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Abstract—We consider a setting where a system has to interact,
and hence create distinct outputs (observables), but subject
to such operational constraints wants to minimize the leakage
that such observables reveal about its secret input. It has been
previously demonstrated that under some (highly symmetrical)
constraints on the observables, it is possible to design systems
that are universally optimal in the sense of leaking minimal
information no matter how information is measured.

In this work we make several contribution to this field. On
universal (i.e., measure-invariant) optimality, we show its limita-
tions through a counterexample where symmetry constraints are
broken. Nevertheless, we also show two new universal optimality
results: the first is in the presence of “graph like” constraints
(that may lack symmetry). The second is universal optimality
in the case of uncertainty about the prior. Furthermore, we
prove that a generic class of leakage optimisation problems are
convex problem, from which we derive that KKT conditions
are necessary and sufficient for optimality. We demonstrate the
practical value of the theory in the form of an application to
timing attacks countermeasures.

I. INTRODUCTION

A common setting where privacy, anonymity, confidential-

ity, or secrecy is concerned, can be abstracted as a system

that has an internal secret and produces publicly observable

outputs. The realization of the secret is only known by the

system and the secrecy goal is to leak the least information

about the secret to potentially adversarial observers. One trivial

way to achieve “zero-leakage” is to always exhibit the same

observable irrespective of the realization of the secret. What

makes the problem non-trivial is the fact that this trivial

solution is indeed operationally unacceptable.

In secret communications, for instance, the goal is to

transfer information to intended recipients. But producing the

same observable, although guaranteeing zero leakage, will

clearly mean no information transfer either. In the classical

work of Shannon on secrecy [1], he proved that the only way

to ensure zero leakage and have secret communication is to

use “one-time-pads (OTP)” with the length at least as long as

the secret, which guarantees the observables are completely

independent from the secret to any observer other than the

intended recipients, which hold the same copy of the OTP.

However, in many contexts other than secret communi-

cation where secrecy is a desirable goal, the trivial solu-

tion of producing the same observable for all secrets may

be unsuitable or even infeasible. Consider, for instance, the

system of a password-checker, where the password as the

secret: at the bare minimum, the system should produce two

distinct observables (match/mismatch) to preserve its defining

functionality. There are some other cases where zero leakage

may be possible but undesirable as it leads to a unacceptable

degradation in the utility of the system. Some prominent

examples are:

• Defence against timing side-channel channel: Adversaries

can gain information about the system by observing the time

it takes a system to execute each process. Specially in the

context of cryptography, these fluctuations in computation

times can leak information about the secret key (an example

of side channel attack) [2], [3]. One approach to remove

this leakage is to release each of the computations only

after a constant duration. This will guarantee zero leakage

through the computation time side channel, as there will

be only one observation irrespective of the secret. However,

this may introduce huge delays as the computation time of

each process is tied to the worst case scenario.

• Defence against web-traffic fingerprinting: Similar to buck-

eting, researchers have shown that adversaries can classify

the type of encrypted web-traffic only by investigating the

attributes of their traffic, most notably, the inter-packet-

delays, as different types of web-traffic produce different

“burstiness” patterns [4], [5]. Again, a solution can be

devised that generates a single type of traffic, by a com-

bination of delaying packets and releasing them only at

certain intervals, and by generating dummy packets between

moments of silence. Clearly, this zero-leakage remedy can

lead to unacceptable overheads in delay and/or bandwidth.

• Defence against device fingerprinting: Similarly, an ad-

versary can gain information about the device/OS/Browser

through observing the structure of the request messages that

they send to a web server [6]. Here, too, the zero-leakage

solution may be undesirable/impossible to implement, as

each browser uses different message headers or plug-ins for

important purposes, especially “debuggability”.

• Location Privacy: Mobile users can take advantage of many

“location-based-services”. The zero-leakage solution means

that none of these utilities can be used, which could be an

unacceptable level of degradation [7]–[9].

In each of these settings, lowering “information leaking”

about the secret while respecting the operational constraints

and overheads of the system is of interest. We develop a
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unifying framework by sufficiently abstracting the underlying

setting that capture the common theme of constrained secrecy.

In particular, in all of these settings we can consider a sys-

tem that, affected by an internal secret, generates observable

outputs. Considering the secret and the observable as random

variables, the system can be modelled as a “channel”, which is,

a conditional distribution across observables given the secret.

That is, given the realization of the secret, the system (poten-

tially probabilistically) produces a particular observable. This

is an equivalent interpretation of the system as a “strategy”,

that is, a recipe of (potentially randomized) action per each

secret. Throughout the paper, we will use “channels” and

“strategies” interchangeably.

The problem then becomes the following: design a channel

(strategy) such that: (1) it has minimal leakage, (2) none of

the secrets are assigned to an unacceptable observable (“hard

constraints”); (3) the “average” quality of performance of the

system does not degrade too much (soft constraints);

But how should we quantify leakage to be able to compare

among designs/channels/strategies? Leakage of information

for channels has been studied by researchers in quantitative

information flow [3], [10]–[15]. A candidate for measuring the

amount of leakage was the difference between the posterior

and prior Shannon entropies, however, it was shown that

Shannon entropy may not be a good representative of the

situation for some contexts. For instance, in password guessing

attacks, more than the Shannon entropy, which relates to an

adversary that can ask set-membership questions, the relevant

measure of entropy is “Guesswork”, which is related to the

expected number of guesses before striking on the correct one.

This raises a question of which entropy function to choose,

given that they have different operational interpretation some

of which depends on modelling the adversary. A recent work

[16] showed that in a special case, one can design channels

that are optimal no matter what measure of leakage is chosen

and hence are in that sense “robust” against what adversary

model the measure reflects.

In this work we explore this concept of universality, show

the limitations of the previous results, establish universal

properties and discuss a potential application.

Road-map and Contributions: The paper starts (Section

II) by introducing the technical background relevant to this

work. We will then prove (Section III) a fundamental result

showing that the general problem of Leakage-Minimal Design

is a convex optimization problem; we also show that the

Karush-Kuhn-Tucker conditions are necessary and sufficient

for solving these convex optimizations.

Section IV is about universality. We first show a nega-

tive result: that in general, universality breaks down when

constraints other than size are added. We can interpret this

result as suggesting that universality requires a high degree of

symmetry. We then show a positive result about the existence

of universally optimal channels for “graph-like” cloaking

constraints where “symmetry” may be absent.

We will then explore (Section V) the case when the attacker

has uncertainty about the prior, in the sense that he knows

that the prior distribution can be one of a (finite) number

of possible distributions on the secret. We show that in this

case the problem can be simplified by assuming an “averaged

prior”. In particular, universal optimality can be achievable if

the constraint is either per the setting in Section IV or the

setting in [16]. In particular, all of the previous results hold

just by considering a single “averaged prior”.

Finally, in Section VI, we will show an application of these

ideas to countermeasures of timing attacks by introducing and

analysing “randomized bucketing” strategies.

Related Literature: This paper builds on [16] and makes

several important non incremental advances on that work as

described in the contributions, both in terms of extending

universality results, showing limitations of universality and

demonstrating applications of the theory.

More generally this work contributes to the foundations

of quantitative security and its results are relevant to most

approaches to Quantitative Information Flow, both the ones

using Shannon (e.g. [12]), Min Entropy (e.g. [15]), Bayes risk

[17] and more recent work using g-leakage [10], [18] and

unconditional security [19]. Karush-Kuhn-Tucker conditions

for Shannon leakage analysis were used in [20], [21] in a

more restricted setting than the one studied here.

II. GENERAL MODEL

Let S represent the secret as a random variable. It can

take one of the |S| possibilities from the (finite discrete) set

of S := {s1, . . . , s|S|} with the (categorical) distribution of

P S ∈ Δ(S). That is, P S ∈ {(ps), s ∈ S | ps ≥ 0 ∀s ∈
S, ∑

s∈S ps = 1}. Without loss of generality, we assume that

every secret has a strictly positive probability of realization,

i.e., supp(P S) = S.1
We make the worst-case assumption about the adversaries:

that they know the true probability distribution of the secret.

That is, we take P S to be publicly known, hence we will

simply refer to P S as the prior. The defender, observing the

(realization of the) secret, produces an observable o ∈ O.

Let Ω ⊆ S ×O define the permissible observables per each

secret. Specifically, if (s, o) �∈ Ω, then for secret s, the defender

cannot produce observable o. A deterministic channel, denoted

by d, is a mapping from secrets to observables, such that each

assignment is permissible. Hence, the set of all deterministic

channels is: {d : S → O | ∀s : (s, d(s)) ∈ Ω}.
A probabilistic channel, which we denote by δ, allows

randomization over permissible observables per each secret.

Specifically, the space of probabilistic channels is {δ : S →
Δ(O) | ∀s ∈ S, ∀o ∈ supp(δ(s)) : (s, o) ∈ Ω}. Clearly,

any deterministic channel can be represented as a probabilistic

channel as well, with degenerate distributions. For the rest of

the paper, unless explicitly stated, by “channel” we mean a

probabilistic channel.

We use the familiar notation of conditional probability,

i.e., δ(o|s), to designate the probability at which channel δ

1Support of a probability distribution is defined as the set of all possible
values that has a strictly positive probability of realization.
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produces observable o when the secret is s. Using this notation,

the space of channels is specified by the following conditions:

δ(o|s) ≥ 0 ∀(s, o) ∈ S ×O (1a)∑
o∈O δ(o|s) = 1 ∀s ∈ S (1b)

δ(o|s) = 0 ∀(s, o) �∈ Ω. (1c)

Conditions (1b) and (1b) just impose that the channel should

be a legitimate conditional distribution. We will refer to (1c)

as “hard” constraints, as they strictly forbid some secret-

observable pairs “path-wise”, that is, per each realization of

the secret. As a consequence, an adversary can eliminate the

forbidden secrets for an observable when making an inference.

The naming is to contrast with the “soft” constraint discussed

later, which is expressed in terms of an expected value.

The aim is designing channels within the above boundaries

that are “leakage-optimal”. That is, finding a feasible condi-

tional distribution δ(o|s) that, in a quantifiable way, leaks the

least information about the secret to an adversary, who is aware

of both the distribution of the secret and our channel design.

At a high level, the information “leakage” can be quan-

tified as the difference between the “prior uncertainty” of

an adversary and its “posterior uncertainty”, on average. The

expected uncertainty is quantified by an entropy measure. We

will denote the entropy of a random variable S with probability

distribution P by H(S) = H(P ), where H is a function from

probability distributions to real numbers.

Intricately, there are many different candidates for the choice

of the entropy, each with a distinct “operational” significance.

For instance, the 1-guess-error-probability is computed as

H(P ) = 1 − ‖P ‖∞, where ‖P ‖∞ denotes the ∞-norm

of P , that is ‖P ‖∞ = p[1] = maxi(p1, . . . , pn). Notably,

1−‖P ‖∞ is the probability that the best guess of an adversary

about the secret is incorrect. A closely related measure is Min-
entropy: H(P ) = − log ‖P ‖∞. The l-guess-error-probability
extends to the cases where an adversary can submit l best

guesses. Specifically, H(P ) = 1−∑l
i=1 p[i] is the probability

that none of these guesses would be correct, where p[i]
denotes the ith largest element of P , breaking ties arbitrarily.

Another frequently used entropy with a clear interpretation

is guesswork (guessing) entropy: H(P ) =
∑n

i=1 ip[i]. This

represents the minimum expected number of steps that takes

a sequentially guessing adversary to get to the secret. Prob-

ably the most well-known entropy is the (Gibbs)-Shannon’s:
H(P ) = −∑n

i=1 pi log(pi), pertaining to the shortest coding

of the secret, which can also be interpreted as the least

expected number of “subset-membership” questions of an

adversary before getting to the secret. A family of entropies is

known as Rényi entropies, parametrised by α ≥ 0, α �= 1:
Hα(P ) = 1

1−α log(
∑n

i=1 p
α
i ), or equivalently, Hα(P ) =

α
1−α log ‖P ‖α, where ‖ · ‖α denotes the α-norm. Rényi en-

tropies can recover Shannon and Min-entropy as limit cases

by respectively letting α→ 1 and α→∞. The case of α = 2,
i.e., H2(P ) = − log

∑n
i=1 p

2
i is called the Collision entropy.

Likewise, α = 0 case, i.e., H0(P ) = log | supp(P )| = log n
is known as the Hartley entropy.

The uncertainty of the adversary after observing the output

of the channel (on average) is measured by posterior entropy
or “equivocation”, which we denote by H[S|O]. For each

of the aforementioned entropies, a posterior entropy can be

defined in a meaningful way. For instance, the posterior 1-

guess-error-entropy can be simply defined as the average

failure rate of an adversary that makes a best guess about

the secret after seeing the observable. For a formal repre-

sentation, first let us define O+ to be the set of observ-

ables that have a strictly positive probability of realization

(given a channel δ). Note that, since supp(P S) = S , we

simply have: O+ = ∪s∈S supp(δ(s)). Using this notation,

we can write the following relation for the posterior en-

tropy with respect to 1-guess-error-probability: H(S|O) =∑
o∈O+ p(o)

(
1−‖P S|o‖∞

)
. Similarly, with respect to guess-

work, we can write:H(S|O) =
∑

o∈O+ p(o)
(∑n

i=1 ip([i]|o)
)
.

For Shannon entropy, we have: H(S|O) =
∑

o∈O+ =∑
o∈O+ p(o)

[−∑
s∈S p(s|o) log (p(s|o))

]
. For the Rényi

family, there are at least two different relations for the posterior

entropy in the literature (e.g. [24], [25]):

H[S|O] =
−1

α− 1
log

(∑
o∈O+

p(o)‖P S|o‖αα
)
; (2a)

H[S|O] =
−α
α− 1

log
(∑
o∈O+

p(o)‖P S|o‖α
)
. (2b)

As in the spirit of [16], we consider a generic conditional

entropy that encompass all of the aforementioned entropies.

In particular, it has the following structure:

H[S | O] = η
( ∑
o∈O+

p(o)F
(
P S|o

) )
, (3)

where η : R→ R function, and F is a bounded scalar function

on probability distributions with the following properties:

• symmetry, i.e., its value only depends on the shape of

a probability distribution and does not change with any

re-labelling of the probabilities;

• expansibility, i.e., its value does not change by padding

the probability distribution with zero entries; and

• non-decreasing in each element;
Moreover, one of the following two situations holds:2

η: increasing, and F : concave; or (4a)

η: decreasing, and F : convex. (4b)

Note that the form of the conditional entropy in (3) governs

the form of the unconditional entropy as well (e.g. by taking O
and S to be independent). Specifically, H[S] = η (F (P )). For
the rest of the paper, unless explicitly clarified, by “entropy”

we mean any member of the generic class described above.

Next, we show how this structure can encompass all of

the previous entropies as special cases. For instance, Shannon

2F (P ) is concave (resp. convex) in P iff: ∀λ ∈ [0, 1], P 1,P 2 ∈ ΔS,
we have: λF (P 1) + (1− λ)F (P 2) ≤ (resp. ≥) F (λP 1 + (1− λ)P 2).
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entropy can be represented by taking η to be the identity

function, i.e., η(x) = x, and F (P ) = −∑n
i=1 pi log(pi)

which is well known to be a symmetric concave function

over the space of probability distributions. Likewise, for l-
guess-error-probability as well as guesswork, η can be taken

as the identity function. For the conditional Rényi entropy

as per (2a), we can take η(x) = −1
α−1 log(x) on R

+ and

F (P ) = ‖P ‖αα =
∑n

i=1 p
α
i . For the conditional Rényi

entropy as in (2b), we can take η(x) = −α
α−1 log(x) on

R
+ and F (P ) = ‖P ‖α. For both cases, F is a symmetric

function that is non-decreasing in each element. Moreover,

when 0 ≤ α < 1, in both cases, η is increasing and F is

concave, and when α > 1, η is decreasing and F is convex.

As we argued before, the aim is to design channels that

have the lowest leakage of information about the secret while

satisfying a set of operational constraints, and the leakage

is defined as the difference between the posterior and prior

entropies. First point to note is that the choice of the channel

cannot change the prior entropy, as the prior entropy of the

secret is entirely governed by its prior distribution, which we

assume is a “given” parameter that the defender cannot control.

Therefore, the problem of minimizing the leakage becomes

equivalent to maximizing the posterior entropy (equivocation).

Before we express the general form of the optimal channel

design problem, we discuss an additional type of constraint

that may be relevant. There are many interesting cases where it

may be “feasible” to assign the same observable for all secrets,

but such a move may result in a huge deterioration in the

system’s quality of the service (QoS). In such cases, the goal

is to strike an optimal “balance” between information leakage

and QoS. This is for instance the setting in geo-location

privacy-utility trade-off [7]–[9] and secrecy-delay trade-off in

bucketing as a defence against timing attacks [2], [3].

In its most basic form, the QoS can be captured as an ex-

pected value of a “payoff” (desirability) function. In particular,

let u : S × O → R where u(s, o) represents how good the

realized observable is for a particular secret. Let ES,O[U ] be
the expected value of the pay-off, where the expectation is

taken with respect to the joint random variable of (S,O).
For conciseness, we drop the subscripts of S,O from the

expectation but in order to explicitly show the dependence

on the channel, we will use the notation of Eδ[U ]:

Eδ[U ] =
∑
s∈S

ps
∑
o∈O

δ(o|s)u(s, o) (5)

Eδ[U ] can be a metric for the QoS of the channel. The channel

design problem then becomes a “two-objective” optimization:

(a) minimizing leakage, and (b) maximizing the QoS. The so-

lution concept for multi-objective optimizations is of “Pareto-

efficiency” (Parto-optimality), which are the solutions with a

guarantee that no alternative can simultaneously improve all

of the objectives (at least one of them strictly). One of the

standard methods of converting a multi-objective optimization

(MOO) to (a series of) single-objective optimizations (SOO) is

to present all but one of the objectives as inequality constraints.

Specifically, we can introduce a lower threshold umin on the

QoS by imposing: Eδ[U ] ≥ umin. Then by varying the value of

umin and solving the resulting single-objective optimizations,

the Pareto-frontier (the set of Pareto-optimal solutions) will

be found (see e.g. [26]). Hence, with this in mind, for the

rest of the paper, we will be dealing with single-objective

optimizations. We will refer to the constraint of Eδ[U ] ≥ umin

as the “soft” constraint, since it is expressed in terms of the

expected-value, distinguishing it from the “hard” constraints

represented by Ω, which are per each realization of the secret.

Putting things together, the optimal channel design problem

in its most general form becomes:

max
δ ∈ R

|S||O|
: Hδ[S | O] = η

( ∑
o∈O+

p(o)F
(
P S|o

) )
, (6)

where p(o) =
∑

s′∈S ps′δ(o|s′) and P S|o is the |S|-sized
conditional probability vector whose entries are p(s | o) =
psδ(o|s)/(

∑
s′∈S ps′δ(o|s′)). The constraints of the optimiza-

tion are as follows:

δ(o|s) ≥ 0 ∀o ∈ O, s ∈ S (7a)∑
o∈O

δ(o|s) = 1 ∀s ∈ S (7b)

Eδ[U ] ≥ umin (7c)

δ(o|s) = 0 ∀(s, o) /∈ Ω (7d)

Before we get to our analysis, we present two minimalistic

examples to instantiate the constraints. We will return to these

examples in Sections IV, as they serve as a counter-example

for existence of a universally optimal channel. The first

toy example is motivated by geo-location privacy:3 Fig. 1

depicts 4 locations s1 to s4, where the configuration is a

representation of their relative positions. The defender is in

one of these 4 locations and generates an observable, which

can be its reported coordinates, based on which, it receives

a location-based service (LBS). Suppose in particular, that

s1 and s2 are near enough that the same observable can be

reported for both of them, but s1 is too far from s3 and s4
such that reporting the same coordinates with them is either

infeasible (e.g. it will then not get any network connectivity

from an access point) or it will be unacceptable (the quality

of the received utility will be too poor). Moreover, s2, s3
and s4 are close enough to produce the same observable. If

we label the observables simply by the subset of the secrets

that can produce them, then the set of admissible secret-

observable pairs, i.e., Ω, is
{
(s1, {s1}), (s2, {s2}), (s3, {s3}),

(s4, {s4}), (s1, {s1, s2}), (s2, {s1, s2}), (s2, {s2, s3}),
(s3, {s2, s3}), (s3, {s3, s4}), (s4, {s3, s4}), (s2, {s2, s3, s4}),
(s3, {s2, s3, s4}), (s4, {s2, s3, s4})

}
. This Ω determines

the hard constraints on the problem, e.g., we must have:

δ({s2, s3, s4}|s1) = 0 because (s1, {s2, s3, s4}) �∈ Ω.

As another example, consider a minimalistic bucketing

example depicted in Fig. 2. The axis denotes time duration, and

s1 to s4 represent the distinct execution times of four distinct

3Note that each of these contexts of course have their idiosyncrasies that
are abstracted away for the purpose of this paper.
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s1 s2

s3

s4

Fig. 1. (Toy example 1) The “secret” is one of the four possible locations
s1 to s4. s1 is located too far away from s3 and s4 for all of the secrets
to be able to produce the same observable. To avoid clutter, only two of the
feasible observables, {s1, s2} and {s2, s3, s4} are demarcated here.

(encryption or decryption) processes, i.e., process 1 takes s1
time to finish, and so on. If the result of each process is

released immediately upon finishing, then they can be uniquely

identified just by the timing “side channel”. The result of a

finished process can be deferred and released at a later time, to

become identical to other processes that take longer to finish.

This superset duration time constitutes a bucket. In the figure,

the arrows represent whether a secret can be deferred till the

finishing time of a longer processes. Specifically, suppose that

the delay limitation for processes 1 does not allow it to be

released as late as s3 or s4. Therefore, the hard constraints

can be identically represented as in the previous toy example.

Duration
0 s1 s2 s3 s4

Fig. 2. (Toy example 2) The “secrets” are one of the four processes each
with a distinct execution time s1 to s4. The arrows denote which process can
be deferred to be released at a later finishing time. For instance, process 2
can be either release instantaneously, i.e., at s2, or deferred until s3, or until
s4. In contrast, s1 cannot be deferred as late as s3 or s4.

Before we present our technical results, we would also like

to point out that all of our results naturally extend to the case

of generalized gain-based entropies defined in [16] as well:

Hg[S | O] = η

( ∑
o∈O+

p(o)‖GP S|o‖1F
(

GP S|o
‖GP S|o‖1

))

where G is a given |W| × |S| matrix with positive elements

where W is a bounded discrete set, and ‖ · ‖1 is the 1-norm
of a vector. When F is the ∞-norm, the interpretation of the

G(w, s) is that it is the gain of the adversary for choosing the

guess of w ∈ W when the actual secret is s ∈ S (this special

case is connected to g-leakage as described e.g. in [18]).

III. MINIMAL LEAKAGE IS CONVEX PROGRAMMING

Our first (and the most positive) proposition establishes that

for any choice of the entropy and payoff function, the problem

of finding an optimal channel is a “convex optimization” (a.k.a

“convex programming” [27], [28]). This is a useful result,

because convex optimizations have desirable characteristics,

e.g., many efficient algorithms for solving them exist (e.g.

interior methods [28]). Moreover, any local optimum has the

guarantee to also be a global optimum, so in particular any

“descent” algorithm will necessarily converge to a global

optimum. Additionally, in Proposition 2, we show that the

Karush-Kuhn-Tucker (KKT) conditions fully describe the op-

timal channel (represent necessary and sufficient conditions

of optimality). Later, in Section IV, we demonstrate how this

can be used to establish non-trivial properties of the optimal

channels. Keep in mind that in our analytical parts, we assume

that the (conditional) entropy follows the generic form of (3)

where η and F satisfy the conditions described after (3).

Proposition 1: The optimization problem of (6) with con-

straints (7) for any choice of the pay-off and entropy functions

is a convex programming.4

Proof: First thing to note is that η from (6) can be simply

ignored for both cases, since it is a monotonic R → R

function. Now, suppose we are dealing with case-4a (the

argument for case-4b is identical). Our optimization variable

is δ ∈ R
|S||O|. In particular, consider it as a |S||O| × 1

vector. All we need to show is that: (a) the constraints of the

optimization define a convex subset of R
|S||O|; and (b) the

objective function of the maximization is concave in δ.

Establishing (a) is simple: the constraints (7a), (7b) and

(7d) trivially define a convex subset. The (7c), as is evident

from (5), is also a linear transformation of δ – where the

coefficient of δ(o|s) is psu(s, o). Hence, the constraints of the

problem define a convex subset of R|S||O|. In fact, they define

a bounded polyhedron, as the feasible set is the intersection

of half-spaces and it does not contain a whole line.

We establish part (b) by writing the objective function as

a composition of a series of transformation each of which

preserves convexity/concavity. First, note that the expression

for the objective function in (6) (ignoring η) in terms of δ is:

∑
o∈O+

p(o)F
(
P S|o

)
=

∑
o∈O+

[ ∑
s′∈S

ps′δ(o|s′)
]
F

(
(psδ(o|s))s∈S∑
s′∈S ps′δ(o|s′)

)

where (psδ(o|s))s∈S represent the |S|-sized vector, whose

entries are psδ(o|s). It is sufficient to show that each term

of the (outside) summation is a convex function in δ. Without

loss of generality, we show this for o1 ∈ O+:5

• Affine transformation 1: h1 : R|S||O| → R
|S|, as h1(�y) =

A�y, where A is a |S| × |S||O| matrix whose entries are

as follows: A(i, i) = psi for i = 1, . . . , |S|, and zero

otherwise; Affine transformation is both a convex and a

concave function; The result of Aδ is the |S| × 1 vector

of (psδ(o1|s))s∈S .
• Composition with the concave function F . Recall that

by assumption F is non-decreasing in each element and

4Both minimizing a convex function and maximizing a concave function,
over a convex set, are instances of “convex” programming.

5Note that since F is bounded, we have: limp(o)→0 p(o)F (P S|o) = 0,
and hence we can only focus on o ∈ O+.
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concave over probability distributions (case-4a). Compo-

sition of a concave function that is non-decreasing in

each element with a concave function yields a concave

function [27, Page 86].

• Affine transformation 2: consider the transformation h2 :
R
|S| →: R

|S|+1 as follows: h2(y) = (�y, ‖�y‖1). Note

that ‖�y‖1 is an linear transformation (simply, sum of

its elements). The h2 transformation is equivalent to

multiplication by the (|S|+ 1)× |S| matrix B, which is

composed of the |S| × |S| identity matrix with an extra

bottom row of “all ones”.

• Perspective: consider the perspective transformation h3 :
R
|S|+1 → R

|S| as follows: h3(y, t) = tF (y/t). Then, if
F is concave, so is h3 [27, Chapter 3.2.6].

Composition of these together gives us the first term of the

expression, establishing the proposition.

As mentioned before, a fundamental property of convex

optimizations is that any local optimum is a global optimum.

In what follows, we establish another important property

of the optimal channel design problems: that the Karush-

Kuhn-Tucker (KKT) conditions provide both necessary and

sufficient conditions for optimality. We will showcase the use

of such conditions in Section IV, where we prove existence of

universal optimal channels for a special class of constraints.

For an overview of the Lagrangian duality and KKT conditions

the reader can consult with the rich literature on convex

programming such as [27, Ch.5] and [29, Ch.28].

Proposition 2: KKT conditions are necessary and sufficient

for finding the optimal channel design, described by (6), (7).

Proof: We start by noticing that in the most basic form,

KKT conditions are expressed for cases where the function in

the objective and constraints are “continuously differentiable”,

whereas some of our convex objective functions (e.g. in the

case of min-entropy or guesswork) are piecewise linear. There

is however a simple and standard translation from piecewise-

linear convex functions into continuously differentiable func-

tions by forming the epigraph problem [27, §5.2.5].

The proof is straightforward: all of our constraints (7) are

affine hence the KKT conditions are necessary – this is known

as “Linearity Constraint Qualification” (LCQ). Moreover,

since we showed that these problems are convex optimizations,

the KKT conditions are also sufficient [27, §5.5.3].

The “Lagrangian” for the problem of (6) with constraints

(7), denote by L is:

L =
∑
o

[∑
s′

ps′δ(o|s′)
]
F

(
(psδ(o|s))s∈S∑

s′ ps′δ(o|s′)
)
+

∑
s,o

λs
oδ(o|s) +

∑
s

μs(
∑
o

δ(o|s)− 1)+

ρ(
∑
s,o

psδ(o|s)u(s, o)− umin) +
∑

(s,o) �∈Ω
γs
oδ(o|s) (8)

where the multipliers μ, γ are from the equality constraints

(7b) and (7d), and are therefore free (no sign constraint),

whereas the multipliers λ, ρ pertain to inequalities (7a) and

(7c), and are hence required to be positive (dual feasibility).

The optimization problem then becomes equivalent to solv-

ing the following KKT conditions:

1) Vanishing first order derivatives of L with respect to each

of the optimization variables δ(o|s), that is, ∇L = �0
(where ∇ is the gradient with respect to the (primal)

variables δ(o|s)). That is, for each δ(o|s): ∂L
∂δ(o|s) = 0;

2) Primal feasibility: constraints (7a)–(7d);

3) Dual feasibility:λs
o ≥ 0, ∀s, o, and ρ ≥ 0;

4) Complementary slackness: ∀s, o λs
oδ(o|s) = 0 and

ρ(
∑

s,o psδ(o|s)u(s, o)− umin) = 0.

IV. UNIVERSALITY (MEASURE-INVARIANCE) RESULTS

Although Proposition 1 holds for any choice of the entropy

and utility, it is a much weaker statement than the notion

of universality as measure-invariance optimality described in

[16]. In particular, they showed that for a special choice of

the constraints, there is a “universally optimal” randomized

channel, in the sense that, there exists a channel that is leakage-

optimal irrespective of the choice of the entropy. That is, all

of the optimizations share a common optimizer.

A. Universal (Measure-Invariant) Optimality

Here, we give an overview of the main results on universal

(measure-invariant) optimality proved in [16]. Informally, the

the result says that if the only constraint on the channel is that

at most k < |S| of secrets can produce the same observable,

then it is possible to design a channel which is universally

optimal. The design constraint can be expressed as follows:

the size of the pre-image of any observable must be at most

k. To design such channel one starts by sorting the prior in

descending order, and identifying an index j∗, which is the

index of the first “non-giant” secret, that is, the last secret with

a “too large” probability compared to the remaining secrets.

This way, the first j∗ − 1 secrets will constitute the “giants”.

More formally given a prior P = (p1, . . . , pn), sorted in

descending order and an integer k < n, let index j∗ be:

j∗ := min

{
j : 1 ≤ j ≤ k, pj ≤

∑n
i=j pi

k − j + 1

}
. (9)

With j∗ defined as above, let �π denote the following proba-

bility distribution over k elements:

�π :=
(
p1, . . . , pj∗−1,

∑n
i=j∗ pi

k − j∗ + 1
, . . . ,

∑n
i=j∗ pi

k − j∗ + 1

)
(10)

i.e. �π is a k-sized probability distribution whose first j∗ − 1
probabilities are the first j∗ − 1 probabilities of the prior (the

“giants”), and the remaining probabilities are mashed together

and spread “uniformly”. The universal optimality result in [16]

(re-phrased) is the following:

Theorem 1: Consider channels form secrets with a given

prior P = (p1, . . . , pn) to a set of observables, that satisfy

the constraint that at most k secrets can produce the same ob-

servable, i.e., that the size of the pre-image of any observable

is at most k, where k < n. Let �π be defined as in (10). Then

the maximum posterior entropy achieved by any such channel

is H(�π) for any Schur-concave choice of entropy function H .
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Moreover, if the only design constraint is the pre-image size

constraint, then there exists a channel that achieves a posterior

entropy exactly equal to H(�π) for any Schur-concave H , and

is hence universally (measure-invariantly) optimal.
Notice that �π is independent from the choice of the entropy

H . Recall that since the prior distribution cannot be changed

in this setting, the posterior-entropy maximizing channel in

the theorem is also (measure-invariantly) leakage-optimal. The

proof in [16] is constructive, in that it provides the optimal

channel explicitly. The construction is non-trivial and is left

out for brevity. We just mention that the optimal channel is

constructed such as to guarantee that for any observable, the

posterior (Bayesian) probability over the secrets is exactly �π.
For both of our toy examples in Figures 1 and 2, only the

first part of the theorem can be applied, i.e., the upper-bound

of the posterior entropy with k = 3. The second part of the

Theorem does not apply, because the design constraints in

nether of the toy examples can be reduced to just a pre-image

size constraint. Specifically, in both examples, there is only

one allowed pre-image of size 3, while all subset of size 3

of the four secrets should be allowed as a pre-image. Thus,

existence of a measure-invariant channel is not guaranteed.
The positive results in [16] raise a fundamental question:

does this strong notion of universality hold in general? Next,

as one of the main contributions of this paper, we settle this

question through a counter-example.
Proposition 3: In general, there is no universally optimal

channel, i.e., for a given prior and a set of design constraints,

there is no channel that minimizes the leakage for any choice

of how the leakage is measured.
In other words, in general, the problem of designing a

leakage minimal channel is sensitive to the choice of entropy,

i.e., the way leakage is quantified.
Proof: Consider the following example: There are 4 se-

crets: S = {1, 2, 3, 4} with prior P = (p1, p2, p3, p4). The set

of observables (outputs) is {a, b}. The set of feasible observ-

ables is defined by Ω = {(1, a), (2, a), (2, b), (3, b), (4, b)}.
That is, for secret 1, the only possible observable to show is

a, for secret 2, both a and b are allowed, and for secrets 3 and

4, the only allowed observable is b. There is no soft utility

constraint. Following the admissible observables for secrets

1, 3 and 4, we have: δ(b|1) = δ(a|3) = δ(a|4) = 0, and

therefore: δ(a|1) = δ(b|3) = δ(b|4) = 1. For secret 2, δ(a|2)
and δ(b|2) are free, as long as they are positive and add up to 1.
Therefore, δ(a|2) is the only variable of optimization. We will

therefore introduce the variable x defined as x := p2δ(b|2).
The probability that a is observed is: p(a) =

∑4
i=1 piδ(a|i),

which, following the previous argument, will reduce to: p1 +
p2 − x. Similarly, p(b) = x+ p3 + p4. Hence, the problem of

maximizing posterior entropy reduces to the following single-

variable optimization:

Maximize:(p1 + p2 − x)F ((
p1

p1 + p2 − x
,

p2 − x

p1 + p2 − x
))

(x+ p3 + p4)F ((
x

x+ p3 + p4
,

p3
x+ p3 + p4

,
p4

x+ p3 + p4
))

subject to: 0 ≤ x ≤ p2

For any (differentiable) choice of F , in the light of Propo-

sition 1, we can find the optimal solution by simply taking

the derivative of the objective function with respect to x and

equating it with zero. For the choice of F as per Shannon,

the optimizer is derived as: xSh =
p2(1− p1 − p2)

1− p2
And for

Rényi family with α = 2 – i.e., the collision entropy and the

form of the Rényi conditional entropy as in (2a), it is:

xR2 =
#

p3(p1 + p2 − 1) + (p2 − 1)(2p1 + p2 − 1) + p23
+ p2

# = p1
(
p1(2p2 + p3 − 1) + (p2 − 1)p3 + (p2 − 1)2 + p23

)
−
√

p21 (p3(p1 + p2 − 1) + (p1 + p2 − 1)2 + p23)

These two evaluate to different values for instance for the prior

of (0.2, 0.5, 0.15, 0.15). Specifically, xSh = 0.3 and xR2 =
0.265 (up to 3 digits). Figure 3 depicts the objective function

(posterior entropy) v.s. x for these two and some other choices

of the entropy function. The optimizer clearly varies with the

choice of F .

Fig. 3. Posterior entropy v.s. x for different choices of the entropy function
for the negative counter-example. The maximizer is for guesswork entropy
0.1518, for Rényi with α = 2 is 0.2573 , for Shannon entropy is 0.2998 and
for half-norm is 0.37493

The constraint in [16] that lead to universal optimality was

a cap on the size of the pre-images of the observables. This

constraints allows for a level of symmetric flexibility, e.g., any
pair of secrets can be conflated with each other, something

that our counter-examples do not allow. This leads to another

basic question: is the setting in [16] necessary for existence

of a universal solution? In what follows, we describe a class

of problems beyond the pre-image size-constraint of [16] and

establish that they still admit a universally optimal channel.

Consider an instance of our optimal channel design prob-

lem where the design constraints are expressed as a (non-

directional) graph, where the nodes of the graph are the

secrets, and the edges represent the observables. The two ends

of an edge determine the two secrets that can produce that
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observable. One can also assume that each node has a “self-

loop” as well, in that, for each secret, there is always a choice

of producing a fully revealing observable. This setting means

that only (specific) “pairs” of secrets can conflate with each

other. Note that this is not a case of [16] with a pre-image size

of 2, since, unlike there, not all pairs of secrets are permissible.

For instance, if there are 4 secrets {1, 2, 3, 4}, the setting in

[16] with cap-size 2 required that all edges 1 ↔ 2, 1 ↔ 3,
1 ↔ 4, 2 ↔ 3, 2 ↔ 4, and 3 ↔ 4 (besides the self-loops)

should be present, in contrast, we can now have an arbitrary
subset of these be allowed, for example 1↔ 2, 2↔ 3, 2↔ 4,
and 3 ↔ 4 (besides the self-loops). Critically, “symmetry” is

now broken. We will refer to this class of optimal channel

design problems, where there is no soft constraint, and the

hard constraints are expressible by such a graph, as graph-
constrained. Note that in the absence of a soft constraint, and

the assumption that a fully-revealing observable for each secret

is always possible, the problem is always “feasible”.

In our general optimal channel design problem in Section II,

we designated the set of admissible secret-observable pairs by

Ω. Let us translate the above graph-based representation of the

constraints with respect to Ω. For an observable o ∈ O, let

the notation o−1 represent the set of secrets that are allowed

to produce o, that is, o−1 := {s ∈ S, (s, o) ∈ Ω}. Then our

positive result applies to any case where ∀o ∈ O, we have:

|o−1| ≤ 2.

Proposition 4: Any “graph-constrained” optimal channel

design problem admits a universally optimal solution.

Proof: We present the proof in the following steps: First,

we take the entropy to be the special case of Shannon, and

investigate its optimal solution (whose existence is guaran-

teed). In particular, we investigate its KKT conditions as

“necessary” conditions of optimality. Next, we show that these

KKT conditions are sufficient to satisfy the KKT conditions

of any other entropy as well. By the “sufficiency” of KKT,

this establishes that a Shannon-optimal channel is also optimal

for any choice of entropy as well. Keep in mind that in

Proposition 2, we showed that the KKT conditions are both

necessary and sufficient for optimality of a channel.

Let us start with the first-order conditions of KKT. Taking

the partial derivative of the Lagrangian in (8) with respect

to δ(o1|s1) for a (s1, o1) ∈ Ω, after removing the cancelling

terms, and equating the result to zero, yields the following:

−ps1 log(
ps1δ(o1|s1)∑
s′ ps′δ(o1|s′)

) + μs1 + λs1
o1 = 0 (11)

which can be written simply as −ps1 log(p(s1|o1)) + μs1 +
λs1
o1 = 0. Also, the complementary slackness condition states

that λs
oδ(o|s) = 0 ∀s ∈ S, o ∈ O. This in turn implies that,

if for a (s1, o1) ∈ Ω, we have δ(o1|s1) > 0, i.e., the channel

assigns a strictly positive probability to observable o1 when the

secret is s1, then we must necessarily have λs1
o1 = 0. Therefore,

for such (s1, o1), the first order condition further simplifies to:

−ps1 log(p(s1|o1)) + μs1 = 0

In particular, if there are o1, o2 ∈ O for which both δ(o1|s1) >
0 and δ(o2|s1) > 0 (same s1), we must have: log(p(s1|o1)) =
log(p(s1|o2)) = μs1/ps1 . Since log(x), x > 0, is a strictly

increasing function, the above equality is satisfied only when:

p(s1|o1) = p(s1|o2).
and since the support of the posterior entropies is at most 2,

this further implies that P S|o1 = P S|o2 .
Now, consider any other entropy. That is, in the Lagrangian

(8), F is a generic concave symmetric function. Keep the same

optimal channel δ, and the same Lagrange multipliers λs
o and

γs
o (s ∈ S, o ∈ O) as per Shannon’s (that is, take all of the

Lagrange multipliers except for μs, s ∈ S) but potentially

different values for μs (which we designate by μ′s). The primal

feasibility is still satisfied for the new entropy, as the choice

of entropy does not affect feasibility of the channel. The dual

feasibility as well as complementary slackness constraints are

also satisfied, as the same λs
o and δ(o|s) are carried forward.

Hence, the only condition that we need to investigate is the

vanishing of the first-order derivatives. In particular, we need

to see whether whenever δs1o1 > 0, we can have: ∂L/∂δs1o1 +
μ′s1 = 0. Note that:

∂L

∂δs1o1
= p(s1)

[
F (P S|o1) + F1(P S|o1)(1− p(s1|o1))

−
∑
i�=1

Fi(P S|o1)p(si|o1)
]

where Fi is the partial derivative of F with respect to its i’th
element. If we define ϕ(P S|o1) := F (P S|o1)+F1(P S|o1)(1−
p(s1|o1))−

∑
i�=1 Fi(P S|o1)p(si|o1), then the first order con-

dition can be simply written as p(s1)ϕ(P S|o1) + μ′s1 = 0.
Recall that there is no constraint (e.g. dual feasibility or

complementary slackness) on μ′s (it is a “free” variable).

Taking μ′s1 = −p(s1)ϕ(P S|o1) will satisfy the first-order-

condition for F for channel δ, since δ satisfies P S|o1 = P S|o2
for all o2 such that δ(o2|s1) > 0, and hence, p(s1)ϕ(P S|o1) =
p(s1)ϕ(P S|o2), and therefore, the same μ′s1 will satisfy the

first order condition with respect to δ(o2|s1) as well. Putting

things together, we have found Lagrange multipliers that

satisfy the KKT conditions corresponding to F , for the optimal

channel corresponding to Shannon, hence, the optimal channel

with respect to Shannon is also optimal for F as well (thanks

to “sufficiency” of KKT).

V. UNCERTAINTY ABOUT THE PRIOR

So far, we assumed the adversary knows the exact prior

distribution of the secret. But this may be an unrealistic

assumption for some settings. Here, we analyze the setting

where the adversary does not know the exact distribution of

the prior, but knows that the prior distribution can be one

of a number of possibilities, each happening with a known

probability (a distribution over distributions6).

6The adversary’s uncertainty should not be seen here as a subjective belief
but as a genuine reflection about the possible state of the system.
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At a high level, the main result of this section is the follow-

ing: the best strategy for the defender is not to “customize” its

strategy with respect to the context depending on the particular

prior given each context, but instead, to build an “averaged

prior”, and design the best strategy over this averaged prior

and play it irrespective of the contexts. In particular, whenever

the constraints are “full cloaking” constraints as in [16], then

there exists a universally optimal strategy δ̄.
This result may not be immediately intuitive, as there can

be a counter-argument as follows: Among the available priors

(conditional probability of the secret given the contexts), there

are some particularly “good” ones, in the sense that they are

very conducive to hide the secret (e.g. they are very close to

uniform in a symmetric constraint setting). Then shouldn’t we

adopt the optimal channel for such priors in those contexts,

specially, if they have a high probability weight of occurrence?

Our result refutes this intuitive argument.

To formalize the setting: the adversary’s uncertainty can

be modelled by introducing the “hidden” (discrete) random

variable for the context, C, that is jointly distributed with

the secret. The space of the context is C = {c1, . . . , c|C|}.
Without loss of generality, we assume that the context has full

support. The channel designer (the defender), knows the true

distribution of the secret. Technically speaking, it “observes”

the realization of the context. The adversary, on the other

hand, does not directly observe the context, but knows the

probability of the realization of each context, PC , as well as

the (conditional) probability distribution of the secret given

each context, P S|C . Note that knowledge of PC and P S|C
is equivalent to the knowledge of the “joint” probability

distribution of the context and the secret P S,C .

The adversary only sees the observables and wants to

“infer” about the underlying secret. As before, let O denote

the (discrete) random variable representing the observable

(output). In worst case, one can assume that the adversary

knows PO|S,C , and hence, using his knowledge of P S,C can

use the Bayes’ rule to update his best belief about the secret

after observing O, i.e., constructing his posterior:

p(s | o) = p(s, o)

p(o)
=

∑
c∈C p(c)p(s|c)p(o|s, c)∑

s′∈S
∑

c∈C p(c)p(s′|c)p(o|s′, c)
Note that the defender is not directly interested in not

leaking information about the context and only cares about

the secret, but should be wary of how the adversary can use

his information about the joint distribution of the context and

secret to intuit about the secret based on the observation. Also,

for clarity, we repeat that the adversary does not “observe” the

context nor the secret.7

The defender decides what observable to produce per each

secret in each context, potentially using randomization and

benefit from the ambiguity that it can inject. As before, the

strategy has to satisfy some operational constraints. We may

have hard constraints prescribing which secrets can produce

7For the scenario where the adversary can directly observe the context,
the problem will reduce to designing |C| optimal channels according to
optimizations as in (6) and (7) with priors P S|c for each c ∈ C.

which observables, which in part determine which subsets

of secrets can be conflated with each other. In the previous

sections, we expressed these “hard” operational constraints

through Ω ⊆ S×O, representing the set of permissible secret-

observable pairs. In the presence of contexts, in the most

general form, the permissible observables for a secret may

depend on the context as well, and hence Ω should be now a

subset of S × C × O. However, for the result of this section,

we assume that these constraints are context-independent, i.e.,

the same subset of observables is permissible for a secret

irrespective of the context, and hence, we keep Ω to be a

subset of S ×O.

Likewise, there can be soft operational constraints in the

form of satisfying a minimum expected utility, as in (7c). The

expectation is now taken with respect to the context as well,

that is, we must have: ES,C,O[U ] ≥ umin. However, for the

result of this section, we assume that the payoff function, i.e.,

the measure of “goodness” of each observable for each secret,

does not depend on the context. Hence (compare with (5)):

Eδ[U ] =
∑
s,c,o

p(s, c)δ(o|s, c)u(s, o)

As before, without loss of generality, assume that we are

dealing with case (4a) where F is concave and η is increasing.

Also note that, again, the choice of the strategy cannot affect

the prior entropy of the secret. Hence, the problem of design-

ing for minimum leakage is again equivalent to maximizing

the posterior entropy. Ignoring η, since it is just an increasing

scalar function, the posterior maximization objective in (6) can

hence be written as:∑
o

p(o)F (P S|o)

=
∑
o

(∑
s,c

p(s, c)δ(o|s, c)
)
F
(∑

c

(
p(s, c)δ(o|s, c)

)
s∈S∑

s,c
p(s, c)δ(o|s, c)

)
(12)

where by
(
p(s, c)δ(o|s, c))

s∈S we mean the |S|-sized vector

whose entry for s ∈ S is p(s, c)δ(o|s, c). The constraint of the

optimization are (compare with (7)):

δ(o|s, c) ≥ 0 ∀o ∈ O, (s, c) ∈ S × C (13a)∑
o∈O

δ(o|s, c) = 1 ∀(s, c) ∈ S × C (13b)

ES,C,O[U ] ≥ umin (13c)

δ(o|s, c) = 0 ∀(s, o) /∈ Ω (13d)

Given any “context-dependent” strategy δ, we define a

corresponding “context-independent” strategy δ̄ as follows:

δ̄(o|s) =
∑
c

p(c|s)δ(o|s, c) (14)

To be precise, the strategy is δ̃ such that for any c′ ∈ C,
δ̃(o|s, c′) = δ̄(o|s), i.e., δ̃ represents playing the same ran-

domized strategy of δ̄ irrespective of the context. This context-

free strategy is a mixing of the context-dependent strategies
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with weights equal to conditional probability of the context

given the secret. In other words, δ̃ “marginalizes away” the

dependence of δ on the context.8

First, we show that δ̃ is itself a legitimate strategy:

1) δ̃(o|s, c) ≥ 0: trivially (product of non negative terms);

2) ∀(s, c) ∈ S × C :
∑

o∈O δ̃(o|s, c) = 1; This is because:

∑
o

δ̃(o|s, c) =
∑
o

∑
c′

p(c′|s)δ(o|s, c′)

=
∑
c′

p(c′|s)
∑
o

δ(o|s, c′) =
∑
c′

p(c′|s) = 1

where we first exchanged the order of the summations,

and then respectively used the facts that δ(o|s, c′) and

p(c′|s) are conditional distributions.

3) We show that Eδ̃[U ] = Eδ[U ], and hence Eδ[U ] ≥ umin

would imply Eδ̃[U ] ≥ umin. For this purpose, we estab-

lish the following lemma, which we will user later:

Lemma 1: δ and δ̃ induce the same (joint) distribution on

(S,O). That is: pδ(s, o) = pδ̃(s, o) ∀s ∈ S , ∀o ∈ O.

Proof: We have:

pδ(s, o) =
∑
c

p(c|s)δ(o|s, c) = δ̄(o|s)

= δ̄(o|s)
∑
c

p(c|s) =
∑
c

p(c|s)δ̃(o|s, c) = pδ̃(s, o)

Now, Eδ̃[U ] = Eδ[U ] follows as a simple corollary:

Eδ(U) = Eδ(Eδ(U |S,O)) = Eδ(Eδ̃(U |S,O))

= Eδ̃(Eδ̃(U |S,O)) = Eδ̃(U)

The second equality holds because U is invariant with

respect to C, and the third equality is due to Lemma 1.

The first and last equality is simply the total expectation.

4) δ̃(o|s, c) = 0 ∀(o, s) /∈ Ωs, trivially. Note that we the

assumption that the cloaking constraints do not depend

on the context, and only on the secret.

Next, we show that replacing any context dependent strategy

with its context-independent would lead to same leakage

(irrespective of the choice of the entropy).

Proposition 5: For any given strategy δ, we have:

Hδ(S|O) = Hδ̃(S|O).

Proof: This is a direct consequence of Lemma 1, once

we notice that H(S|O) is totally determined by P S,O.

Our main result of this section:

Proposition 6: The optimization in (12) subject to con-

straints in (13) can be simplified to the following:

Maximize: η
( ∑
o∈O+

p(o)F
(
P S|o

) )
, δ̄ ∈ R

|S||O| (15)

8Note that we cannot marginalize away the dependence on the secret be-
cause of the secret-dependent constraints. These secret dependent constraints
are exactly why the trivial solutions like δ(o | s, c) = cte. are not acceptable.

Fig. 4. Comparing the Shannon’s posterior entropy between the optimal
design as per Proposition 6 and the heuristic best alternative, where the best
channel for each prior is designed and played according to the context. The pri-
ors are: P1 = (1/3, 1/3, 1/3) (the “good” prior) and P2 = (0.8, 0.15, 0.05)
(the “bad” prior). The x-axis is the probability (weight) of P1. As we can
see, except trivially for the two end-points, the optimal strictly outperforms
this “best” heuristic. The cloak size is 2.

where p(o) =
∑

s p(s)δ̄(o|s) and p(s|o) =
p(s)δ̄(o|s)/(∑s′ p(s

′)δ̄(o|s′)). The new constraints are:

δ̄(o|s) ≥ 0 ∀o ∈ O, s ∈ S (16a)∑
o∈O

δ̄(o|s) = 1 ∀s ∈ S (16b)

Eδ̄[U ] ≥ umin (16c)

δ̄(o|s) = 0 ∀(s, o) /∈ Ω (16d)

Notice that by proposition 6 the optimization problem over

a set of priors reduces to an optimization over a single prior,

hence whenever the constraints are “full cloaking” constraints

then Algorithm 1 from [16] provides a universal optimizer for

this uncertainty setting.

Discussion: As we mentioned in the beginning of this

section, an alternative heuristic is to play the best channel per

each context. One can argue that if the “good” priors that lead

to a particularly strong channel have a high probability, it may

be better to play this heuristic. However, as we established

in proposition 6, this heuristic is wrong. For a numerical

depiction, in Fig 4, we have plotted the posterior entropy

that is achieved by the optimal strategy δ̄ per proposition 6

against this heuristic strategy of playing the best channel per

each prior. As we can see, for any weight of the two priors

(except trivially when the weight is either 0 or 1 where the

two strategies become the same), the δ̄ strictly outperforms

the heuristic strategy.

VI. CASE STUDY: OPTIMAL DEFENCE AGAINST TIMING

LEAKAGE

As we mention in the introduction, there are many settings

in which, an adversary can gain unintended information just

by observing the execution time of a process. This is e.g. one
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of the side-channel sources considered in [30], [31] where

they show secrets like the illnesses, medications or surgeries

of the user in healthcare context, her family income and

investments in the context of taxation can be revealed by

analysing encrypted traffic despite the HTTPS protection. This

section explores an application of our framework in the context

of defence against timing as side channel leakage.

The timing leakage can be completely eliminated by de-

laying release of computation results to the maximal possible

computation time for that set of possible computations. That is,

if all computations take the same time (as the maximum pos-

sible time), then the attacker cannot make any time inference

on which computation took place. Delaying all computations

to this extreme upper bound may however be practically

undesirable, as the performance degradation can be too high.

To combat this delay overhead, inspired by the “bucketing”

scheme in cryptography [2], [3], [22], [23], several interme-

diate epochs between the minimum and the maximum com-

putation time can be considered. Each of these intermediate

epochs will represent a “bucket”. Each computation can be

then delayed up to a later epoch before being released. A

simple argument can be made that the release epochs (buckets)

should be chosen among the computation times, as there is

no point in having a release epoch that falls in between two

consecutive computation times (the slower ones cannot be

part of the bucket, and the faster ones should not be delayed

pointlessly). However, the choice of the number of buckets,

their epochs, and process-bucket assignments are non-trivial.

Trade-offs between number of buckets and performance for

a cryptographic system with deterministic timing behaviour

have been formally investigated by Köpf and Dürmuth in [2].

In particular, they show that in the context of RSA, using

five buckets, it is still possible to have a minimal penalty

in performance (less than 1% time delay) while significantly

weakening timing-channel information leakage.

Here, we consider a different (simpler) setup: while in [2]

the secret is the cryptographic key which has correlation with

the processing time, we consider the (un-delayed) finishing

time itself to be the secret. In other words, we would like

to hide from the adversary which process has taken place.

We formulate our “randomized bucketing” to give the opti-

mal trade-off between leakage and delay. We compare our

randomized bucketing with a heuristic scheme, which we

call “deterministic bucketing”, where each process is delayed

up to its nearest available release time (bucket), where the

number of buckets and their epochs are optimized. Note that

our “randomized bucketing” offers more degrees of freedom

compared to “deterministic bucketing” in that the release times

of a process can be any of the future epochs according to

the probability distribution that we design. In particular, any

deterministic bucketing scheme is a special case of randomized

bucketing too: one in which the entire probability is put on

the next immediate available epoch.

In the formal analysis below, leakage will be measured in

term of min-entropy, i.e. in terms of the probability of correctly

guessing the secret in one try. Both bucketing strategies will

be analysed as optimization problems, in particular as multi-

objective optimizations aiming at minimizing both leakage

and delay overhead. The problem is set in general terms, in

particular the optimal number of buckets and their locations

are determined by the optimization itself.
Let us denote the probability that the bucketing strategy

sends secret i to bucket j by δ(j|i). We have given our

randomized bucketing as a Linear-Programming in Fig 5. The

objective is to minimize:

N∑
j=1

pj max
i≤j≤N

piδ(j|i)/pj =
N∑
j=1

max
i≤j≤N

piδ(j|i)

(this is expressed by combining
∑N

j=1 zj and zj ≥
piδ(j|i), i ≤ j, j ≤ N in Fig 5). For each

bucket j, maxi≤j≤N piδ(j|i)/pj is the highest probabil-

ity of guessing the secret under δ, hence minimizing∑N
j=1 maxi≤j≤N piδ(j|i) is minimizing the expected prob-

ability of guessing the secret (in one guess) given the strategy

δ. The second objective, i.e. for δ to minimize delay, is given

by the constraint
∑N

j=1

∑j
i=1 piδ(j|i)(Tj−Ti) ≤ ε. The term∑N

j=1

∑j
i=1 piδ(j|i)(Tj − Ti) is the expected delay, summed

over each bucket (inner summation) and over all buckets (outer

summation). This expected delay is imposed to be below ε. As

ε varies the optimization solutions will build the Pareto front.
Our implementation of the optimization of the deterministic

bucketing is presented in Fig 6 as a linear integer program-

ming. Here, as the strategy is deterministic, it can only take

values 0 or 1, hence the constraints δ(j|i) ∈ {0, 1} for

i ≤ j ≤ N . The constraint that each secret is mapped to its

closest bucket is enforced by δ(j|k) ≥ δ(j|i), i ≤ k ≤ j ≤ N .

To see this, suppose δ(j|i) = 1, i.e., the strategy assigns i to

bucket j. Then the constraint requires any secret k between i
and j to satisfy δ(j|k) = 1, i.e., k must be assigned to bucket

j too. Finally the expression of the minimum delay constraint

is the same as in randomized bucketing.
As we mentioned, a deterministic bucketing strategy is

also a randomized bucketing strategy, hence a solution to the

randomized bucketing optimization will always outperform

a solution of the standard bucketing optimization under the

same delay constraints. What is remarkable is that the gain

in performance can be significant. For instance, randomized

bucketing can achieve zero min-entropy leakage under the

same delay constraints whereas deterministic bucketing can-

not. We will illustrate this through a toy example. Suppose

there are three secrets {0, 1, 2} with the prior (1/2, 1/3, 1/6)
and execution times 1, 2, 3. The Pareto-front solutions from

the two optimizations are depicted in Fig 7. In particular, the

following randomized bucketing strategy δ achieves zero (min-

entropy) leakage:

δ(1|0) = 2

3
, δ(2|0) = 1

3
, δ(1|1) = 1, δ(2|2) = 1

In fact by using Bayes’ rule the posterior is the following

p(0|1) =
1
2 · 23

1
2 · 23 + 1

3 · 1
=

1

2
= p(1|1)
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p(0|2) =
1
2 · 13

1
2 · 13 + 1

6 · 1
=

1

2
= p(2|2)

Therefore, the adversary would have guessed the secret in one

try with the same probability of success using the prior or the

posterior, i.e., there is no min-entropy leakage.

The delay induced by δ is 1
2 · 23 + 1

2 ·2 · 13 = 2
3 . However the

delay at which deterministic bucketing achieve zero leakage is

2 · 12 + 1
3 = 4

3 , which is the trivial solution of having a single

bucket at the maximum time. Both of these points are visible

in Fig 7 (where each Pareto-front touches the x-axis).

Min:

N∑
j=1

zj

s. t.: δ(j|i) ≥ 0, i ≤ j, j ≤ N
N∑
j=1

δ(j|i) = 1, i ≤ N

zj ≥ piδ(j|i) i ≤ j, j ≤ N

N∑
j=1

j∑
i=1

piδ(j|i)(Tj − Ti) ≤ ε

Fig. 5. Optimization for randomized bucketing (LP)

Min:

N∑
j=1

zj

s. t.: δ(j|i) ∈ {0, 1}, i ≤ j, j ≤ N
N∑
j=1

δ(j|i) = 1, i ≤ N

δ(j|k) ≥ δ(j|i) i ≤ j, j ≤ N

i ≤ k ≤ j

zj ≥ piδ(j|i) i ≤ j, j ≤ N

N∑
j=1

j∑
i=1

piδ(j|i)(Tj − Ti) ≤ ε

Fig. 6. Optimization for Standard bucketing (ILP).

VII. CONCLUSIONS AND FUTURE WORK

We have presented some new advances in designing robust

minimal leakage channels. We established the existence of

universally optimal channels for a new class of constraints.

The question of the extent of existence of universal (measure-

invariant) optimality is still an open problem. We expect more

Fig. 7. Comparison between deterministic bucketing (dashed line) and ran-
domized bucketing. The randomized bucketing outperforms the deterministic
bucketing with respect to both of the (leakage/utility) objectives. Notably,
randomized bucketing can achieve zero min-entropy leakage non-trivially
(with average delay of 2/3) as opposed to the trivial solution of deterministic
bucketing of having a single bucket at the end (average delay of 4/3).

generalized classes of channel design problems that admit

a universal (measure-invariant) solution exist. Finding other

sufficient and/or necessary conditions for universal (measure-

invariant) optimality will be among our future steps. We

expect that our foundational results, for instance, the universal

convexity of the problem and necessity and sufficiency of

KKT conditions would provide the tools to explore this open

problem. The bucketing application makes a strong case for

randomized channel design. A priority of our further work

would be to look into other potential applications and imple-

mentations taking into account their nuances.
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