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Abstract—We propose a natural relaxation of differential
privacy based on the Rényi divergence. Closely related notions
have appeared in several recent papers that analyzed composition
of differentially private mechanisms. We argue that the useful
analytical tool can be used as a privacy definition, compactly and
accurately representing guarantees on the tails of the privacy loss.

We demonstrate that the new definition shares many important
properties with the standard definition of differential privacy,
while additionally allowing tighter analysis of composite hetero-
geneous mechanisms.

I. INTRODUCTION

Differential privacy, introduced by Dwork et al. [1], has

been embraced by multiple research communities as a com-

monly accepted notion of privacy for algorithms on statistical

databases. As applications of differential privacy begin to

emerge, practical concerns of tracking and communicating
privacy guarantees are coming to the fore.

Informally, differential privacy bounds a shift in the output

distribution of a randomized algorithm that can be induced

by a small change in its input. The standard definition of ε-
differential privacy puts a multiplicative upper bound on the

worst-case change in the distribution’s density.
Several relaxations of differential privacy explored other

measures of closeness between two distributions. The most

common such relaxation, the (ε, δ) definition, has been a

method of choice for expressing privacy guarantees of a

variety of differentially private algorithms, especially those

that rely on the Gaussian additive noise mechanism or whose

analysis follows from composition theorems. The additive δ
parameter allows suppressing the long tails of the mechanism’s

distribution where pure ε-differential privacy guarantees may

not hold.
Compared to the standard definition, (ε, δ)-differential pri-

vacy offers asymptotically smaller cumulative loss under

composition and allows greater flexibility in the selection of

privacy-preserving mechanisms.
Despite its notable advantages and numerous applications,

the definition of (ε, δ)-differential privacy is an imperfect fit for

its two most common use cases: the Gaussian mechanism and

a composition rule. We briefly sketch them here and elaborate

on these points in the next section.
The first application of (ε, δ)-differential privacy was anal-

ysis of the Gaussian noise mechanism [2]. In contrast with

the Laplace mechanism, whose privacy guarantee is char-

acterized tightly and accurately by ε-differential privacy, a

single Gaussian mechanism satisfies a curve of (ε(δ), δ)-
differential privacy definitions. Picking any one point on this

curve leaves out important information about the mechanism’s

actual behavior.

The second common use of (ε, δ)-differential privacy is

due to applications of advanced composition theorems. The

central feature of ε-differential privacy is that it is closed

under composition; moreover, the ε parameters of composed

mechanisms simply add up, which motivates the concept of a

privacy budget. By relaxing the guarantee to (ε, δ)-differential

privacy, advanced composition allows tighter analyses for

compositions of (pure) differentially private mechanisms. Iter-

ating this process, however, quickly leads to a combinatorial

explosion of parameters, as each application of an advanced

composition theorem leads to a wide selection of possibilities

for (ε(δ), δ)-differentially private guarantees.

In part to address the shortcomings of (ε, δ)-differential

privacy, several recent works, surveyed in the next section,

explored the use of higher-order moments as a way of bound-

ing the tails of the privacy loss variable.

Inspired by these theoretical results and their applications,

we propose Rényi differential privacy as a natural relaxation

of differential privacy that is well-suited for expressing guar-

antees of privacy-preserving algorithms and for composition

of heterogeneous mechanisms. Compared to (ε, δ)-differential

privacy, Rényi differential privacy is a strictly stronger privacy

definition. It offers an operationally convenient and quan-

titatively accurate way of tracking cumulative privacy loss

throughout execution of a standalone differentially private

mechanism and across many such mechanisms. Most sig-

nificantly, Rényi differential privacy allows combining the

intuitive and appealing concept of a privacy budget with

application of advanced composition theorems.

The paper presents a self-contained exposition of the new

definition, unifying current literature and demonstrating its

applications. The organization of the paper is as follows. Sec-

tion II reviews the standard definition of differential privacy,

its (ε, δ) relaxation and its most common uses. Section III in-

troduces the definition of Rényi differential privacy and proves

its basic properties that parallel those of ε-differential privacy,

summarizing the results in Table I. Section IV demonstrates a

reduction from Rényi differential privacy to (ε, δ)-differential

privacy, followed by a proof of an advanced composition

theorem in Section V. Section VI applies Rényi differential

privacy to analysis of several basic mechanisms: randomized

response for predicates, Laplace and Gaussian (see Table II for

a brief summary). Section VII discusses assessment of risk due

to application of a Rényi differentially private mechanism and

use of Rényi differential privacy as a privacy loss tracking

tool. Section VIII concludes with open questions.
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II. DIFFERENTIAL PRIVACY AND ITS FLAVORS

ε-DIFFERENTIAL PRIVACY [1]. We first recall the standard

definition of ε-differential privacy.

Definition 1 (ε-DP). A randomized mechanism f : D �→
R satisfies ε-differential privacy (ε-DP) if for any adjacent

D,D′ ∈ D and S ⊂ R
Pr[f(D) ∈ S] ≤ eε Pr[f(D′) ∈ S].

The above definition is contingent on the notion of adjacent
inputs D and D′, which is domain-specific and is typically

chosen to capture the contribution to the mechanism’s input

by a single individual.

The Laplace mechanism is a prototypical ε-differentially

private algorithm, allowing release of an approximate (noisy)

answer to an arbitrary query with values in R
n. The mecha-

nism is defined as

Lε f(x) � f(x) + Λ(0,Δ1f/ε),

where Λ is the Laplace distribution and �1-sensitivity of the

query f is

Δ1f � max
D,D′

‖f(D)− f(D′)‖1

taken over all adjacent inputs D and D′.
The basic composition theorem states that if f and g are,

respectively, ε1- and ε2-DP, then the simultaneous release

of f(D) and g(D) satisfies (ε1 + ε2)-DP. Moreover, the

mechanism g may be selected adaptively, after seeing the

output of f(D).

(ε, δ)-DIFFERENTIAL PRIVACY [2]. A relaxation of ε-
differential privacy allows a δ additive term in its defining

inequality:

Definition 2 ((ε, δ)-DP). A randomized mechanism f : D �→
R offers (ε, δ)-differential privacy if for any adjacent D,D′ ∈
D and S ⊂ R

Pr[f(D) ∈ S] ≤ eε Pr[f(D′) ∈ S] + δ.

The common interpretation of (ε, δ)-DP is that it is ε-DP

“except with probability δ”. Formalizing this statement runs

into difficulties similar to the ones addressed by Mironov et

al. [3] for a different (computational) relaxation. For any two

adjacent inputs, D1 and D2, it is indeed possible to define an

ε-DP mechanism that agrees with f with all but δ probability.

Extending this argument to domains of exponential sizes (for

instance, to a boolean hypercube) cannot be done without

diluting the guarantee exponentially [4]. We conclude that

(ε, δ)-differential privacy is a qualitatively different definition

than pure ε-DP (unless, of course, δ = 0, which we assume

not to be the case through the rest of this section).

Even for the simple case of exactly two input databases

(such as when the adversary knows the entire dataset except

whether it contains a particular record), the δ additive term

encompasses two very different modes in which privacy may

fail. In both scenarios ε-DP holds with probability 1 − δ,

they differ in what happens with the remaining probability δ.

In the first scenario privacy degrades gracefully, such as to

ε1-DP with probability δ/2, to ε2-DP with probability δ/4,

etc. In the other scenario, with probability δ the secret—

whether the record is part of the database or not—becomes

completely exposed. The difference between the two failure

modes can be quite stark. In the former, there is always some

residual deniability; in the latter, the adversary occasionally

learns the secret with certainty. Depending on the adversary’s

tolerance to false positives, plausible deniability may offer

adequate protection, but a single (ε, δ)-DP privacy statement

cannot differentiate between the two alternatives. For a lively

parable of the different guarantees offered by ε-DP and (ε, δ)-
DP definitions see McSherry [5].

To avoid the worst-case scenario of always violating privacy

of a δ fraction of the dataset, the standard recommendation

is to choose δ � 1/N or even δ = negl(1/N), where N is

the number of contributors. This strategy forecloses possibility

of one particularly devastating outcome, but other forms of

information leakage remain.
The definition of (ε, δ)-differential privacy was initially

proposed to capture privacy guarantees of the Gaussian mech-

anism, defined as follows:

Gσ f(x) � f(x) +N(0, σ2).

Elementary analysis shows that the Gaussian mechanism can-

not meet ε-DP for any ε. Instead, it satisfies a continuum

of incomparable (ε, δ)-DP guarantees, for all combinations of

ε < 1 and σ >
√
2 ln 1.25/δΔ2f/ε, where f ’s �2-sensitivity

is defined as

Δ2f � max
D,D′

‖f(D)− f(D′)‖2
taken over all adjacent inputs D and D′.

There exist valid reasons for prefering the Gaussian mech-

anism over Laplace: the noise comes from the same Gaussian

distribution (closed under addition) as the error that may

already be present in the dataset; the standard deviation of the

noise is proportional to the query’s �2 sensitivity, which is no

larger and often much smaller than �1; for the same standard

deviation, the tails of the Gaussian (normal) distribution decay

much faster than those of the Laplace (exponential) distribu-

tion. Unfortunately, distilling the guarantees of the Gaussian

mechanism down to a single number or a small set of numbers

using the language of (ε, δ)-DP always leaves a possibility of

a complete privacy compromise that the mechanism itself may

not allow.
Another common reason for bringing in (ε, δ)-differential

privacy is application of advanced composition theorems.

Consider the case of k-fold adaptive composition of an (ε, δ)-
DP mechanism. For any δ′ > 0 it holds that the composite

mechanism is (ε′, kδ + δ′)-DP, where ε′ �
√

2k ln(1/δ′)ε +
kε(eε − 1) [6]. Note that, similarly to our discussion of the

Gaussian mechanism, a single mechanism satisfies a contin-

uum of incomparable (ε, δ)-DP guarantees.
Kairouz et al. give a procedure for computing an optimal

k-fold composition of an (ε, δ)-DP mechanism [7]. Murtagh
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and Vadhan [8] demonstrate that generalizing this result to

composition of heterogeneous mechanisms (i.e., satisfying

(εi, δi)-DP for different εi’s) is #P-hard; they describe a PTAS

for an approximate solution. None of these works tackles the

problem of composing mechanisms that satisfy several (ε, δ)-
DP guarantees simultaneously.

(ZERO)-CONCENTRATED DIFFERENTIAL PRIVACY AND THE

MOMENTS ACCOUNTANT. The closely related work by Dwork

and Rothblum [9], followed by Bun and Steinke [10], explore

privacy definitions—Concentrated Differential Privacy and

zero-Concentrated Differential Privacy—that are framed using

the language of, respectively, subgaussian tails and the Rényi

divergence. The main difference between our approaches is

that both Concentrated and zero-Concentrated DP require a

linear bound on all positive moments of a privacy loss variable.

In contrast, our definition applies to one moment at a time.

Although less restrictive, it allows for more accurate numerical

analyses.

The work by Abadi et al. [11] on differentially private

stochastic gradient descent introduced the moments accountant
as an internal tool for tracking privacy loss across multiple

invocations of the Gaussian mechanism applied to random

subsets of the input dataset. The paper’s results are expressed

via a necessarily lossy translation of the accountant’s output

(bounds on select moments of the privacy loss variable) to the

language of (ε, δ)-differential privacy.

Taken together, the works on Concentrated DP, zero-

Concentrated DP, and the moments accountant point towards

adopting Rényi differential privacy as an effective and flexible

mechanism for capturing privacy guarantees of a wide variety

of algorithms and their combinations.

OTHER RELAXATIONS. We briefly mention other relaxations

and generalizations of differential privacy.

Under the indistinguishability-based Computational Differ-

ential Privacy (IND-CDP) definition [3], the test of closeness

between distributions on adjacent inputs is computationally

bounded (all other definitions considered in this paper hold

against an unbounded, information-theoretic adversary). The

IND-CDP notion allows much more accurate functionalities

in the two-party setting [12]; in the traditional client-server

setup there is a natural class of functionalities where the gap

between IND-CDP and (ε, δ)-DP is minimal [13], and there

are (contrived) examples where the computational relaxation

permits tasks that are infeasible under information-theoretic

definitions [14].

Several other works, most notably the Pufferfish and

the coupled-worlds frameworks [15], [16], propose different

stability constraints on the output distribution of privacy-

preserving mechanisms. Although they differ in what distri-

butions are compared, their notion of closeness is the same as

in (ε, δ)-DP.

III. RÉNYI DIFFERENTIAL PRIVACY

We describe a generalization of the notion of differential

privacy based on the concept of the Rényi divergence. Con-

nection between the two notions has been pointed out before

(mostly for one extreme order, known as Kullback-Leibler

divergence [6], [17]); our contribution is in systematically

exploring the relationship and its practical implications.

The (parameterized) Rényi divergence is classically defined

as follows [18]:

Definition 3 (Rényi divergence). For two probability distribu-

tions P and Q defined over R, the Rényi divergence of order

α > 1 is

Dα(P‖Q) � 1

α− 1
log Ex∼Q

(
P (x)

Q(x)

)α

.

(All logarithms are natural; P (x) is the density of P at x.)

For the endpoints of the interval (1,∞) the Rényi diver-

gence is defined by continuity. Concretely, D1(P‖Q) is set

to be limα→1 Dα(P‖Q) and can be verified to be equal to

Kullback-Leibler divergence (also known as relative entropy):

D1(P‖Q) = Ex∼P log
P (x)

Q(x)
.

Note that the expectation is taken over P , rather than over

Q as in the previous definition. It is possible, though, that

D1(P‖Q) thus defined is finite whereas Dα(P‖Q) = +∞
for all α > 1.

Likewise,

D∞(P‖Q) = sup
x∈suppQ

log
P (x)

Q(x)
.

For completeness, we reproduce in the Appendix proper-

ties of the Rényi divergence important to the sequel: non-

negativity, monotonicity, probability preservation, and a weak

triangle inequality (Propositions 8–11).

The relationship between the Rényi divergence with α =∞
and differential privacy is immediate. A randomized mecha-

nism f is ε-differentially private if and only if its distribution

over any two adjacent inputs D and D′ satisfies

D∞ (f(D)‖f(D′)) ≤ ε.

It motivates exploring a relaxation of differential privacy

based on the Rényi divergence.

Definition 4 ((α, ε)-RDP). A randomized mechanism f : D �→
R is said to have ε-Rényi differential privacy of order α, or

(α, ε)-RDP for short, if for any adjacent D,D′ ∈ D it holds

that

Dα (f(D)‖f(D′)) ≤ ε.

Remark 1. Similarly to the definition of differential privacy, a

finite value for ε-RDP implies that feasible outcomes of f(D)
for some D ∈ D are feasible, i.e., have a non-zero density,

for all inputs from D except for a set of measure 0. Assuming

that this is the case, we let the event space be the support of

the distribution.

Remark 2. The Rényi divergence can be defined for α smaller

than 1, including negative orders. We are not using these orders

in our definition of Rényi differential privacy.
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The standard definition of differential privacy has been

successful as a privacy measure because it simultaneously

meets several important criteria. We verify that the relaxed

definition inherits many of the same properties. The results of

this section are summarized in Table I.

“BAD OUTCOMES” GUARANTEE. A privacy definition is only

as useful as its guarantee for data contributors. The simplest

such assurance is the “bad outcomes” interpretation. Consider

a person, concerned about some adverse consequences, de-

liberating whether to withhold her record from the database.

Let us say that some outputs of the mechanism are labeled

as “bad.” The differential privacy guarantee asserts that the

probability of observing a bad outcome will not change (either

way) by more than a factor of eε whether anyone’s record is

part of the input or not (for appropriately defined “adjacent”

inputs). This is an immediate consequence of the definition of

differential privacy, where the subset S is the union of bad

outcomes.
This guarantee is relaxed for Rényi differential privacy.

Concretely, if f is (α, ε)-RDP, then by Proposition 10:

e−ε Pr[f(D′) ∈ S]α/(α−1) ≤ Pr[f(D) ∈ S]

≤ (eε Pr[f(D′) ∈ S])
(α−1)/α

.

We discuss consequences of this relaxation in Section VII.

ROBUSTNESS TO AUXILIARY INFORMATION. Critical to the

adoption of differential privacy as an operationally useful

definition is its lack of assumptions on the adversary’s knowl-

edge. More formally, the property is captured by the Bayesian

interpretation of privacy guarantees, which compares the ad-

versary’s prior with the posterior.
Assume that the adversary has a prior p(D) over the set

of possible inputs D ∈ D, and observes an output X of an

ε-differentially private mechanism f . Its posterior satisfies the

following guarantee for all pairs of adjacent inputs D,D′ ∈ D
and all X ∈ R:

p(D |X)

p(D′|X)
≤ eε

p(D)

p(D′)
.

In other words, evidence obtained from an ε-differentially

private mechanism does not move the relative probabilities

assigned to adjacent inputs (the odds ratio) by more than eε.
The guarantee implied by RDP is a probabilistic statement

about the change in the posterior. Let the random variable

R(D,D′) be the Bayes factor defined as follows:

R(D,D′) ∼ p(D |X)

p(D′|X)
=

p(X|D ) · p(D )

p(X|D′) · p(D′) ,
where X ∼ f(D).

It follows immediately from definition that the Rényi diver-

gence of order α between P = f(D) and Q = f(D′) bounds

the (α− 1)-th moment of the change in R:

EP

[{
Rpost(D,D′)
Rprior(D,D′)

}α−1
]
= EQ

[
P (x)αQ(x)1−α

]
=

exp[(α− 1)Dα(f(D)‖f(D′))].

By taking the logarithm of both sides and applying Jensen’s

inequality we obtain that

Ef(D) [logRpost(D,D′)− logRprior(D,D′)] ≤
Dα(f(D)‖f(D′)). (1)

(This can also be derived by observing that

Ef(D) [logRpost(D,D′)− logRprior(D,D′)] =
D1(f(D)‖f(D′))

and by monotonicity of the Rényi divergence.)

Compare (1) with the guarantee of pure differential privacy,

which states that logRpost(D,D′) − logRprior(D,D′) ≤ ε
everywhere, not just in expectation.

POST-PROCESSING. A privacy guarantee that can be dimin-

ished by manipulating output is unlikely to be useful. Con-

sider a randomized mapping g : R �→ R′. We observe that

Dα(P‖Q) ≥ Dα(g(P )‖g(Q)) by the analogue of the data

processing inequality [19, Theorem 9]. It means that if f(·)
is (α, ε)-RDP, so is g(f(·)). In other words, Rényi differential

privacy is preserved by post-processing.

PRESERVATION UNDER ADAPTIVE SEQUENTIAL COMPOSI-

TION. The property that makes possible modular construction

of differentially private algorithms is self-composition: if f(·)
is ε1-differentially private and g(·) is ε2-differentially private,

then simultaneous release of f(D) and g(D) is ε1 + ε2-

differentially private. The guarantee even extends to when g
is chosen adaptively based on f ’s output: if g is indexed by

elements of R and gX(·) is ε2-differentially private for any

X ∈ R, then publishing (X,Y ), where X ← f(D) and

Y ← gX(D), is ε1 + ε2-differentially private.

We prove a similar statement for the composition of two

RDP mechanisms.

Proposition 1. Let f : D �→ R1 be (α, ε1)-RDP and g : R1×
D �→ R2 be (α, ε2)-RDP, then the mechanism defined as
(X,Y ), where X ← f(D) and Y ← g(X,D), satisfies
(α, ε1 + ε2)-RDP.

Proof. Let h : D �→ R1×R2 be the result of running f and g
sequentially. We write X , Y , and Z for the distributions f(D),
g(X,D), and the joint distribution (X,Y ) = h(D). X ′, Y ′,
and Z ′ are similarly defined if the input is D′. Then

exp [(α− 1)Dα(h(D)‖h(D′))]
=

∫
R1×R2

Z(x, y)αZ ′(x, y)1−α dx dy

=

∫
R1

∫
R2

(X(x)Y (x, y))α(X ′(x)Y ′(x, y))1−α dy dx

=

∫
R1

X(x)αX ′(x)1−α

{∫
R2

Y (x, y)αY ′(x, y)1−α dy

}
dx

≤
∫
R1

X(x)αX ′(x)1−α dx · exp((α− 1)ε2)

≤ exp((α− 1)ε1) exp((α− 1)ε2)

= exp((α− 1)(ε1 + ε2)),
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from which the claim follows.

Significantly, the guarantee holds whether the releases of f
and g are coordinated or not, or computed over the same or

different versions of the input dataset. It allows us to operate

with a well-defined notion of a privacy budget associated with

an individual, which is a finite resource consumed with each

differentially private data release.

Extending the concept of the privacy budget, we say that the

Rényi differential privacy has a budget curve parameterized by

the order α. We present examples illustrating this viewpoint

in Section VI.

GROUP PRIVACY. Although the definition of differential pri-

vacy constrains a mechanism’s outputs on pairs of adjacent
inputs, its guarantee extends, in a progressively weaker form,

to inputs that are farther apart. This property has two important

consequences. First, the differential privacy guarantee de-

grades gracefully if our assumptions about one person’s influ-

ence on the input are (somewhat) wrong. For example, a single

family contributing to a survey will likely share many socio-

economic, demographic, and health characteristics. Rather

than collapsing, the differential privacy guarantee will scale

down linearly with the number of family members. Second,

the group privacy property allows pre-processing input into

a differentially private mechanism, possibly amplifying (in a

controlled fashion) one record’s impact on the output of the

computation.

We define group privacy using a notion of c-stable transfor-

mation [20]. We say that g : D �→ D′ is c-stable if g(A) and

g(B) are adjacent in D′ implies that there exists a sequence of

length c+1 so that D0 = A, . . . ,Dc = B and all (Di, Di+1)
are adjacent in D.

The standard notion of differential privacy satisfies the

following. If f is ε-differentially private and g : D′ �→ D is c-
stable, then f◦g is cε-differentially private. A similar statement

holds for Rényi differential privacy.

Proposition 2. If f : D �→ R is (α, ε)-RDP, g : D′ �→ D is
2c-stable and α ≥ 2c+1, then f ◦ g is (α/2c, 3cε)-RDP.

Proof. We prove the statement for c = 1, the rest follows by

induction.

Define h = f ◦ g. Since g is 2-stable, it means that for any

adjacent D,D′ ∈ D′ there exist A ∈ D, so that g(D) and A,

A and g(D′) are adjacent in D.

By Corollary 4 and monotonicity of the Rényi divergence,

we have that h = f ◦ g satisfies

Dα/2(h(D)‖h(D′)) ≤ α− 1

α− 2
Dα(h(D)‖h(A))+
Dα−1(h(A)‖h(D′)) ≤ 3ε.

IV. RDP AND (ε, δ)-DP

As we observed earlier, the definition of ε-differential

privacy coincides with (∞, ε)-RDP. By monotonicity of the

Rényi divergence, (∞, ε)-RDP implies (α, ε)-RDP for all

finite α.

In turn, an (α, ε)-RDP implies (εδ, δ)-differential privacy

for any given probability δ > 0.

Proposition 3 (From RDP to (ε, δ)-DP). If f is an (α, ε)-RDP
mechanism, it also satisfies (ε+ log 1/δ

α−1 , δ)-differential privacy
for any 0 < δ < 1.

Proof. Take any two adjacent inputs D and D′, and a subset

of f ’s range S. To show that f is (ε′, δ)-differentially private,

where ε′ = ε + 1
α−1 log 1/δ, we need to demonstrate that

Pr[f(D) ∈ S] ≤ eε
′
Pr[f(D′) ∈ S] + δ. In fact, we prove a

stronger statement that Pr[f(D) ∈ S] ≤ max(eε
′
Pr[f(D′) ∈

S], δ).

Recall that by Proposition 10

Pr[f(D) ∈ S] ≤ {eε Pr[f(D′) ∈ S}1−1/α.

Denote Pr[f(D′) ∈ S] by Q and consider two cases.

Case I. eεQ > δα/(α−1). Continuing the above,

Pr[f(D) ∈ S] ≤ {eεQ}1−1/α = eεQ · {eεQ}−1/α

≤ eεQ · δ−1/(α−1)

= exp

(
ε+

log 1/δ

α− 1

)
·Q.

Case II. eεQ ≤ δα/(α−1). This case is immediate since

Pr[f(D) ∈ S] ≤ {eεQ}1−1/α ≤ δ,

which completes the proof.

A more detailed comparison between the notions of RDP

and (ε, δ)-differential privacy that goes beyond these reduc-

tions is deferred to Section VII.

V. ADVANCED COMPOSITION THEOREM

The main thesis of this section is that the Rényi differential

privacy curve of a composite mechanism is sufficient to draw

non-trivial conclusions about its privacy guarantees, similar to

the ones given by other advanced composition theorems, such

as Dwork et al. [6] or Kairouz et al. [7]. Although our proof

is structured similarly to Dwork et al. (for instance, Lemma 1

is a direct generalization of [6, Lemma III.2]), it is phrased

entirely in the language of Rényi differential privacy without

making any (explicit) use of probability arguments.

Lemma 1. If P and Q are such that D∞(P‖Q) ≤ ε and
D∞(Q‖P ) ≤ ε, then for α ≥ 1

Dα(P‖Q) ≤ 2αε2.

Proof. If α ≥ 1 + 1/ε, then

Dα(P‖Q) ≤ D∞(P‖Q) = ε ≤ (α− 1)ε2.
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Property Differential Privacy Rényi Differential Privacy

Change in probability of outcome S
Pr[f(D) ∈ S] ≤ eε Pr[f(D′) ∈ S] Pr[f(D) ∈ S] ≤ (eε Pr[f(D′) ∈ S])(α−1)/α

Pr[f(D) ∈ S] ≥ e−ε Pr[f(D′) ∈ S] Pr[f(D) ∈ S] ≥ e−ε Pr[f(D′) ∈ S]α/(α−1)

Change in the Bayes’ factor
Rpost(D,D′)
Rprior(D,D′)

≤ eε always E

[{
Rpost(D,D′)
Rprior(D,D′)

}α−1
]
≤ exp[(α− 1)ε]

Change in log of the Bayes’ factor |Δ logR(D,D′)| ≤ ε always E[Δ logR(D,D′)] ≤ ε

Post-processing f is ε-DP (or (α, ε)-RDP) ⇒ g ◦ f is ε-DP (or (α, ε)-RDP, resp.)

Adaptive sequential composition (basic) f, g are ε-DP (or (α, ε)-RDP) ⇒ (f, g) is 2ε-DP (resp., (α, 2ε)-RDP)

Group privacy, pre-processing f is ε-DP (or (α, ε)-RDP), g is 2c-stable ⇒ f ◦ g is 2cε-DP (resp., (α/2c, 3cε)-RDP)

TABLE I
SUMMARY OF PROPERTIES SHARED BY DIFFERENTIAL PRIVACY AND RDP.

Consider the case when α < 1 + 1/ε. We first observe that

for any x > y > 0, λ = log(x/y), and 0 ≤ β ≤ 1/λ the

following inequality holds:

xβ+1y−β + x−βyβ+1 = x · eβλ + y · e−βλ

≤ x(1 + βλ+ (βλ)2) + y(1− βλ+ (βλ)2)

= (1 + (βλ)2)(x+ y) + βλ(x− y). (2)

Since all terms of the right hand side of (2) are positive, the

inequality applies if λ is an upper bound on log x/y, which

we use in the argument below.

exp[(α− 1)Dα(P‖Q)]

=

∫
R
P (x)αQ(x)1−α dx

≤
∫
R

{
P (x)αQ(x)1−α +Q(x)αP (x)1−α

}
dx− 1

(by nonnegativity of Dα(Q‖P ))

≤
∫
R

{
(1 + (α− 1)2ε2)(P (x) +Q(x))+

(α− 1)ε|P (x)−Q(x)|} dx− 1
(by (2) for β = α− 1 ≤ 1/ε)

= 1 + 2(α− 1)2ε2 + (α− 1)ε‖P −Q‖1.

Taking the logarithm of both sides and using that log(1+x) <
x for positive x we find that

Dα(P‖Q) ≤ 2(α− 1)ε2 + ε‖P −Q‖1. (3)

Observe that

‖P −Q‖1 =

∫
|P (x)−Q(x)| dx

=

∫
R
min(P (x), Q(x))

∣∣∣∣max(P (x), Q(x))

min(P (x), Q(x))
− 1

∣∣∣∣ dx
≤ min(2, eε − 1) ≤ 2ε2.

Plugging the bound on ‖P−Q‖1 into (3) completes the proof.

The claim for α = 1 follows by continuity.

The constant in Lemma 1 can be improved to .5 via a

substantially more involved analysis [10, Proposition 3.3] (see

also )

Proposition 4. Let f : D �→ R be an adaptive composition of
n mechanisms all satisfying ε-differential privacy. Let D and
D′ be two adjacent inputs. Then for any S ⊂ R:

Pr[f(D) ∈ S] ≤ exp
(
2ε
√
n log 1/Pr[f(D′) ∈ S]

)
· Pr[f(D′) ∈ S].

Proof. By applying Lemma 1 to the Rényi differential privacy

curve of the underlying mechanisms and Proposition 1 to their

composition, we find that for all α ≥ 1

Dα(f(D)‖f(D′)) ≤ 2αnε2.

Denote Pr[f(D′) ∈ S] by Q and consider two cases.

Case I: log 1/Q ≥ ε2n. Choosing with some foresight α =√
log 1/Q/(ε

√
n) ≥ 1, we have by Proposition 10 (probability

preservation):

Pr[f(D) ∈ S] ≤ {exp[Dα(f(D)‖f(D′)] ·Q}1−1/α

≤ exp(2(α− 1)nε2) ·Q1−1/α

< exp
(
ε
√
n log 1/Q− (logQ)/α

)
·Q

= exp
(
2ε
√

n log 1/Q
)
·Q.

Case II: log 1/Q < ε2n. This case follows trivially, since

the right hand side of the claim is larger than 1:

exp
(
2ε
√

n log 1/Q
)
·Q ≥ exp (2 log 1/Q) ·Q = 1/Q > 1.

The notable feature of Proposition 4 is that its privacy

guarantee—bounded probability gain—comes in the form that

depends on the event’s probability. We discuss this type of

guarantee in Section VII.

The following corollary gives a more conventional (ε, δ)
variant of advanced composition.
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Corollary 1. Let f be the composition of the n ε-differentially
private mechanisms. Let 0 < δ < 1 be such that log(1/δ) ≥
ε2n. Then f satisfies (ε′, δ)-differential privacy where

ε′ � 4ε
√
2n log(1/δ).

Proof. Let D and D′ be two adjacent inputs, and S be some

subset of the range of f . To argue (ε′, δ)-differential privacy

of f , we need to verify that

Pr[f(D) ∈ S] ≤ eε
′
Pr[f(D′) ∈ S] + δ.

In fact, we prove a somewhat stronger statement, namely that

Pr[f(D) ∈ S] ≤ max(eε
′
Pr[f(D′) ∈ S], δ).

By Proposition 4

Pr[f(D) ∈ S] ≤ exp
(
2ε
√
n log 1/Pr[f(D′) ∈ S]

)
· Pr[f(D′) ∈ S].

Denote Pr[f(D′) ∈ S] by Q and consider two cases.

Case I: 8 log 1/δ > log 1/Q. Then

Pr[f(D) ∈ S] ≤ exp
(
2ε
√
n log 1/Q

)
·Q

< exp
(
2ε
√
8n log 1/δ

)
·Q

(by 8 log 1/δ > log 1/Q)

= exp (ε′) ·Q.

Case II: 8 log 1/δ ≤ log 1/Q. Then

Pr[f(D) ∈ S] ≤ exp
(
2ε
√
n log 1/Q

)
·Q

≤ exp
(
2
√

log 1/δ · log 1/Q
)
·Q

(since log(1/δ) ≥ ε2n)

≤ exp
(√

1/2 log 1/Q
)
·Q

(since 8 log 1/δ ≤ log 1/Q)

= Q1−1/
√
2 ≤ Q1/8

≤ δ. (ditto)

Remark 3. The condition log(1/δ) ≥ ε2n corresponds to the

so-called “high privacy” regime of the advanced composition

theorem [7], where ε′ < (1+
√
2) log(1/δ). Since δ is typically

chosen to be small, say, less than 1%, it covers the case of

ε′ < 11. In other words, if log(1/δ) > ε2n, this and other

composition theorems are unlikely to yield strong bounds.

VI. BASIC MECHANISMS

In this section we analyze Rényi differential privacy of three

basic mechanisms and their self-composition: randomized

response, Laplace and Gaussian noise addition. The results

are summarized in Table II and plotted for select parameters

in Figures 1 and 2.

A. Randomized response

Let f be a predicate, i.e., f : D �→ {0, 1}. The Randomize

Response mechanism for f is defined as

RRp f(D) �
{
f(D) with probability p

1− f(D) with probability 1− p
.

The following statement can be verified by direct application

of the definition of Rényi differential privacy:

Proposition 5. Randomized Response mechanism RRp(f)
satisfies

(
α,

1

α− 1
log

(
pα(1− p)1−α + (1− p)αp1−α

))
-RDP

if α > 1, and

(
α, (2p− 1) log

p

1− p

)
-RDP

if α = 1.

B. Laplace noise

Through the rest of this section we assume that f : D �→ R

is a function of sensitivity 1, i.e., for any two adjacent D,D′ ∈
D: |f(D)− f(D′)| ≤ 1.

Define the Laplace mechanism for f of sensitivity 1 as

Lλ f(D) = f(D) + Λ(0, λ),

where Λ(μ, λ) is Laplace distribution with mean μ and scale

λ, i.e., its probability density function is 1
2λ exp(−|x−μ|/λ).

To derive the RDP budget curve for the exponential mech-

anism we compute the Rényi divergence for Laplace distribu-

tion and its offset.

Proposition 6. For any α ≥ 1 and λ > 0:

Dα(Λ(0, λ)‖Λ(1, λ)) = 1

α− 1
log

{
α

2α− 1
exp

(
α− 1

λ

)

+
α− 1

2α− 1
exp

(−α
λ

)}
.

Proof. For continuous distributions P and Q defined over the

real interval with densities p and q

Dα(P‖Q) =
1

α− 1
log

∫ ∞

−∞
p(x)αq(x)1−α dx.
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Mechanism Differential Privacy Rényi Differential Privacy for α

Randomized Response
∣∣∣log p

1−p

∣∣∣ α > 1: 1
α−1

log
(
pα(1− p)1−α + (1− p)αp1−α

)
α = 1: (2p− 1) log p

1−p

Laplace Mechanism 1/λ
α > 1: 1

α−1
log

{
α

2α−1
exp(α−1

λ
) + α−1

2α−1
exp(−α

λ
)
}

α = 1: 1/λ+ exp(−1/λ)− 1 = .5/λ2 +O(1/λ3)

Gaussian Mechanism ∞ α/(2σ2)

TABLE II
SUMMARY OF RDP PARAMETERS FOR BASIC MECHANISMS.

To compute the integral for p(x) = 1
2λ exp(−|x|/λ) and

q(x) = 1
2λ exp(−|x − 1|/λ), we evaluate it separately over

the intervals (−∞, 0], [0, 1] and [1,+∞].∫ +∞

−∞
p(x)αq(x)1−α dx =

1

2λ

∫ 0

−∞
exp(αx/λ+ (1− α)(x− 1)/λ) dx

+
1

2λ

∫ 1

0

exp(−αx/λ+ (1− α)(x− 1)/λ) dx

+
1

2λ

∫ +∞

1

exp(−αx/λ− (1− α)(x− 1)/λ) dx

=
1

2
exp((α− 1)/λ)

+
1

2(2α− 1)
(exp((α− 1)/λ)− exp(−α/λ))

+
1

2
exp(−α/λ)

=
α

2α− 1
exp((α− 1)/λ) +

α− 1

2α− 1
exp(−α/λ),

from which the claim follows.

Since the Laplace mechanism is additive, the Rényi diver-

gence between Lλ f(D) and Lλ f(D
′) depends only on α

and the distance |f(D) − f(D′)|. Proposition 6 implies the

following:

Corollary 2. If real-valued function f has sensitiv-
ity 1, then the Laplace mechanism Lλ f satisfies (α,
1

α−1 log
{

α
2α−1 exp(

α−1
λ ) + α−1

2α−1 exp(−α
λ )

}
)-RDP.

Predictably,

lim
α→∞Dα(Λ(0, λ)‖Λ(1, λ)) = D∞(Λ(0, λ)‖Λ(1, λ)) = 1

λ
.

This is, of course, consistent with the Laplace mechanism sat-

isfying 1/λ-differential privacy. The other extreme evaluates

to the following expression limα→1 Dα(Λ(0, λ)‖Λ(1, λ)) =
1/λ+ exp(−1/λ)− 1, which is well approximated by .5/λ2

for large λ.

C. Gaussian noise

Assuming, as before, that f is a real-valued function, the

Gaussian mechanism for approximating f is defined as

Gσ f(D) = f(D) +N(0, σ2),

where N(0, σ2) is normally distributed random variable with

standard deviation σ2 and mean 0.

The following statement is a closed-form expression of the

Rényi divergence between a Gaussian and its offset (for a more

general version see [19], [21]).

Proposition 7. Dα(N(0, σ2)‖N(μ, σ2)) = αμ2/(2σ2).

Proof. By direct computation we verify that

Dα(N(0, σ2)‖N(μ, σ2))

=
1

α− 1
log

∫ ∞

−∞

1

σ
√
2π

exp(−αx2/(2σ2))

· exp(−(1− α)(x− μ)2/(2σ2)) dx

=
1

α− 1
log

1

σ
√
2π

∫ ∞

−∞
exp[(−x2+

2(1− α)μx− (1− α)μ2)/(2σ2)] dx

=
1

α− 1
log

{
σ
√
2π

σ
√
2π

exp
[
(α2 − α)μ2/(2σ2)

]}

= αμ2/(2σ2).

The following corollary is immediate:

Corollary 3. If f has sensitivity 1, then the Gaussian mech-
anism Gσ f satisfies (α, α/(2σ2))-RDP.

Observe that the RDP budget curve for the Gaussian mech-

anism is particularly simple—a straight line (Figure 1). Recall

that the (adaptive) composition of RDP mechanisms satisfies

Rényi differential privacy with the budget curve that is the sum

of the mechanisms’ budget curves. It means that a composition

of Gaussian mechanisms will behave, privacy-wise, “like” a

Gaussian mechanism. Concretely, a composition of n Gaussian

mechanisms each with parameter σ will have the RDP curve

of a Gaussian mechanism with parameter σ/
√
n.

D. Privacy of basic mechanisms under composition

The “bad outcomes” interpretation of Rényi differential

privacy ties the probabilities of seeing the same outcome

under runs of the mechanism applied to adjacent inputs. The

dependency of the upper bound on the increase in probability

on its initial value is complex, especially compared to the

standard differential privacy guarantee. The main advantage
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Fig. 1. (α, ε)-Rényi differential privacy budget curve for three basic mechanisms with varying parameters.
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Fig. 2. Various privacy guarantees of the randomized response with parameter p = 51% (top row) and the Laplace mechanism with parameter λ = 20
(bottom row) under self-composition. The x-axis is the number of compositions (1–250). The y-axis, in log scale, is the upper bound on the multiplicative
increase in probability of event S, where S’s initial mass is either 10−6 (left), 10−3 (center), or .1 (right). The four plot lines are the “naı̈ve” nε bound
(blue); optimal choice (ε, δ) in the standard advanced composition theorem (red); generic bound of Proposition 4 (blue); optimal choice of α in Proposition 10
(cyan).
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of this more involved analysis is that for most parameters the

bound becomes tighter.

In this section we compare numerical bounds for several

analyses of self-composed mechanisms (see Figure 2), pre-

sented as three sets of graphs, where Pr[f(D) ∈ S] takes

values 10−6, 10−3, and 10−1.

Each of the six graphs in Figure 2 (three probability

values × {randomized response, Laplace}) plots bounds in

logarithmic scale on the relative increase in probability of S
(i.e., Pr[f(D′) ∈ S]/Pr[f(D) ∈ S]) offered by four analyses.

The first, “naı̈ve”, bound follows from the basic composition

theorem for differential privacy and, as expected, is very

pessimistic for all but a handful of parameters. A tighter,

advanced composition theorem [6], gives a choice of δ, from

which one computes ε′ so that the n-fold composition satisfies

(ε′, δ)-differential privacy. The second curve plots the bound

for the optimal (tightest) choice of (ε′, δ). Two other bounds

come from Rényi differential privacy analysis: our generic

advanced composition theorem (Proposition 4) and the bound

of Proposition 10 for the optimal combination of (α, ε) from

the RDP curve of the composite mechanism.

Several observations are in order. The RDP-specific analysis

for both mechanisms is tighter than all generic bounds whose

only input is the mechanism’s differential privacy parameter.

On the other hand, our version of the advanced composition

bound (Proposition 4) is consistently outperformed by the

standard (ε, δ)-form of the composition theorem, where δ is

chosen optimally. We elaborate on this distinction in the next

section.

VII. DISCUSSION

Rényi differential privacy is a natural relaxation of the

standard notion of differential privacy that preserves many

of its essential properties. It can most directly be compared

with (ε, δ)-differential privacy, with which it shares several

important characteristics.

PROBABILISTIC PRIVACY GUARANTEE. The standard “bad

outcomes” guarantee of ε-differential privacy is independent

of the probability of a bad outcome: it may increase only by

a factor of exp(ε). Its relaxation, (ε, δ)-differential privacy,

allows for an additional δ term, which allows for a complete

privacy compromise with probability δ.

In stark contrast, Rényi differential privacy even with very

weak parameters never allows a total breach of privacy with

no residual uncertainty. The following analysis quantifies this

assurance.

Let f be (α, ε)-RDP with α > 1. Recall that for

any two adjacent inputs D and D′, and an arbitrary prior

p the odds function R(D,D′) ∼ p(D)/p(D′) satisfies

E

[{
Rpost(D,D′)
Rprior(D,D′)

}α−1
]
≤ exp((α − 1)ε). By Markov’s in-

equality Pr[Rpost(D,D′) > βRprior(D,D′)] < eε/β1/(α−1).

For instance, if α = 2, the probability that the ratio between

two posteriors increases by more than the β factor drops off

as O(1/β).

BASELINE-DEPENDENT GUARANTEES. The Rényi differen-

tial privacy bound gets weaker for less likely outcomes. For

instance, if f is a (10.0, .1)-RDP mechanism, an event of

probability .5 under f(D) can be as large as .586 and as

small as .419 under f(D′). For smaller events the range is (in

relative terms) wider. If the probability under f(D) is .001,

then Pr[f(D′) ∈ S] ∈ [.00042, 0.00218]. For Pr[f(D) ∈
S] = 10−6 the range is wider still: Pr[f(D′) ∈ S] ∈
[.195 · 10−6, 4.36 · 10−6].

Contrasted with the pure ε-differential privacy this type

of guarantee is conceptually weaker and more onerous in

application: in order to decide whether the increased risk is

tolerable, one is required to estimate the baseline risk first.

However, in comparison with (ε, δ)-DP the analysis via

Rényi differential privacy is simpler and, especially for prob-

abilities that are smaller than δ, leads to stronger bounds.

The reason is that (ε, δ)-differential privacy often arises as

a result of some analysis that implicitly comes with an ε-δ
tradeoff. Finding an optimal value of (ε, δ) given the baseline

risk may be non-trivial, especially in closed form. Contrast the

following two, basically equivalent, statements of advanced

composition theorems (Proposition 4 and its Corollary 1):

Let f : D �→ R be an adaptive composition of n
mechanisms all satisfying ε-differential privacy for

ε ≤ 1. Let D and D′ be two adjacent inputs. Then

for any S ⊂ R, by Proposition 4:

Pr[f(D′) ∈ S] ≤ exp
(
2ε
√
n log 1/Pr[f(D) ∈ S]

)
· Pr[f(D) ∈ S].

or, by Corollary 1,

Pr[f(D′) ∈ S] ≤ exp
(
4ε
√
2n log 1/δ

)
· Pr[f(D) ∈ S] + δ,

where 0 < ε, δ < 1 such that log(1/δ) ≥ ε2n.

Given some value of baseline risk Pr[f(D) ∈ S], which

formulation is easier to interpret? We argue that it is the

former, since the (ε, δ) form has a free parameter (δ) that

ought to be optimized in order to extract a tight bound that

Proposition 4 gives directly.

The use of (ε, δ) bounds gets even more complex if we con-

sider a composition of heterogeneous mechanisms. It brings

us to the last point of comparison between (ε, δ)- and Rényi

differential privacy measures.

KEEPING TRACK OF ACCUMULATED PRIVACY LOSS. A finite

privacy budget associated with an individual is an intuitive and

appealing concept, to which ε-differential privacy gives a rig-

orous mathematical expression. Cumulative loss of differential

privacy over the cause of a mechanism run, a protocol, or one’s

lifetime can be tracked easily thanks to the additivity property

of differential privacy. Unfortunately, doing so naı̈vely likely

exaggerates privacy loss, which grows sublinearly in the num-

ber of queries with all but negligible probability (via advanced

composition theorems).
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Fig. 3. Left: Bounds on the ratio Pr[f(D′) ∈ S]/Pr[f(D′) ∈ S] for Pr[f(D) ∈ S] ∈ {.1, 10−3, 10−6} for up to 100 iterations of a mixed mechanism
(randomized response with p = .52, Laplace with λ = 20 and Gaussian with σ = 10). Each bound is computed twice: once for an optimal choice of α and
once for α restricted to {1.5, 1.75, 2, 2.5, 3, 4, 5, 6, 8, 16, 32, 64,+∞}. The curves for two choices of α are nearly identical. Right: corresponding values of
α in log scale.

Critically, applying advanced composition theorems breaks

the convenient abstraction of privacy as a non-negative real

number. Instead, the guarantee comes in the (ε, δ) form that

effectively corresponds to a single point on an implicitly

defined curve. Composition of multiple, heterogeneous mech-

anisms makes applying the composition rule optimally much

more challenging, as one may choose various (ε, δ) points to

represent their privacy (in the analysis, not during the mechan-

ims’ run time!). It begs the question of how to represent

the privacy guarantee of a complex mechanism: distilling it

to a single number throws away valuable information, while

publishing the entire (ε, δ) curve shifts the problem to the

aggregation step. (See Kairouz et al. [7] for an optimal bound

on composition of homogeneous mechanisms and Murtagh

and Vadhan [8] for hardness results and an approximation

scheme for composition of mechanisms with heterogeneous

privacy guarantees.)

Rényi differential privacy restores the concept of a pri-

vacy budget, thanks to its composition rule: RDP curves for

composed mechanisms simply add up. Importantly, the α’s

of (α, ε)-Rényi differential privacy do not change. If RDP

statements are reported for a common set of α’s (which

includes +∞, to keep track of pure differential privacy), RDP

of the aggregate is the sum of the reported vectors. Since the

composition theorem of Proposition 4 takes as an input the

mechanism’s RDP curve, it means that the sublinear loss of

privacy as a function of the number of queries will still hold.

For an example of this approach we tabulate the bound

on privacy loss for an iterative mechanism consisting of

three basic mechanisms: randomized response, Gaussian, and

Laplace. Its RDP curve is given, in the closed form, by

application of the basic composition rule to RDP curves of

the underlying mechanisms (Table II). The privacy guarantee

is presented in Figure 3 for three values of the baseline risk:

.1, .001, and 10−6. For each set of parameters two curves

are plotted: one for an optimal value of α from (1,+∞],
the other for an optimal α restricted to the set of 13 values

{1.5, 1.75, 2, 2.5, 3, 4, 5, 6, 8, 16, 32, 64,+∞}. The two curves

are nearly identical, which illustrates our thesis that reporting

RDP curves for a restricted set of α’s preserves tightness of

privacy analysis.

VIII. CONCLUSIONS AND OPEN QUESTIONS

We put forth the proposition that Rényi divergence yields

useful insight into analysis of differentially private mecha-

nisms. Among our findings

• Rényi differential privacy (RDP) is a natural generaliza-

tion of pure differential privacy.

• RDP shares, with some adaptations, many properties that

make differential privacy a useful and versatile tool.

• RDP analysis of Gaussian noise is particularly simple.

• A composition theorem can be proved based solely on

the properties of RDP, which implies that RDP packs

sufficient information about a composite mechanism as

to enable its analysis without consideration of its compo-

nents.

• Furthermore, an RDP curve may be sampled in just a few

points to provide useful guarantees for a wide range of
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parameters. If these points are chosen consistently across

multiple mechanisms, this information can be used to

estimate aggregate privacy loss.

Naturally, multiple questions remain open. Among those

• As Lemma 1 demonstrates, the RDP curve of a differen-

tially private mechanism is severely constrained. Making

fuller use of these constraints is a promising direction,

in particular towards formal bounds on tightness of RDP

guarantees from select α values.

• Proposition 10 (probability preservation) is not tight when

Dα(P‖Q) → 0. We expect that P (A) → Q(A) but the

bound does not improve beyond P (A)(α−1)/α.
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APPENDIX

For comprehensive exposition of properties of the Rényi

divergence we refer to two recent papers [19], [22]. Here we

recall and re-prove several facts useful for our analysis.

Proposition 8 (Non-negativity). For 1 ≤ α and arbitrary
distributions P,Q

Dα(P‖Q) ≥ 0.

Proof. Assume that α > 1. Define φ(x) � x1−α and g(x) �
Q(x)/P (x). Then

Dα(P‖Q) =
1

α− 1
log EP [φ(g(x))]

≥ 1

α− 1
log φ(EP [g(x)])

= 0

by the Jensen inequality applied to the convex function φ. The

case of α = 1 follows by letting φ to be log 1/x.

Proposition 9 (Monotonicity). For 1 ≤ α < β and arbitrary
P,Q

Dα(P‖Q) ≤ Dβ(P‖Q).
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Proof (following [19]). Assume that α > 1. Observe that the

function x �→ x
α−1
β−1 is concave. By Jensen’s inequality

Dα(P‖Q) =
1

α− 1
log EP

(
P (x)

Q(x)

)α−1

=
1

α− 1
log EP

(
P (x)

Q(x)

)(β−1)α−1
β−1

≤ 1

α− 1
log

{
EP

(
P (x)

Q(x)

)β−1
}α−1

β−1

= Dβ(P‖Q).

The case of α = 1 follows by continuity.

The following proposition appears in Langlois et al. [23],

generalizing Lyubashevsky et al. [24].

Proposition 10 (Probability preservation [23]). Let α > 1,
P and Q be two distributions defined over R with identical
support, A ⊂ R be an arbitrary event. Then

P (A) ≤ (exp[Dα(P‖Q)] ·Q(A))
(α−1)/α

.

Proof. The result follows by application of Hölder’s inequal-

ity, which states that for real-valued functions f and g, and

real p, q > 1, such that 1/p+ 1/q = 1,

‖fg‖1 ≤ ‖f‖p‖g‖q.

By setting p � α, q � α/(α − 1), f(x) � P (x)/Q(x)1/q ,

g(x) � Q(x)1/q , and applying Hölder’s, we have

∫
A

P (x) dx ≤
(∫

A

P (x)αQ(x)1−α dx

) 1
α
(∫

A

Q(x) dx

)α−1
α

≤ exp[Dα(P‖Q)](α−1)/αQ(A)(α−1)/α,

completing the proof.

The most salient feature of the bound is its (often non-

monotone) dependency on α: as α approaches 1, Dα(P‖Q)
shrinks (by monotonicity of the Rényi divergence) but the

power to which it is raised goes to 0, pushing the result in the

opposite direction. Several our proofs proceed by finding the

optimal, or approximately optimal, α minimizing the bound.

The Rényi divergence is not a metric: it is not symmetric

and it does not satisfy the triangle inequality. A weaker variant

of the triangle inequality tying together the Rényi divergence

of different orders does hold. Its general version is presented

below.

Proposition 11 (Weak triangle inequality). Let P,Q,R be
distributions on R. Then for α > 1 and for any p, q > 1
satisfying 1/p+ 1/q = 1 it holds that

Dα(P‖Q) ≤ α− 1/p

α− 1
Dpα(P‖R) +Dq(α−1/p)(R‖Q).

Proof. By Hölder’s inequality we have:

exp[(α− 1)Dα(P‖Q)]

=

∫
R
P (x)αQ(x)1−α dx

=

∫
R

P (x)α

R(x)α−1/p

R(x)α−1/p

Q(x)α−1
dx

≤
{∫

R

P (x)pα

R(x)pα−1
dx

}1/p {∫
R

R(x)qα−q/p

Q(x)qα−q
dx

}1/q

= exp[(α− 1/p)Dpα(P‖R)]·
exp[(α− 1)Dqα−q/p(R‖Q)].

By taking the logarithm and dividing both sides by α− 1 we

establish the claim.

Several important special cases of the weak triangle inequal-

ity can be obtained by fixing parameters p and q (compare it

with [25, Lemma 12] and [23, Lemma 4.1]):

Corollary 4. For P,Q,R with common support we have
1) Dα(P‖Q) ≤ α−1/2

α−1 D2α(P‖R) +D2α−1(R‖Q).
2) Dα(P‖Q) ≤ α

α−1D∞(P‖R) +Dα(R‖Q).
3) Dα(P‖Q) ≤ Dα(P‖R) +D∞(R‖Q).

4) Dα(P‖Q) ≤ α−α/β
α−1 Dβ(P‖R) + Dβ(R‖Q), for some

explicit β = 2α− .5 +O(1/α).

Proof. All claims follow from the weak triangle inequality

(Proposition 11) where p and q are chosen, respectively, as

1) p = q = 2.

2) p→∞ and q � p/(p− 1)→ 1.

3) q →∞ and p � q/(q − 1)→ 1.

4) such that αp = αq − 1 and 1/p+ 1/q = 1.

In the last case β � pα = 2α− .5 +O(1/α).
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