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Abstract—We investigate a problem in quantitative information
flow, namely to find the maximum information leakage caused
by n repeated independent runs of a channel C with b columns.
While this scenario is of general interest, it is particularly
motivated by the study of timing attacks on cryptography
implemented using the countermeasures known as blinding and
bucketing. We measure leakage in terms of multiplicative Bayes
capacity (also known as min-capacity) and we prove tight bounds
that greatly improve the previously-known ones. To enable
efficient computation of our new bounds, we investigate them
using techniques of analytic combinatorics, proving that they
satisfy a useful recurrence and (when b = 2) a close connection
to Ramanujan’s Q-function.

I. INTRODUCTION

A fundamental problem in computer security is to prevent
systems from improperly leaking the sensitive information
that they process. Because it is often necessary in practice
to tolerate some leakage, the last decade has seen growing
interest in theories of quantitative information flow [1], [2],
[3], [4], [5], [6], [7], [8], [9], [10] which let us talk about
“how much” information is leaked and perhaps enable us to
tolerate “small” leaks.

A system C taking a secret input X from a finite set X
and (perhaps probabilistically) producing an observable output
Y from a finite set Y can be modeled as an information-
theoretic channel matrix [11], whose rows give the distribution
of outputs corresponding to each possible input. That is, entry
Cx,y denotes p(y|x), the conditional probability of getting
output y on input x.

In this paper, we study the leakage caused by running a
channel C repeatedly, using the same secret input in each
run, producing a tuple of observable outputs. Of course, if
the channel is deterministic then this is a waste of time, since
all the outputs in the tuple will be the same. But if the channel
is probabilistic, then we will see that repeated runs indeed leak
more than a single run.

Definition 1.1: For n ≥ 0, the repeated independent runs
channel C(n) is defined by

C(n)
x,(y1,...,yn)

=

n∏
i=1

Cx,yi .

(When n = 0 the output is an empty tuple (), which occurs
with probability 1.)

For example, given X = {x1, x2, x3} and Y = {y1, y2}, if
channel C is

C y1 y2
x1 0 1
x2 1/3 2/3
x3 1/2 1/2

then the corresponding C(3) is shown in Figure 1.
Our particular focus in this paper is on bounding the

maximum leakage of the repeated independent runs channel
C(n) in the case where C has b ≥ 1 columns. The leakage
measure that we use is multiplicative Bayes capacity (also
known as min-capacity), which is reviewed in Section II.

While this scenario is of general interest, we note that one
important motivation is that C(n) models an n-observation
timing attack against a cryptosystem implemented with a
countermeasure called blinding [12]. And if the cryptosystem
is implemented using bucketing [13], so that each decryption
takes one of b possible times, then we can ensure that C has
just b columns. In this setting, we typically expect that b is
small (say, less than 25) and n is big (say, over a million).

For readers unfamiliar with blinding and bucketing, we give
a brief review in the following subsection.

A. Motivating application: timing attacks on blinded and
bucketed cryptosystems

Starting with Kocher’s seminal work [12], it has been known
that an adversary able to observe the times taken by a large
number of decryption operations may be able to recover the
secret key, even if the decryption operations are being done
remotely, making the timing measurements imprecise [14].

Consider an implementation such that the execution time
is given by a function t : K ×M → T , such that t(K,M)
gives the time required to decrypt message M using secret
key K. Here K, M, and T are finite sets of possible secret
keys, messages, and decryption times, respectively. (Note that
a deterministic model like this is not correct for hardware using
caching, but it could be made valid by forcing the cache into
a fixed initial state before each decryption.)

In a timing attack, the adversary may be able to choose a
large number of messages M1, M2, . . . , Mn and observe the
time to decrypt each one using the same secret key K. Blinding
[12] is a countermeasure that decorrelates the messages from
the decryption times; it works by randomizing each message
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C(3) (y1, y1, y1) (y1, y1, y2) (y1, y2, y1) (y1, y2, y2) (y2, y1, y1) (y2, y1, y2) (y2, y2, y1) (y2, y2, y2)
x1 0 0 0 0 0 0 0 1
x2 1/27 2/27 2/27 4/27 2/27 4/27 4/27 8/27
x3 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Fig. 1. An example repeated independent runs channel.

M before the decryption, and derandomizing afterwards so
that the correct decryption is obtained. The result is that the
adversary observes not t(K,M) for his chosen M , but instead
t(K,M ′) for a randomly-chosen M ′.1

It follows that a single timing observation is then modeled
by a probabilistic channel C from K to T , whose input is
a secret key K and whose output is the time to decrypt a
randomly-chosen message M ′ using K. And an n-observation
timing attack is then modeled by the repeated independent runs
channel C(n).

Bucketing [13] is an additional countermeasure, which de-
creases the size of T by forcing each decryption to take one
of b possible times, for some small number b. This is done
by choosing a set of b “bucket” times, and then delaying each
decryption result until the next bucket time. Experiments in
[13] show that on 1024-bit RSA, the performance overhead
from using b = 5 is less than 0.7% with a careful choice of
bucket times. Even using b = 2 gives an overhead of under
3%. But using b = 1, a constant-time implementation, gives
an overhead of over 36%.

Bucketing thus allows us to trade off between security and
performance: choosing b = 1 eliminates timing attacks but
substantially lowers performance, while choosing b = 5 gives
better performance but allows stronger timing attacks.

B. Our principal contributions

Studying the maximum leakage of a repeated independent
runs channel C(n), where C is an arbitrary channel matrix with
b columns, we make the following principal contributions:

1) We greatly improve on the previously-known bounds
[15], [16], proving in Theorem 3.1 that the maximum
leakage is tightly bounded by a function that we denote
capb(n), which is only about the square root of the
previous leakage bound.

2) Because capb(n) is expensive to calculate directly, we
analyze it using techniques of analytic combinatorics,
proving in Theorem 4.1 that it satisfies a remarkable
recurrence, which enables capb(n), for any b, to be
calculated efficiently from cap2(n).

3) Using a bound asserted by Ramanujan, in Theorem 4.4
we prove a simple upper bound on cap2(n) that is also
asymptotically correct.

1To see an example, note that the RSA decryption of M using secret key
(d,N) is Md mod N . If the corresponding public key is (e,N), then M
can be randomized by choosing a random r that is relatively prime to N , and
setting M ′ = M · re mod M , which makes M ′ uniformly distributed. Note
that M ′ decrypts to (M · re)d = Md · r mod N , so the decryption can be
derandomized by multiplying it by r−1 mod N .

These contributions enable tight leakage bounds for C(n) to
be computed accurately and efficiently, for any b and any n.

The rest of the paper is organized as follows. Section II
gives background about multiplicative Bayes capacity and
about the previously-known bounds on the maximum leakage
of C(n). Section III proves a new, tight bound in terms
of capb(n). Section IV presents our analytic results about
capb(n), which enable it to be computed efficiently. Because
the proofs of these results require specialized techniques of
analytic combinatorics, they are all deferred to Section V.
Finally, Section VI discusses related work and Section VII
concludes.

II. BACKGROUND

A. Multiplicative Bayes capacity ML×(C)

An important insight of quantitative information flow is
that there are many measures of information leakage, and the
question of which measure is most appropriate in a given
situation depends on the details of the operational scenario,
which comprises both the adversary’s goals and capabilities.
It is for this reason that g-leakage [7] parameterizes the leakage
measure with a gain function g, which models the operational
scenario. However, one particularly important measure of the
leakage of a channel C is its multiplicative Bayes capacity
ML×(C), which in the previous literature has usually been
called min-capacity.

A detailed tutorial on quantitative information flow and
ML×(C) can be found in [10]; here we limit ourselves to
three key properties of ML×(C) (from [17], [5], [7]) which
are sufficient for this paper:
• ML×(C) is easy to compute from the channel matrix C:

it is simply the sum of C’s column maximums.2

• ML×(C) is operationally significant: it is the maximum
factor (over all priors) by which C increases an adver-
sary’s probability of guessing the secret input X correctly
in one try.

• ML×(C) is robust: it is an upper bound on multiplicative
g-leakage, for any gain function g and any prior.

For example, for the C and C(3) above we have

ML×(C) = 1/2 + 1 = 3/2

and

ML×(C(3)) = 1/8+1/8+1/8+4/27+1/8+4/27+4/27+1 = 35/18.

2In the previous literature, ML×(C) has normally been defined as the
logarithm of this quantity. Since taking the logarithm just changes the scale,
we omit it for simplicity.
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B. Previous bounds on ML×(C(n))

Turning now to prior work on repeated independent runs
channels, it is proved by Köpf and Smith [15] and Espinoza
and Smith [16] that, for fixed b, the multiplicative Bayes
capacity of C(n) grows only polynomially in n:

Theorem 2.1: If C has b ≥ 1 columns and n ≥ 0, then
ML×(C(n)) ≤

(
n+b−1
n

)
.

Note that in the particular cases when b is 1, 2, 3, or 4, the
bounds are 1, n+1, (n+1)(n+2)/2, or (n+1)(n+2)(n+3)/6,
respectively.

The proof of Theorem 2.1 uses the information-theoretic
method of types [11]. The type of an output sequence is the
proportion of each of the b possible outputs that it contains.
For example, if Y = {y1, y2, y3, y4} and n = 10, then the
output sequence (y3, y2, y2, y4, y2, y3, y2, y2, y2, y2) has type
(0, 7/10, 2/10, 1/10). Here the key observation is that if two
output sequences have the same type, then their columns in
C(n) are identical, because the probabilities in Definition 1.1
are invariant under permutations of the output sequence.
Therefore all columns with the same type can be merged
without affecting the multiplicative Bayes capacity, since they
all have their column maximums in the same position.3 For
example, here is the merged version of C(3) above, where now
the columns are labeled with types:

merged C(3) (1, 0) (2/3, 1/3) (1/3, 2/3) (0, 1)
x1 0 0 0 1
x2 1/27 2/9 4/9 8/27
x3 1/8 3/8 3/8 1/8

As recalled above, the multiplicative Bayes capacity of a
channel is the sum of its column maximums. Since each
column maximum is at most 1, we see that the capacity of
the merged C(n) (and hence of C(n) as well) is at most the
number of possible types. By simple combinatorics, this is
given by the binomial coefficient

(
n+b−1
n

)
, and Theorem 2.1

follows.

III. A BETTER LEAKAGE BOUND

The obvious weakness of Theorem 2.1 is that it uses the
trivial upper bound 1 for all the column maximums; we
might sense that this is quite pessimistic. For a more careful
analysis, we need to determine the maximum probability with
which C(n) outputs a sequence of each type t. For example,
suppose that b = 2 and n = 1000 and consider the type
t = (417/1000, 583/1000). When would a row of C have the
greatest probability of generating an output sequence of type
t? Intuitively, it would seem best for a row of C to give exactly
the same distribution on outputs as in t. This intuition turns
out to be correct. Indeed, Theorem 11.1.2 of [11] shows that if
a row of C gives distribution q on Y , then the probability that

3More deeply, merging such columns does not affect the abstract channel
(by which we mean the mapping that C(n) gives from prior distributions to
hyper-distributions) [8].

the corresponding row of C(n) outputs a particular sequence
of type t is precisely

2−n(H(t)+DKL(t||q)),

where H(t) is the Shannon entropy of t and DKL(t||q) is
the Kullback-Leibler distance between t and q. Now, Gibbs’
inequality says that DKL(t||q) ≥ 0, with equality iff t = q.
Hence the above probability is maximized (to 2−nH(t)) when
t = q.

Turning our attention now to the merged C(n), we see that
to get the maximum possible entry in the column for type t we
need to multiply the probability above (of getting a particular
sequence of type t) by the number of sequences of type t. But
it seems easier to calculate this maximum probability directly.
Any type t is of the form(x1

n
,
x2
n
, . . . ,

xb
n

)
,

where x1, x2, . . . , xb are non-negative integers that sum to n.
If a row of C matches t, then the corresponding row of the
merged C(n) gives output t with probability

n!

x1!x2! · · ·xb!

(x1
n

)x1
(x2
n

)x2

· · ·
(xb
n

)xb

.

To see this, note that the first factor gives the number of se-
quences of type t, while the second factor gives the probability
of each such sequence.

To get the maximum sum of the column maximums of the
merged C(n), we simply sum the above term over all possible
choices of x1, x2, . . . , xb. With some reorganization, this leads
to the following function:

Definition 3.1: For integers b ≥ 1 and n ≥ 0, define

capb(n) =
n!

nn

∑
x1,x2,...,xb∈N

x1+x2+···+xb=n

xx1
1 x

x2
2 · · ·x

xb

b

x1!x2! · · ·xb!
.

We have thus proved the following stronger bound4 on
ML×(C(n)):

Theorem 3.1: If C has b ≥ 1 columns and n ≥ 0, then
ML×(C(n)) ≤ capb(n).

Note moreover that the bound in Theorem 3.1 is tight, since
for any n it is achieved by any C which has a row matching
each possible type t.5

To get a sense of the significance of the Theorem 3.1,
consider the case when b = 2. In that case, Definition 3.1
simplifies to

cap2(n) =
n!

nn

n∑
i=0

ii(n− i)n−i

i!(n− i)!
. (1)

Recall that the old upper bound in Theorem 2.1 uses the trivial
upper bound 1 for each column maximum. In fact the true
values are far smaller, as shown in Figure 2, which plots the
values of the terms of cap2(2000) for 0 ≤ i ≤ 2000. It shows

4We have learned that this stronger bound was also proved, independently,
by Goran Doychev and Boris Köpf (personal communication).

5Also, it is plausible that a blinded timing channel might satisfy this
assumption, since such a channel has a huge number of rows (one for each
possible secret key) but only polynomially-many (in n) types.
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Fig. 2. Plot of the terms of cap2(2000) for 0 ≤ i ≤ 2000.

that the term is 1 when i is 0 or 2000, and that its value falls
sharply as i moves away from those endpoints. In particular,
it is less than 0.2 for i between 4 and 1996, and less than
0.041 for i between 100 and 1900. The minimum value, about
0.0178, occurs when i = 1000.

We find that cap2(2000) is about 56.72, showing that
ML×(C(2000)) ≤ 56.72, which is a far better bound than the
one given by Theorem 2.1, which is 2001.

Figure 3 shows the value of cap2(n) for 0 ≤ n ≤ 2000.
As can be seen, its growth appears to be much slower than
linear. In fact, as will be seen in Section IV-C below, cap2(n)
is approximately

√
πn
2 .

A. Computational challenges

The improved leakage bound in Theorem 3.1 is valuable, but
unfortunately it is difficult to apply it in security analysis. The
problem is that the formula in Definition 3.1 is very expensive
to compute directly, since it involves b−1 nested sums. In the
case of a 100-observation timing attack with 6 buckets, for
instance, we are interested in the value of cap6(100), but direct
computation of this in Maple using exact rational arithmetic
already takes about 20 minutes.6 And we would actually be
interested in computing cap6(n) for a far larger number of
timing observations, such as n = 109 or even n = 1012. Note
that when b = 6, the number of terms in Definition 3.1 is
given by the binomial coefficient

(
n+5
n

)
, which for large n

is about n5/120. This implies that increasing n from 102 to
109 increases the number of terms by a factor of 1035. Hence,
even ignoring the fact that the individual terms become more

6The computation was done on an iMac with a 3.2 GHz Intel Core i5 and
16 GB of memory.

Fig. 3. Plot of cap2(n) for 0 ≤ n ≤ 2000.

capb(n) 0 1 2 3 4 5 . . .

1 1 1 1 1 1 1 . . .

2 1 2 5
2

26
9

103
32

2194
625 . . .

3 1 3 9
2

53
9

231
32

5319
625 . . .

4 1 4 7 92
9

437
32

10804
625 . . .

5 1 5 10 145
9

745
32

19669
625 . . .

6 1 6 27
2

214
9

591
16

33174
625 . . .

...
...

...
...

...
...

...

Fig. 4. Some values of capb(n), with row = b, column = n.

expensive to compute as n increases, we find that computing
cap6(10

9) would take over 1030 years.
It is therefore clear that a better way of computing capb(n)

is needed before we can make serious use of Theorem 3.1.

IV. ANALYTIC RESULTS ABOUT capb(n)

Figure 4 gives a table of some of the values of capb(n),
where the row gives the value of b and the column gives the
value of n. The first row suggests that cap1(n) = 1 for all n,
and this is indeed straightforward to verify from Definition 3.1.
But the behavior of capb(n) for larger values of b is not
obvious. In the following subsections, we present a number
of analytic results that clarify the behavior of capb(n) and
make it possible to compute it efficiently.

A. A recurrence satisfied by capb(n)

Through analytic and empirical study, we discovered that
capb(n) is governed by a remarkable recurrence.
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Theorem 4.1: For all b ≥ 3 and all n ≥ 0,

capb(n) = capb−1(n) +
n

b− 2
capb−2(n) .

To illustrate, when b = 5 and n = 4 we have

cap5−1(4)+
4

5−2
cap5−2(4) =

437

32
+
4

3
·231
32

=
745

32
= cap5(4).

The proof of Theorem 4.1 involves specialized techniques
of analytic combinatorics, so we defer it until Section V. To
give some indication now of the difficulty of the proof, we
mention that the special case of Theorem 4.1 when b = 3,
namely cap3(n) = cap2(n) + n, was discovered by Lacasse
[18, p. 90] in his 2010 dissertation about machine learning
but left as a conjecture. Since then, no fewer than four proofs
of this special case, using a variety of techniques, have been
published by Younsi [19], Chen, Peng, and Yang [20], Sun
[21], and Prodinger [22].

B. Using the Theorem 4.1 recurrence to compute capb(n)

Theorem 4.1 applied repeatedly enables us to express
capb(n), for any b, in terms of cap2(n) and cap1(n). For
instance we get

cap4(n) = cap4−1(n) +
n

4− 2
cap4−2(n)

= cap3−1(n) +
n

3− 2
cap3−2(n) +

n

2
cap2(n)

=
(n
2
+ 1
)

cap2(n) + n cap1(n) .

But since cap1(n) = 1 for all n, this means that every capb(n)
can be expressed just in terms of cap2(n), through formulas
like the following:

cap3(n) = cap2(n) + n

cap4(n) =
(n
2
+ 1
)

cap2(n) + n

cap5(n) =

(
5n

6
+ 1

)
cap2(n) +

n2

3
+ n

cap6(n) =

(
n2

8
+

13n

12
+ 1

)
cap2(n) +

7n2

12
+ n

Note that computing capb(n) using Definition 3.1 requires
summing a total of

(
n+b−1
n

)
terms. In particular, calculating

cap6(100) requires summing almost 100 million terms. But,
using the equation above, cap6(100) can be computed by
summing just 101 terms for cap2(100) and evaluating some
simple polynomials. Experimentally, we find that the time to
compute cap6(100) in Maple is reduced from 20 minutes to
about 5 milliseconds, a speed up of more than a factor of
200 thousand.

In spite of these positive results, we are still faced with the
problem that computing cap2(n) from equation (1) becomes
expensive as n becomes large. For instance, direct computation
of cap2(50000) in Maple using exact rational arithmetic takes
almost 2 hours.

For this reason, in the next subsection we give results
allowing cap2(n) to be approximated very accurately and
efficiently.

C. Results about cap2(n)

It turns out that cap2(n) has a remarkable relationship to
Ramanujan’s celebrated Q-function [23], which is defined for
n ≥ 1 by

Q(n) = 1 +
n−1
n

+
n−1
n

n−2
n

+
n−1
n

n−2
n

n−3
n

+ · · ·

=
n∑
k=1

n!

nk(n− k)!
.

Prodinger [22] proves the following theorem:
Theorem 4.2: For all n ≥ 1, cap2(n) = Q(n) + 1.

Prodinger’s proof uses complex analysis, and we elucidate it
in Appendix A. We have also found an easier proof, which
we defer to Section V.

An amazing consequence of Theorem 4.2 is that cap2(n)
has a significance unrelated to information leakage: it is also
the expected number of people needed in order to find two
having the same birthday, when n is the number of days in a
year. For instance, cap2(365) ≈ 24.616586.

Of more practical significance, asymptotic approximations
for Q(n) are known, and these (by adding 1 to them) work
for cap2(n) as well. For instance, from equation (2.6) of [24],
we have the following theorem:

Theorem 4.3:

cap2(n) =
√
πn

2
+

2

3
+

1

12

√
π

2n
− 4

135n
+O(n−3/2) .

This theorem allows cap2(n) (and, using Theorem 4.1, every
capb(n)) to be approximated very efficiently, with a relative
error that tends to 0 as n goes to infinity.

For security analysis, however, an approximation to cap2(n)
like Theorem 4.3 is not quite satisfactory, since for any
particular value of n we do not know how big the O(n−3/2)
term might be. Hence an upper bound would be preferable.

As our final major result (whose proof is again deferred to
Section V) we have applied an assertion due to Ramanujan to
prove such an upper bound:

Theorem 4.4: For all n ≥ 1,

cap2(n) <

√
πn

2
+

2

3
+

1

12

√
π

2n
.

Note that Theorem 4.4 gives an upper bound that is also
asymptotically correct, since it is the result of truncating the
expansion in Theorem 4.3 after its third term.

Finally, we mention that techniques similar to those used in
proving Theorem 4.4 allow us also to prove an asymptotically-
correct lower bound:

Theorem 4.5: For all n ≥ 1,

cap2(n) >

√
πn

2
+

2

3
+

1

12

√
π

2n
− 4

135n
.

This lower bound tells us that the upper bound given by
Theorem 4.4 on n = 106, namely

cap2(10
6) < 1253.98090843 ,

is correct to 11 significant digits.
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D. Applying Theorem 3.1 in security analysis

These analytic results about capb(n) now enable us to assess
the extent to which Theorem 3.1 improves Theorem 2.1 in
security analysis.

First, we can compare the leakage bounds asymptotically.
If we regard b as a constant, then the old Theorem 2.1
bound of

(
n+b−1
n

)
is asymptotically O(nb−1), while the new

Theorem 3.1 bound of capb(n) is asymptotically O(n
b−1
2 ).

To see this, note that

cap1(n) = O(1) = O(n
1−1
2 )

and (by Theorem 4.4)

cap2(n) = O(
√
n) = O(n

2−1
2 ) .

Now (by Theorem 4.1) for b ≥ 3 we can reason inductively:

capb(n) = capb−1(n) +
n

b− 2
capb−2(n)

= O(n
b−2
2 ) +O(n) ·O(n

b−3
2 )

= O(n
b−2
2 ) +O(n

b−1
2 )

= O(n
b−1
2 ) .

Thus Theorem 3.1 tells us that the maximum leakage of
C(n) is asymptotically only the square root of the previous
Theorem 2.1 bound.

More concretely, consider a scenario similar to the one in
[15, p. 50], namely an n-observation timing attack against a
blinded cryptosystem implemented with bucketing. Suppose
that, based on the key length we are using, we decide that we
can tolerate leakage of at most 1026.

If we want to be secure against n = 109 timing observa-
tions, then the bound from Theorem 2.1 suggests that we can
use only 3 buckets, because when b = 4 it gives maximum
leakage somewhat over our limit:(

109 + 4− 1

109

)
> 1.666666× 1026 .

In contrast, Theorem 3.1 tells us that b = 4 is actually fine:

cap4(10
9) < 1.981797× 1013 .

This also illustrates that the new bound is indeed roughly the
square root of the previous bound.

The improved leakage bound from Theorem 3.1 gives us a
number of ways that we can modify b and n, while staying
below the leakage limit of 1026. If we just want to increase
the performance of the cryptosystem, we can keep n = 109

and increase the number of buckets to b = 7:

cap7(10
9) < 6.667823× 1025 .

Or we can increase the number of buckets to b = 5 and
also increase the number of timing observations to n = 1013,
allowing us to choose fresh keys much less frequently:

cap5(10
13) < 3.333337× 1025 .

Or we can use b = 6 and n = 1010:

cap6(10
10) < 1.566710× 1024 .

Finally, we note that computing all of these capb(n) values
using Theorem 4.1 and Theorem 4.4 takes an insignificant
amount of time in Maple (just a few milliseconds).

V. ANALYTIC PROOFS

In this section, we give proofs of all of the theorems from
Section IV.

Our efforts at proving the recurrence of Theorem 4.1 by
elementary techniques were unsuccessful. Some progress can
be made, however, by focusing on the columns of the table
in Figure 4, rather than the rows. That is, we fix n and view
capb(n) as a function of b. Elementary calculations then let us
determine these functions for small values of n:

capb(0) = 1

capb(1) = b

capb(2) =
b2 + 3b

4

capb(3) =
b3 + 9b2 + 17b

27

capb(4) =
b4 + 18b3 + 95b2 + 142b

256

capb(5) =
b5 + 30b4 + 305b3 + 1220b2 + 1569b

3125

capb(6) =
b6 + 45b5 + 745b4 + 5595b3 + 18694b2 + 21576b

46656

One benefit of these polynomials is that they let us straight-
forwardly verify Theorem 4.1 for 0 ≤ n ≤ 6 and all b ≥ 3.

More significantly, we can observe a pattern: for fixed n, we
find that capb(n) can be written as n−n times a degree-n poly-
nomial in b with integer coefficients. Some searching for these
coefficients on the On-Line Encyclopedia of Integer Sequences
leads us to sequence A060281 (https://oeis.org/A060281) and
the tree polynomials tn(b) studied by Knuth and Pittel [24].
Remarkably, the first few tree polynomials are

t0(b) = 1

t1(b) = b

t2(b) = b2 + 3b

t3(b) = b3 + 9b2 + 17b

t4(b) = b4 + 18b3 + 95b2 + 142b

This coincidence suggests that perhaps

capb(n) = n−ntn(b) (2)

holds for all n ≥ 0. It also suggests investigating capb(n)
using techniques of analytic combinatorics [25]. We do this
in the following subsections.
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A. The tree polynomials

Here we review the theory of tree polynomials as developed
by Knuth and Pittel [24]. The starting point is Cayley’s tree
function T (z), which is the formal power series7

T (z) =
∞∑
n=1

nn−1
zn

n!
. (3)

T (z) satisfies a fundamental equation, due to Eisenstein:

T (z) = zeT (z) . (4)

Hence, if we take derivatives with respect to z, we get

T ′(z) = eT (z) · 1 + z · eT (z) · T ′(z) ,

which implies

T ′(z)(1− zeT (z)) = eT (z) .

Now, using equation (4) again, we get

T ′(z) =
T (z)

z(1− T (z))
, (5)

showing that T ′(z) can be expressed in terms of T (z).
Next, the tree polynomials tn(b) are defined implicitly from

T (z) by the equation(
1

1− T (z)

)b
=
∞∑
n=0

tn(b)
zn

n!
. (6)

If we let [zn]f(z) denote the coefficient of zn in the Taylor
expansion of f(z), then equation (6) is equivalent to

[zn]

(
1

1− T (z)

)b
=
tn(b)

n!
. (7)

In fact, Knuth and Pittel show that the tree polynomials
satisfy a recurrence exactly analogous to Theorem 4.1. The
argument starts, for b ≥ 3, by replacing b with b − 2 in
equation (6) to get

∞∑
n=0

tn(b− 2)
zn

n!
=

1

(1− T (z))b−2
.

Taking derivatives on both sides with respect to z, we get

∞∑
n=0

ntn(b− 2)
zn−1

n!
=

d

dz

1

(1− T (z))b−2
.

7A formal power series
∑∞

n=0 cnz
n can be understood simply as a

notation for an infinite sequence of coefficients [c0, c1, c2, . . .], where two
such series are equal iff their corresponding coefficients are equal. Formal
power series are not to be evaluated with a numerical value for the formal
symbol z, so questions of convergence are irrelevant. But, as shown by Niven
[26], formal power series can in fact be manipulated validly as if they were
power series, using the usual operations (addition, subtraction, multiplication,
division, differentiation, exponentiation, and functional composition).

Hence, multiplying both sides by z, we have
∞∑
n=0

ntn(b− 2)
zn

n!
= z

d

dz
(1− T (z))2−b

= z(b− 2)(1− T (z))1−b T ′(z)

= z(b− 2)(1− T (z))1−b T (z)

z(1− T (z))

=
(b− 2)T (z)

(1− T (z))b
.

Hence we get
∞∑
n=0

n

b− 2
tn(b− 2)

zn

n!
=

T (z)

(1− T (z))b

=
1− (1− T (z))
(1− T (z))b

=
1

(1− T (z))b
− 1

(1− T (z))b−1
.

Finally, by equating the corresponding coefficients of the
formal power series, we get the desired recurrence for the
tree polynomials:

tn(b) = tn(b− 1) +
n

b− 2
tn(b− 2) . (8)

B. Relating capb(n) and tn(b)

Given equation (8), we can prove Theorem 4.1 by proving
equation (2). The crucial idea for how to do this is given
by Prodinger [22]. It is based on the following expansion of
1/(1− T (z)):

1

1− T (z)
= 1 +

T (z)

1− T (z)
= 1 + zT ′(z) (using (5))

= 1 + z
∞∑
n=1

nn
zn−1

n!
(using (3))

=

∞∑
n=0

nn
zn

n!
.

Hence, starting with equation (7), we can reason as follows:

tn(b) = n![zn]

(
1

1− T (z)

)b
= n![zn]

( ∞∑
n=0

nn
zn

n!

)b
= n!

∑
x1,x2,...,xb∈N

x1+x2+···+xb=n

xx1
1 x

x2
2 · · ·x

xb

b

x1!x2! · · ·xb!

= nncapb(n) .

The second-to-last step follows because the zn term in the
product results from selecting terms from each of the b power
series and multiplying them; the sum over x1, x2, . . . , xb
corresponds to all the possible ways of selecting these terms.
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Hence we can rewrite equation (8) to

nncapb(n) = nncapb−1(n) +
n

b− 2
nncapb−2(n) ,

which (dividing both sides by nn) finally completes the proof
of Theorem 4.1.

C. Relating cap2(n) and Q(n)

Our discovery that cap2(n) = Q(n) + 1 was the result
of searching for the sequence nncap2(n) on the On-Line
Encyclopedia of Integer Sequences, which led us to sequence
A063170 (https://oeis.org/A063170) and Prodinger’s paper
[22], which proves Theorem 4.2 as part of his proof of the
b = 3 case of Theorem 4.1. Prodinger’s proof uses complex
analysis and is quite terse, so we explicate it in Appendix A.

We found an easier proof of Theorem 4.2 that starts from
equation (2.8) of [24] (which is also equation (2.3) of [23]):

∞∑
n=1

nn−1Q(n)
zn

n!
= ln

1

1− T (z)
.

Differentiating both sides with respect to z, we get
∞∑
n=1

nnQ(n)
zn−1

n!
= (1− T (z))(−1)(1− T (z))−2(−1)T ′(z)

=
T ′(z)

1− T (z)

=
T (z)

z(1− T (z))2
,

where the last step uses equation (5). Hence, multiplying both
sides by z we have

∞∑
n=1

nnQ(n)
zn

n!
=

T (z)

(1− T (z))2

=
1− (1− T (z))
(1− T (z))2

=
1

(1− T (z))2
− 1

1− T (z)
.

Using equation (6) and equating the corresponding coefficients
of the formal power series, we have for n ≥ 1 that

nnQ(n) = tn(2)− tn(1) = nncap2(n)− nncap1(n) ,

which, because cap1(n) = 1, implies that

cap2(n) = Q(n) + 1 ,

proving Theorem 4.2.

D. Using an assertion by Ramanujan to bound cap2(n)

The fact that cap2(n) = Q(n)+1 lets us obtain asymptotic
approximations for cap2(n) from known asymptotic approx-
imations for Q(n). In this section, we use an assertion by
Ramanujan to establish an upper bound on cap2(n).

In Ramanujan’s first letter to Hardy, dated 16 January 1913,
he asserted that

1

2
en = 1 +

n

1!
+
n2

2!
+ · · ·+ nn

n!
θ(n) ,

where, for all n ≥ 0,

θ(n) =
1

3
+

4

135(n+ k(n))
, where

2

21
≤ k(n) ≤ 8

45
.

A complete proof of Ramanujan’s assertion was finally given
in 1995, by Flajolet, Grabner, Kirschenhofer and Prodinger as
Theorem 7 of [23]. Following that paper, let

R(n) = 1 +
n

n+ 1
+

n2

(n+ 1)(n+ 2)
+ · · · .

Since
n!

nn
en =

∞∑
k=0

n!

k!nn−k
,

it is straightforward to verify that

Q(n) +R(n) =
n!en

nn

and
θ(n) =

1

2
(R(n)−Q(n)) .

Hence we get

Q(n) =
n!en

nn
−R(n)

=
n!en

nn
− (2θ(n) +Q(n))

=
n!en

nn
− 2

3
− 8

135(n+ k(n))
−Q(n) ,

which gives

Q(n) =
1

2

n!en

nn
− 1

3
− 4

135(n+ k(n))

and, using Theorem 4.2,

cap2(n) =
1

2

n!en

nn
+

2

3
− 4

135(n+ k(n))
.

Now Ramanujan’s remarkable assertion

2

21
≤ k(n) ≤ 8

45

enables us to establish upper bounds (and also lower bounds)
on cap2(n). For it gives

cap2(n) ≤
1

2

n!en

nn
+

2

3
− 4

135(n+ 8
45 )

<
1

2

n!en

nn
+

2

3
− 4

135n

(
1− 8

45n

)
=

1

2

n!en

nn
+

2

3
− 4

135n
+

32

6075n2
.

Now, Robbins [27] strengthens Stirling’s approximation, for
n ≥ 1, to

n! <
√
2πnn+

1/2e−ne
1/12n ,

which gives

cap2(n) <
√
πn

2
e
1/12n +

2

3
− 4

135n
+

32

6075n2
.
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Next we obtain bounds for e1/12n. For n ≥ 1 we have

e
1/12n =

∞∑
j=0

1

12jnjj!

= 1 +
1

12n
+

1

n2

∞∑
j=2

1

12jnj−2j!

≤ 1 +
1

12n
+

1

n2

∞∑
j=2

1

12jj!

= 1 +
1

12n
+

1

n2

(
e
1/12 − 1− 1

12

)
,

which gives us

cap2(n) <

√
πn

2
+

2

3
+

1

12

√
π

2n

− 4

135n
+

(
e
1/12 − 13

12

)√
π

2n3
+

32

6075n2
.

Because for n ≥ 1 the sum of the last three terms is negative,
we get

cap2(n) <

√
πn

2
+

2

3
+

1

12

√
π

2n
,

proving Theorem 4.4. As already mentioned, this upper bound
is also asymptotically correct, since it is the result of truncating
the expansion in Theorem 4.3 after its third term.

Finally, we can similarly use Ramanujan’s assertion that
k(n) ≥ 2

21 to get the asymptotically-correct lower bound

cap2(n) >

√
πn

2
+

2

3
+

1

12

√
π

2n
− 4

135n
,

proving Theorem 4.5. (We omit the details.) Thus cap2(n) is
tightly bounded on both sides.

VI. RELATED WORK

Espinoza and Smith [16] establish bounds on the multi-
plicative Bayes capacity of a number of different channel
compositions. In addition to proving Theorem 2.1 for repeated
independent runs, they also consider the case where n different
channels are run on the same input X , producing a tuple
of outputs. They show that the leakage in this case can be
far greater than with repeated independent runs—indeed n
channels, each having 2 columns, can be constructed such that
their composition has multiplicative Bayes capacity of 2n.

Repeated independent runs channels have also been studied
by Boreale, Pampaloni, and Paolini [28]. They prove that
ML×(C(n)) converges asymptotically to the number of dis-
tinct rows of C, and they use the information-theoretic method
of types to prove that the rate of convergence is exponential.
In [29], the same authors prove stronger rate bounds based on
the minimum Chernoff Information between the rows of C.

In the context of timing attacks on cryptosystems, Doychev
and Köpf [30] establish leakage bounds for unpredictability
entropy, which allows them to consider resource-bounded ad-
versaries, in contrast with the information-theoretic adversaries
considered here.

VII. CONCLUSION

Our results establish a new, tight bound on the maximum
leakage of n repeated independent runs of a channel with b
columns. Our new bound shows that the maximum leakage is
actually only about the square root of the previously-known
bound, and our analytic results allow the new bound to be
computed accurately and efficiently.

In future work, it would be of great interest to learn whether
the Theorem 3.1 leakage bound, which is proved here for
information-theoretic adversaries, can also be carried over to
computationally-bounded adversaries.
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[13] B. Köpf and M. Dürmuth, “A provably secure and efficient counter-
measure against timing attacks,” in Proc. 22nd IEEE Computer Security
Foundations Symposium (CSF ’09), 2009, pp. 324–335.

[14] D. Brumley and D. Boneh, “Remote timing attacks are practical,”
Computer Networks, vol. 48, no. 5, pp. 701–716, 2005.
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APPENDIX A
PRODINGER’S PROOF OF THEOREM 4.2

Prodinger [22] uses complex analysis to prove Theorem 4.2.
Because his explanation is terse, here we give additional detail
to clarify his argument.

The main job is to compute the coefficients of the Taylor
expansion of 1/(1− T (z))b. Let

f(z) =

(
1

1− T (z)

)b
.

By Cauchy’s differential formula, around a circle γ containing
a we have

f (n)(a) =
n!

2πi

∮
γ

f(z)

(z − a)n+1
dz .

Since f (n)(0) = n![zn]f(z), we have, abbreviating T (z) to T ,

[zn]

(
1

1− T

)b
=

1

2πi

∮
γ

dz

zn+1

(
1

1− T

)b
.

By equation (4) we have

z = Te−T

which implies that

dz

dT
= e−T − Te−T = e−T (1− T )

and
dz = e−T (1− T )dT .

Therefore we have

[zn]

(
1

1− T

)b
=

1

2πi

∮
γ

e−T (1− T )dT
Tn+1e−(n+1)T

(
1

1− T

)b
=

1

2πi

∮
γ

dT
enT

Tn+1

(
1

1− T

)b−1
=

1

2πi

∮
γ

dT
enT

Tn+1

∞∑
k=0

(
b+ k − 2

k

)
T k

=
1

2πi

∮
γ

dTenT
∞∑
k=0

(
b+ k − 2

k

)
1

Tn−k+1
,

where the next-to-last step uses the binomial expansion for-
mula for b > 1. Now because

enT =
∞∑
j=0

njT j

j!

we get

[zn]

(
1

1− T

)b
=

1

2πi

∮
γ

dT
∞∑
j=0

∞∑
k=0

(
b+k−2

k

)
nj

j!Tn−k−j+1
.

Now we apply a result of complex analysis, which says that
for integer n, ∮

γ

1

zn
dz =

{
0, if n 6= 1
2πi, if n = 1.

Hence the only terms in the previous expression that contribute
are those where j = n − k. And, since j ≥ 0, we also have
k ≤ n. Hence we can simplify to

[zn]

(
1

1− T

)b
=

1

2πi

∮
γ

1

T
dT

n∑
k=0

(
b+ k − 2

k

)
nn−k

(n− k)!

=
1

2πi
(2πi)

n∑
k=0

(
b+ k − 2

k

)
nn−k

(n− k)!

=
n∑
k=0

(
b+ k − 2

k

)
nn−k

(n− k)!
.

Having done that, we recall that

capb(n) = n−ntn(b) =
n!

nn
[zn]

(
1

1− T

)b
,

thereby obtaining a new expression for capb(n) when b > 1:

capb(n) =
n∑
k=0

(
b+ k − 2

k

)
n!

nk(n− k)!
. (9)

Specializing to the case when b = 2, we obtain Theorem 4.2:

cap2(n) =

n∑
k=0

n!

nk(n− k)!
= 1 +Q(n) .

Note finally that Equation (9) lets every capb(n) be computed
via a sum of n+ 1 terms, which is useful when b is big and
n is small. In fact, Maple recognizes (9) as the generalized
hypergeometric function 2F0(b−1,−n; ;− 1

n ) and can compute
it efficiently for quite large n.
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