONA

exploits our inference engine for acyclic programs to

secure databases against a practically relevant class of

probabilistic inferences, and it provides precise tractability

and completeness guarantees.
We now compare (unrestricted) ATKLOG with the impera-

tive probabilistic language used in [52]. ATKLOG allows one

to concisely encode probabilistic properties specifying rela-

tions between tuples in the database. For instance, a property

like “the probability of A(x) is 1/2
n

, where n is the number

of tuples (x, y) in B” can be encoded as 1/2::A(x) ← B(x,
y). Encoding this property as an imperative program is more

complex; it requires a for statement to iterate over all variables

representing tuples in B and an if statement to filter the

tuples. In contrast to [52], ATKLOG provides limited support

for numerical constraints (as we support only finite domains).

Mardziel et al. [52] formalize queries as imperative proba-

bilistic programs. They can, therefore, also model probabilistic

queries or the use of randomization to limit disclosure. While

all these features are supported by ATKLOG, our goal is to

protect databases from attackers that use standard query lan-

guages like SQL. Hence, we formalize queries using relational

calculus and ignore probabilistic queries. Similarly to [52], our

approach can be extended to handle some uncertainty on the

attackers’ capabilities. In particular, we can associate to each

user a finite number of possible beliefs, instead of a single

one. However, like [52], we cannot handle infinitely many

alternative beliefs.

Probabilistic Programming. Probabilistic programming is an

active area of research [35]. Here, we position PROBLOG with

356

respect to expressiveness and inference. Similarly to [33], [52],

PROBLOG can express only discrete probability distributions,

and it is less expressive than languages supporting continuous

distributions [32], [34], [61]. Current exact inference algo-

rithms for probabilistic programs are based on program anal-

ysis techniques, such as symbolic execution [32], [61] or ab-

stract interpretation [52]. In this respect, we present syntactic

criteria that ensure tractable inference for PROBLOG. Sampson

et al. [59] symbolically execute probabilistic programs and

translate them to BNs to verify probabilistic assertions. In

contrast, we translate PROBLOG programs to BNs to perform

exact inference and our translation is tailored to work together

with our acyclicity constraints to allow tractable inference.

IX. CONCLUSION

Effectively securing databases that store data with proba-

bilistic dependencies requires an expressive language to cap-

ture the dependencies and a tractable enforcement mechanism.

To address these requirements, we developed ATKLOG, a

formal language providing an expressive and concise way

to represent attackers’ beliefs while interacting with the sys-

tem. We leveraged this to design ANGERONA, a provably

secure DBIC mechanism that prevents the leakage of sensitive

information in the presence of probabilistic dependencies.

ANGERONA is based on a dedicated inference engine for a

fragment of PROBLOG where exact inference is tractable.

We see these results as providing a foundation for building

practical protection mechanisms, which include probabilistic

dependencies, as part of real-world database systems. As

future work, we plan to extend our framework to dynamic

settings where the database and the policy change. We also

intend to explore different fragments of PROBLOG and rela-

tional calculus for which exact inference is practical.

Acknowledgments. We thank Ognjen Maric, Dmitriy Traytel, Der-

Yeuan Yu, and the anonymous reviewers for their comments.

REFERENCES

[1] “ProbLog – Probabilistic Programming,” Online at
http://dtai.cs.kuleuven.be/problog/index.html.

[2] S. Abiteboul, R. Hull, and V. Vianu, Foundations of databases.
Addison-Wesley Reading, 1995, vol. 8.

[3] N. R. Adam and J. C. Worthmann, “Security-control methods for
statistical databases: a comparative study,” ACM Computing Surveys
(CSUR), vol. 21, no. 4, pp. 515–556, 1989.

[4] K. Ahmed, A. A. Emran, T. Jesmin, R. F. Mukti, M. Z. Rahman, and
F. Ahmed, “Early detection of lung cancer risk using data mining,” Asian
Pacific Journal of Cancer Prevention, vol. 14, no. 1, pp. 595–598, 2013.

[5] A. Aldini, “Probabilistic information flow in a process algebra,” in
Proceedings of the 12th International Conference on Concurrency
Theory. Springer, 2001, pp. 152–168.

[6] M. Alvim, M. Andrés, and C. Palamidessi, “Probabilistic information
flow,” in Proceedings of the 25th Annual IEEE Symposium on Logic in
Computer Science. IEEE, 2010, pp. 314–321.

[7] A. Askarov and S. Chong, “Learning is change in knowledge:
Knowledge-based security for dynamic policies,” in Proceedings of the
25th IEEE Computer Security Foundations Symposium. IEEE, 2012,
pp. 308–322.

[8] A. Askarov and A. Sabelfeld, “Gradual release: Unifying declassifica-
tion, encryption and key release policies,” in Proceedings of the 28th
IEEE Symposium on Security and Privacy. IEEE, 2007, pp. 207–221.

[9] V. Bárány, B. Ten Cate, and M. Otto, “Queries with guarded negation,”
Proceedings of the VLDB Endowment, vol. 5, no. 11, pp. 1328–1339,
2012.

[10] P. A. Bonatti, S. Kraus, and V. Subrahmanian, “Foundations of secure
deductive databases,” IEEE Transactions on Knowledge and Data En-
gineering, vol. 7, no. 3, pp. 406–422, 1995.

[11] B. Bouchon-Meunier, G. Coletti, and C. Marsala, “Independence and
possibilistic conditioning,” Annals of Mathematics and Artificial Intelli-
gence, vol. 35, no. 1, pp. 107–123, 2002.

[12] A. Brodsky, C. Farkas, and S. Jajodia, “Secure databases: Constraints,
inference channels, and monitoring disclosures,” IEEE Transactions on
Knowledge and Data Engineering, vol. 12, no. 6, pp. 900–919, 2000.

[13] Centers for Medicare & Medicaid Services, “The Health Insurance
Portability and Accountability Act of 1996 (HIPAA),” Online at
http://www.cms.hhs.gov/hipaa/, 1996.

[14] Y. Chen and W. W. Chu, “Database security protection via inference
detection,” in International Conference on Intelligence and Security
Informatics. Springer, 2006, pp. 452–458.

[15] ——, “Protection of database security via collaborative inference detec-
tion,” IEEE Transactions on Knowledge and Data Engineering, vol. 20,
no. 8, pp. 1013–1027, 2008.

[16] F. Y. Chin and G. Ozsoyoglu, “Auditing and inference control in sta-
tistical databases,” IEEE Transactions on Software Engineering, vol. 8,
no. 6, pp. 574–582, 1982.

[17] D. Clark, S. Hunt, and P. Malacaria, “A static analysis for quantifying
information flow in a simple imperative language,” Journal of Computer
Security, vol. 15, no. 3, pp. 321–371, 2007.

[18] M. R. Clarkson, A. C. Myers, and F. B. Schneider, “Belief in information
flow,” in Proceedings of the 18th IEEE Workshop on Computer Security
Foundations. IEEE, 2005, pp. 31–45.

[19] ——, “Quantifying information flow with beliefs,” Journal of Computer
Security, vol. 17, no. 5, pp. 655–701, 2009.

[20] L. De Raedt and A. Kimmig, “Probabilistic (logic) programming con-
cepts,” Machine Learning, vol. 100, no. 1, pp. 5–47, 2015.

[21] L. De Raedt, A. Kimmig, and H. Toivonen, “Problog: A probabilistic
prolog and its application in link discovery,” in Proceedings of the
20th International Joint Conference on Artificial Intelligence. Morgan
Kaufmann, 2007, pp. 2468–2473.

[22] D. E. Denning, “Secure statistical databases with random sample
queries,” ACM Transactions on Database Systems (TODS), vol. 5, no. 3,
pp. 291–315, 1980.

[23] D. Dobkin, A. K. Jones, and R. J. Lipton, “Secure databases: protection
against user influence,” ACM Transactions on Database Systems, vol. 4,
no. 1, pp. 97–106, 1979.

[24] J. Domingo-Ferrer, Inference control in statistical databases: From
theory to practice. Springer, 2002, vol. 2316.

[25] C. Dwork, “Differential privacy,” in Proceedings of the 33rd In-
ternational Colloquium on Automata, Languages and Programming.
Springer, 2006, pp. 1–12.

[26] C. Dwork and A. Roth, “The algorithmic foundations of differential
privacy,” Foundations and Trends in Theoretical Computer Science,
vol. 9, no. 3-4, pp. 211–407, 2014.

[27] H. Ebadi, D. Sands, and G. Schneider, “Differential privacy: Now it’s
getting personal,” in Proceedings of the 42nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. ACM, 2015,
pp. 69–81.

[28] European Parliament, “General Data Protection Regulation (2016/679),”
Online at http://eur-lex.europa.eu/eli/reg/2016/679/oj, 2016.

[29] A. Evfimievski, R. Fagin, and D. Woodruff, “Epistemic privacy,” Journal
of ACM, vol. 58, no. 1, pp. 2:1–2:45, 2010.

[30] C. Farkas and S. Jajodia, “The inference problem: a survey,” ACM
SIGKDD Explorations Newsletter, vol. 4, no. 2, pp. 6–11, 2002.

[31] D. Fierens, G. Van den Broeck, J. Renkens, D. Shterionov, B. Gutmann,
I. Thon, G. Janssens, and L. De Raedt, “Inference and learning in
probabilistic logic programs using weighted boolean formulas,” Theory
and Practice of Logic Programming, vol. 15, no. 03, pp. 358–401, 2015.

[32] T. Gehr, S. Misailovic, and M. Vechev, “Psi: Exact symbolic inference
for probabilistic programs,” in Proceedings of the 28th International
Conference on Computer Aided Verification. Springer, 2016, pp. 62–
83.

[33] L. Getoor, Introduction to statistical relational learning. MIT press,
2007.

357

[34] A. D. Gordon, T. Graepel, N. Rolland, C. Russo, J. Borgstrom, and
J. Guiver, “Tabular: A schema-driven probabilistic programming lan-
guage,” in Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. ACM, 2014, pp. 321–334.

[35] A. D. Gordon, T. A. Henzinger, A. V. Nori, and S. K. Rajamani,
“Probabilistic programming,” in Proceedings of the Conference on The
Future of Software Engineering. ACM, 2014, pp. 167–181.

[36] M. Guarnieri, S. Marinovic, and D. Basin, “Securing databases
from probabilistic inference — extended version,” Online at
https://arxiv.org/abs/1706.02473.

[37] ——, “Securing databases from probabilistic inference — prototype,”
Online at http://www.infsec.ethz.ch/research/projects/FDAC.html.

[38] ——, “Strong and provably secure database access control,” in Proceed-
ings of the 1st European Symposium on Security and Privacy. ACM,
2016, pp. 163–178.

[39] T. Hailperin, “Probability logic,” Notre Dame Journal of Formal Logic,
vol. 25, no. 3, pp. 198–212, 1984.

[40] J. Hale and S. Shenoi, “Catalytic inference analysis: Detecting inference
threats due to knowledge discovery,” in Proceedings of the 18th IEEE
Symposium on Security and Privacy. IEEE, 1997, pp. 188–199.

[41] J. He, W. W. Chu, and Z. V. Liu, “Inferring privacy information
from social networks,” in International Conference on Intelligence and
Security Informatics. Springer, 2006, pp. 154–165.

[42] D. Hedin and A. Sabelfeld, “A perspective on information-flow control,”
in Proceedings of the 2011 Marktoberdorf Summer School.

[43] T. H. Hinke, H. S. Delugach, and R. P. Wolf, “Protecting databases from
inference attacks,” Computers & Security, vol. 16, no. 8, pp. 687–708,
1997.

[44] M. Humbert, E. Ayday, J.-P. Hubaux, and A. Telenti, “Addressing the
concerns of the lacks family: Quantification of kin genomic privacy,”
in Proceedings of the 20th ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2013, pp. 1141–1152.

[45] G. Kabra, R. Ramamurthy, and S. Sudarshan, “Redundancy and infor-
mation leakage in fine-grained access control,” in Proceedings of the
2006 ACM SIGMOD International Conference on Management of Data.
ACM, 2006.

[46] V. Katos, D. Vrakas, and P. Katsaros, “A framework for access con-
trol with inference constraints,” in Proceedings of 35th IEEE Annual
Conference on Computer Software and Applications. IEEE, 2011, pp.
289–297.

[47] K. Kenthapadi, N. Mishra, and K. Nissim, “Simulatable auditing,” in
Proceedings of the 24th ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems. ACM, 2005, pp. 118–127.

[48] D. Koller and N. Friedman, Probabilistic graphical models: principles
and techniques. MIT press, 2009.

[49] B. Köpf and D. Basin, “An information-theoretic model for adaptive
side-channel attacks,” in Proceedings of the 14th ACM Conference on
Computer and Communications Security. ACM, 2007, pp. 286–296.

[50] S. L. Lauritzen and N. A. Sheehan, “Graphical models for genetic
analyses,” Statistical Science, vol. 18, no. 4, pp. 489–514, 2003.

[51] G. Lowe, “Quantifying information flow,” in Proceedings of the 15th
IEEE Workshop on Computer Security Foundations. IEEE, 2002, pp.
18–31.

[52] P. Mardziel, S. Magill, M. Hicks, and M. Srivatsa, “Dynamic enforce-
ment of knowledge-based security policies using probabilistic abstract
interpretation,” Journal of Computer Security, vol. 21, no. 4, pp. 463–
532, 2013.

[53] W. Mathew, R. Raposo, and B. Martins, “Predicting future locations with
hidden markov models,” in Proceedings of the 2012 ACM Conference
on Ubiquitous Computing. ACM, 2012, pp. 911–918.

[54] F. D. McSherry, “Privacy integrated queries: an extensible platform
for privacy-preserving data analysis,” in Proceedings of the 2009 ACM
SIGMOD International Conference on Management of data. ACM,
2009, pp. 19–30.

[55] M. Morgenstern, “Security and inference in multilevel database and
knowledge-base systems,” in Proceedings of the 1987 ACM SIGMOD
International Conference on Management of data. ACM, 1987, pp.
357–373.

[56] ——, “Controlling logical inference in multilevel database systems,”
in Proceedings of the 9th IEEE Symposium on Security and Privacy.
IEEE, 1988, pp. 245–255.

[57] X. Qian, M. E. Stickel, P. D. Karp, T. F. Lunt, and T. D. Garvey,
“Detection and elimination of inference channels in multilevel relational

database systems,” in Proceedings of the 14th IEEE Symposium on
Security and Privacy. IEEE, 1993, pp. 196–205.

[58] A. Sabelfeld and D. Sands, “Probabilistic noninterference for multi-
threaded programs,” in Proceedings of the 13th IEEE Workshop on
Computer Security Foundations. IEEE, 2000, pp. 200–214.

[59] A. Sampson, P. Panchekha, T. Mytkowicz, K. S. McKinley, D. Gross-
man, and L. Ceze, “Expressing and verifying probabilistic assertions,”
in Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation. ACM, 2014, pp. 112–122.

[60] D. Schoepe and A. Sabelfeld, “Understanding and enforcing opacity,”
in Proceedings of the 28th IEEE Computer Security Foundations Sym-
posium. IEEE, 2015, pp. 539–553.

[61] C.-c. Shan and N. Ramsey, “Exact bayesian inference by symbolic
disintegration,” in Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages. ACM, 2017, pp. 130–144.

[62] G. Singh, M. Püschel, and M. Vechev, “Fast polyhedra abstract domain,”
in Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages. ACM, 2017, pp. 46–59.

[63] T.-A. Su and G. Ozsoyoglu, “Controlling FD and MVD inferences in
multilevel relational database systems,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 3, no. 4, pp. 474–485, 1991.

[64] ——, “Data dependencies and inference control in multilevel relational
database systems,” in Proceedings of the 7th IEEE Symposium on
Security and Privacy. IEEE, 1987, pp. 202–211.

[65] D. Suciu, D. Olteanu, C. Ré, and C. Koch, “Probabilistic databases,”
Synthesis Lectures on Data Management, vol. 3, no. 2, pp. 1–180, 2011.

[66] C. Sutton, “GRMM: GRaphical Models in Mallet,” Online at
http://mallet.cs.umass.edu/grmm/.

[67] M. Thuraisingham, “Security checking in relational database man-
agement systems augmented with inference engines,” Computers &
Security, vol. 6, no. 6, pp. 479–492, 1987.

[68] T. S. Toland, C. Farkas, and C. M. Eastman, “The inference problem:
Maintaining maximal availability in the presence of database updates,”
Computers & Security, vol. 29, no. 1, pp. 88–103, 2010.

[69] P. J. Villeneuve and Y. Mao, “Lifetime probability of developing lung
cancer, by smoking status, Canada,” Cancer Journal of Public Health,
vol. 85, no. 6, pp. 385–388, 1994.

[70] D. Volpano and G. Smith, “Probabilistic noninterference in a concurrent
language,” Journal of Computer Security, vol. 7, no. 2-3, pp. 231–253,
1999.

[71] L. Wiese, “Keeping secrets in possibilistic knowledge bases with
necessity-valued privacy policies,” in Computational Intelligence for
Knowledge-Based Systems Design. Springer, 2010, pp. 655–664.

[72] R. W. Yip and E. Levitt, “Data level inference detection in database sys-
tems,” in Proceedings of the 11th IEEE Computer Security Foundations
Workshop. IEEE, 1998, pp. 179–189.

APPENDIX A

PROBLOG

Here, we provide a formal account of PROBLOG, which

follows [20], [21], [31]. In addition to PROBLOG’s semantics,

we present here again some (revised) aspects of PROBLOG’s

syntax, which we introduced in §V. As mentioned in §V, we

restrict ourselves to the function-free fragment of PROBLOG.

Syntax. As introduced in §V, a (Σ,dom)-probabilistic atom
is an atom a ∈ AΣ,dom annotated with a value 0 ≤ v ≤ 1,

denoted v::a. If v = 1, then we write a(c) instead of

1::a(c). A (Σ,dom)-PROBLOG program is a finite set of

ground probabilistic (Σ,dom)-atoms and (Σ,dom)-rules.

Note that ground atoms a ∈ AΣ,dom are represented as 1::a.

Observe also that rules do not involve probabilistic atoms

(as formalized in §V). This is without loss of generality: as

we show below probabilistic rules and annotated disjunctions

can be represented using only probabilistic atoms and non-

probabilistic rules. We denote by prob(p) the set of all

probabilistic ground atoms v::a in p, i.e., prob(p) := {v::a ∈

358

p | 0 ≤ v ≤ 1 ∧ a ∈ AΣ,dom}, and by rules(p) the non-

probabilistic rules in p, i.e., rules(p) := p\prob(p). As already

stated in §V, we consider only programs p that do not contain

negative cycles in the rules. Finally, we say that a PROBLOG

program p is a logic program iff v = 1 for all v::a ∈ prob(p),
i.e., p does not contain probabilistic atoms.

Semantics. Given a (Σ,dom)-PROBLOG program p, a p-
grounded instance is a PROBLOG program A ∪R, where the

set of ground atoms A is a subset of {a | v::a ∈ prob(p)}
and R = rules(p). Informally, a grounded instance of p is

one of the logic programs that can be obtained by selecting

some of the probabilistic atoms in p and keeping all rules in

p. A p-probabilistic assignment is a total function associating

to each probabilistic atom v::a in prob(p) a value in {�,
⊥}. We denote by A(p) the set of all p-probabilistic assign-

ments. The probability of a p-probabilistic assignment f is

prob(f) = Πv::a∈prob(p)

(
Πf(v::a)=�v ·Πf(v::a)=⊥(1− v)

)
.

Given a p-probabilistic assignment f , instance(p, f) denotes

the p-grounded instance {a | ∃v. f(v::a) = �} ∪ rules(p).
Finally, given a p-grounded instance p′, WFM (p′) denotes

the well-founded model associated with the logic program p′,
as defined by standard logic programming semantics [2].

The semantics of a (Σ,dom)-PROBLOG program p is

defined as a probability distribution over all possible p-

grounded instances. Note that PROBLOG’s semantics relies

on the closed world assumption, namely every fact that is

not in a given model is considered false. The semantics of

p, denoted by �p�, is as follows: �p�(p′) =
∑

f∈Fp,p′
prob(f),

where Fp,p′ = {f ∈ A(p) | p′ = instance(p, f)}. We remark

that a (Σ,dom)-PROBLOG program p implicitly defines a

probability distribution over (Σ,dom)-structures. Indeed, the

probability of a given (Σ,dom)-structure s is the sum of the

probabilities of all p-grounded instances whose well-founded

model is s. With a slight abuse of notation, we extend the

semantics of p to (Σ,dom)-structures and ground atoms as

follows: �p�(s) =
∑

f∈M(p,s) prob(f), where s is a (Σ,
dom)-structure and M(p, s) is the set of all assignments f
such that WFM (instance(p, f)) = s. Finally, p’s semantics

can be lifted to sentences as follows: �p�(φ) = Σs∈�φ��p�(s),
where �φ� = {s ∈ ΩΓ

D | [φ]s = �}.

Evidence. PROBLOG supports expressing evidence inside

programs [20]. To express evidence, i.e., to condition a

distribution on some event, we use statements of the form

evidence(a, v), where a is a ground atom and v ∈ {true,
false}. Let p be a (Σ,dom)-PROBLOG program p with

evidence evidence(a1, v1), . . . , evidence(an, vn), and p′ be

the program without the evidence statements. Furthermore, let

POX (p′) be the set of all (Σ,dom)-structures s complying

with the evidence, i.e., the set of all states s such that ai holds

in s iff vi = true. Then, �p�(s), for a (Σ,dom)-structure

s ∈ POX (p), is �p′�(s) ·
(∑

s′∈POX (p)�p
′�(s′)

)−1

.

Syntactic Sugar. Following [20], [21], [31], we extend

PROBLOG programs with two additional constructs: annotated

disjunctions and probabilistic rules. As shown in [20], these

constructs are just syntactic sugar. A probabilistic rule is a

PROBLOG rule where the head is a probabilistic atom. The

probabilistic rule v::h ← l1, . . . , ln can be encoded using the

additional probabilistic atoms v::sw() and the rule h ← l1,
. . . , ln, sw(x), where sw is a fresh predicate symbol, x is the

tuple containing the variables in vars(h) ∪ ⋃
1≤i≤n vars(li),

and v::sw() is a shorthand representing the fact that there is

a probabilistic atom v::sw(t) for each tuple t ∈ dom|x|.
An annotated disjunction v1::a1; . . . ; vn::an, where a1, . . . ,

an are ground atoms and
(∑

1≤i≤n vi

)
≤ 1, denotes that a1,

. . . , an are mutually exclusive probabilistic events happening

with probabilities v1, . . . , vn. It can be encoded as:

p1::sw1()

...

pn::swn()

a1(t1) ← sw1(t1)

...

an(tn) ← ¬sw1(t1), . . . ,¬swn−1(tn−1), swn(tn),

where each pi, for 1 ≤ i ≤ n, is vi ·
(
1−∑

1≤j<i vj

)−1

.

Probabilistic rules can be easily extended to support annotated

disjunctions in their heads.

Example A.1. Let Σ be a first-order signature with two predi-

cate symbols V and W , both with arity 1, dom be the domain

{a, b}, and p be the program consisting of the facts 1/4::T (a)
and 1/2::T (b), the annotate disjunction 1/4::W (a); 1/2::W (b),
and the rule 1/2::T (x) ← W (x).

The probability associated to each (Σ,dom)-structure by

the program p is shown in the following table.

W
∅ {a} {b} {a, b}

T

∅ 3/32 3/64 3/32 0
{a} 1/32 5/64 1/32 0
{b} 3/32 3/64 9/32 0

{a, b} 1/32 5/64 3/32 0

The empty structure has probability 3/32. The only grounded

instance whose well-formed model is the empty database is

the instance i1 that does not contain grounded atoms. Its

probability is 3/32 because the probability that T (a) is not

in i1 is 3/4, the probability that T (b) is not in i1 is 1/2, and

the probability that neither W (a) nor W (b) are in i1 is 1/4
and all these events are independent.

The probability of some structures is determined by more

than one grounded instance. For example, the probability of

the structure s where s(T) = {a, b} and s(W) = {a} is
5/64. There are two grounded instances i2 and i3 whose well-

founded model is s. The instance i2 has probability 1/16
and it consists of the atoms T (b),W (a), sw(a) and the rule

T (x) ← W (x), sw(x), whereas the instance i3 has probability
1/64 and it consists of the atoms T (a), T (b),W (a) and the

rule T (x) ← W (x), sw(x). Note that before computing

the ground instances, we translated probabilistic rules and

annotated disjunctions into standard PROBLOG rules. �

359

