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Abstract—More and more quantum algorithms have been
designed for solving problems in machine learning, database
search and data analytics. An important problem then arises:
how privacy can be protected when these algorithms are used
on private data? For classical computing, the notion of differ-
ential privacy provides a very useful conceptual framework in
which a great number of mechanisms that protect privacy by
introducing certain noises into algorithms have been successfully
developed. This paper defines a notion of differential privacy
for quantum information processing. We carefully examine how
the mechanisms using three important types of quantum noise,
the amplitude/phase damping and depolarizing, can protect
differential privacy. A composition theorem is proved that enables
us to combine multiple privacy-preserving operations in quantum
information processing.

I. INTRODUCTION

One of the first quantum algorithms, the Grover algorithm
[1], was designed for database search. In the last decade, more
and more sophisticated and elaborate quantum algorithms for
data analytics and related problems have been discovered,
e.g. element distinctness [2], principal component analysis [3],
[4], data classification [5], machine learning [6]. Experiments
implementing these algorithms have also been reported, e.g.
[7].

A huge amount of data contains private information, e.g.
medical, insurance and banking data. Whenever quantum
computers become commercially available and these quantum
algorithms are used in real-world applications, an important
problem will need to be addressed [8]: how privacy can be
protected in quantum computation and quantum information
processing?

In the realm of classical computing, Dwork et al. [9],
[10] introduced the fundamental notion of differential privacy
by observing that it is impossible to completely avoid the
statistical disclosure defined by Dalenius [11]. Intuitively,
differential privacy guarantees that, the answer to a query
based on a statistical database is almost the same whether or
not any individual participates in the data set, so the privacy
of any participants will not be disclosed significantly. Within
this conceptual framework, a great number of mechanisms and
algorithms that protect privacy have been developed [12], [13],
[14], and applied in different fields, such as data analysis [15],
data mining [16] and machine learning [17].

Contributions of the paper: In this paper, we define a
notion of differential privacy for quantum operations; that is,

completely positive and trace-preserving (CPTP) maps, which
are the most general (discrete-time) mathematical formalism
of physically realisable operations on quantum systems [18]. It
can be used to measure privacy leak in quantum computation
and information processing. Furthermore, we introduce three
privacy mechanisms employing three widely used models
of quantum noises: generalized amplitude damping mecha-
nism, phase-amplitude damping mechanism and depolarizing
mechanism. The differential privacy parameters for each of
these cases are settled. A composition theorem is established
that enables us to accomplish a quantum computational or
information processing task by combining multiple privacy-
preserving operations.

Organisation of the paper: In Section II, for the conve-
nience of the reader, we first review some basic notions in
quantum theory and the definition of differential privacy for
classical computing. Then we formalize the notion of quantum
differential privacy. In Section III, we introduce three privacy
mechanisms using important and widely used quantum noises:
generalized amplitude damping mechanism, phase-amplitude
damping mechanism and depolarizing mechanism, respective-
ly. To further illustrate the notion of quantum differential
privacy, the differential privacy parameters for each of these
quantum noise models are calculated. We carefully compare
these three mechanisms with their privacy parameters. A com-
position theorem for combining different privacy mechanisms
is established in Section IV. In Section V, we present an
algorithm for computing privacy parameters through sampling
of inputs. Its accuracy is analysed at the end of this section. For
readability, the very technical proofs of several theorems are
postponed to Section VII-C. We draw conclusions and point
out some issues for future research in Section VII.

II. BASIC DEFINITIONS

In this section, we are going to formally define the notion
of differential privacy for quantum computation.

A. Quantum States

For the convenience of the reader, let us first briefly review
some basic notions in quantum theory; for details, the reader
can consult the standard textbook [18]. According to a basic
postulate of quantum mechanics, the state space of a quantum
system is a Hilbert space ℋ, i.e. a complex vector space
with an inner product that is complete in the sense that
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every Cauchy sequence has a limit. We use Dirac’s notation
∣𝜑⟩, ∣𝜓⟩, ... to denote vectors. The inner product of ∣𝜑⟩ and
∣𝜓⟩ is denoted ⟨𝜑∣𝜓⟩. A pure quantum state is represented by
a unit vector, i.e. a vector ∣𝜓⟩ with length

∥𝜓∥ =
√
⟨𝜓∣𝜓⟩ = 1.

For example, for finite 𝑛, an 𝑛-dimensional Hilbert space is
essentially the space ℂ

𝑛 of complex vectors. In particular,
the state space of a qubit (quantum bit) is the 2-dimensional
Hilbert space. A qubit can be in the basis states ∣0⟩, ∣1⟩, and
it can also be in their superpositions like

∣+⟩ =
∣0⟩ + ∣1⟩√

2
, ∣−⟩ =

∣0⟩ − ∣1⟩√
2

.

A mixed state of a quantum system is represented by an
ensemble

𝔼 = {(𝑝1, ∣𝜓1⟩), ..., (𝑝𝑘, ∣𝜓𝑘⟩)}
meaning that the system is in state ∣𝜓𝑖⟩ with probability 𝑝𝑖,
where 0 ≤ 𝑝𝑖 and

∑
𝑖 𝑝𝑖 = 1. A convenient mathematical tool

for the description of a mixed state is density operator. Let 𝐴
be a linear operator in Hilbert space 𝐴. The trace of 𝐴 is the
complex number

tr(𝐴) =
∑
𝑖

⟨𝑖∣𝐴∣𝑖⟩

where {∣𝑖⟩} is an orthonormal basis of the space, and ⟨𝑖∣𝐴∣𝑖⟩
stands for the inner product of ∣𝑖⟩ and 𝐴∣𝑖⟩. The external prod-
uct 𝐴 = ∣𝜑⟩⟨𝜓∣ of two vectors ∣𝜑⟩, ∣𝜓⟩ is an operator defined
as follows: 𝐴∣𝜂⟩ = ⟨𝜓∣𝜂⟩∣𝜑⟩ for each vector ∣𝜂⟩. For example,
in the 𝑛-dimensional space ℂ

𝑛, an operator is represented by
an 𝑛× 𝑛 complex matrix 𝐴 and tr(𝐴) =

∑
𝑖 𝐴𝑖𝑖 (the sum of

the entries on the main diagonal); if ∣𝜑⟩, ∣𝜓⟩ ∈ ℂ
𝑛, then its

external product is the multiplication ∣𝜑⟩⟨𝜓∣ of column vector
∣𝜑⟩ and the row vector ⟨𝜓∣ (the adjoint, i.e. conjugate and
transpose of ∣𝜓⟩). An operator 𝐴 is positive if ⟨𝜓∣𝐴∣𝜓⟩ ≥ 0
for every vector ∣𝜓⟩. A positive operator 𝜌 in ℋ is called a
density operator if 𝑡𝑟(𝜌) = 1. Now a mixed state represented
by ensemble 𝔼 can be described by the density operator

𝜌𝔼 =
∑
𝑖

𝑝𝑖∣𝜓𝑖⟩⟨𝜓𝑖∣;

in particular, a pure state ∣𝜓⟩ can be identified with the density
operator 𝜌 = ∣𝜓⟩⟨𝜓∣. For example, if a qubit is in state ∣0⟩
with probability 2

3 and in state ∣+⟩ with probability 1
3 , then it

can be modelled by the density matrix:

𝜌 =
2

3
∣0⟩⟨0∣ +

1

3
∣+⟩⟨+∣ =

1

6

(
5 1
1 1

)
. (1)

B. Quantum Operations

A basic operation on a quantum system is a quantum gate.
Mathematically, a quantum gate is modelled by a unitary
operator. An operator 𝑈 in Hilbert space ℋ is unitary if:

𝑈 †𝑈 = 𝑈𝑈 † = 𝐼,

where 𝑈 † is the adjoint of 𝑈 , and 𝐼 is the identity operator
in ℋ. For example, the Hadamard gate

𝐻 =
1√
2

(
1 1
1 −1

)
(2)

is a unitary operator in the 2-dimensional Hilbert space. After
it applies to a qubit in state ∣0⟩ (respectively, ∣1⟩), the qubit
will be in state ∣+⟩ (respectively, ∣−⟩).

Another basic operation on a quantum system is a quantum
measurement, which is essentially the way to extract infor-
mation about the quantum system. In quantum computation,
measurement is usually used to read out a computational
result. Mathematically, a measurement is modelled as a set
of operators 𝑀 = {𝐾𝑚} with the normalisation condition:∑

𝑚

𝐾†
𝑚𝐾𝑚 = 𝐼.

If we perform a measurement 𝑀 on a system in state 𝜌, then
an outcome 𝑚 is observed with probability

𝑝𝑚 = tr(𝐾𝑚𝜌𝐾†
𝑚),

and after that, the system will be in state:

𝐾𝑚𝜌𝐾†
𝑚

𝑝𝑚
.

For example, the measurement on a qubit (in the computational
basis ∣0⟩, ∣1⟩) is 𝑀 = {𝐾0, 𝐾1}, where:

𝐾0 = ∣0⟩⟨0∣ =

(
1 0
0 0

)
, 𝐾1 = ∣1⟩⟨1∣ =

(
0 0
0 1

)
.

If we perform 𝑀 on a qubit in (mixed) state 𝜌 given in
equation (1) then the probability that we get outcome 0 is

𝑝(0) = 𝑡𝑟
(

𝐾0𝜌𝐾†
0

)
=

5

6

and then the qubit is in state ∣0⟩. Similarly, outcome 1 is
obtained with probability 𝑝(1) = 1

6 and after that the qubit
is in ∣1⟩. It is worth noting that a major difference between
classical and quantum systems occurs here: measuring a clas-
sical system does not change its state, whereas after measuring
it, the state of the qubit is changed from 𝜌 to either ∣0⟩ or ∣1⟩.

A general operation on a quantum system with state Hilbert
space ℋ can be modelled as a mapping ℰ from density
operators in ℋ to themselves, which is completely positive
and satisfies the condition:

(Trace Preserving) : tr(ℰ(𝜌)) = tr(𝜌)(= 1)

for all density operators 𝜌. Quantum operations are the
discrete-time formalism of open quantum systems, i.e. systems
interacting with their environments. Kraus representation the-
orem provides a more convenient way to deal with quantum
operations: for each quantum operation ℰ , there is a family
{𝐸𝑖} of linear operators such that

ℰ(𝜌) =
∑
𝑖

𝐸𝑖𝜌𝐸†𝑖
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for all density operators 𝜌, where the Kraus operators 𝐸𝑖 are
required to satisfy the normalisation condition:∑

𝑖

𝐸†𝑖 𝐸𝑖 = 𝐼 (the identity operator).

For example, a unitary operator 𝑈 can be seen as the quantum
operation ℰ defined by

ℰ(𝜌) = 𝑈𝜌𝑈 †

for all density operators 𝜌, and after discarding the measure-
ment outcomes, a quantum measurement 𝑀 = {𝐾𝑚} can be
seen as a quantum operation ℰ defined by

ℰ(𝜌) =
∑
𝑚

𝐾𝑚𝜌𝐾†
𝑚

for all density operators 𝜌.

C. Classical Differential Privacy

To motivate the notion of quantum differential privacy,
we recall the definition of differential privacy for classical
computing from [9].

Definition 1 (Classical Differential Privacy). A randomized
function 𝒦 gives (𝜀, 𝛿)-differential privacy if for all data sets
𝐷 and 𝐷′ differing on one single participant, and for any set
of possible outcomes 𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒(𝒦),

Pr[𝒦(𝐷) ∈ 𝑆] ≤ exp(𝜀) ⋅ Pr[𝒦(𝐷′) ∈ 𝑆] + 𝛿. (3)

In the above definition, a classical computation process is
modelled by a randomised function 𝒦. A data set 𝐷 is an input
to the computation 𝒦, and the computational result (i.e. output)
is 𝒦(𝐷), which belongs to 𝑅𝑎𝑛𝑔𝑒(𝒦), the range of 𝒦. Since
𝒦 is a randomised function, it is reasonable to consider the
probability Pr[𝒦(𝐷) ∈ 𝑆] that the output is within a subset
𝑆 of 𝑅𝑎𝑛𝑔𝑒(𝒦) rather than an exact value of 𝒦(𝐷). Now
suppose that one of two data sets 𝐷 and 𝐷′ has a record of
some participant, but the other has not. Then inequality (3)
means that the difference between probabilities Pr[𝒦(𝐷) ∈
𝑆] and Pr[𝒦(𝐷′) ∈ 𝑆] is very small, and from them one
cannot observe the difference between 𝐷 and 𝐷′. Thus, the
participant’s privacy is preserved.

D. Quantum Differential Privacy

Now we are ready to formally define quantum differential
privacy. To this end, we have several design decisions to make:

1) We will use a general density operator rather than a pure
state to represent data in quantum computation. This
generality is very helpful in applications. For example, in
a quantum random access memory (QRAM) [19], [20],
we can query a superposition of addresses to the address
register

∑
𝑗 𝜙𝑗 ∣𝑗⟩𝑎, and the QRAM allows the data

register 𝑑 to obtain the data on each queried memory cell
simultaneously and return a state formed by the address
and data registers:∑

𝑗

𝜓𝑗 ∣𝑗⟩𝑎 QRAM−−−−→
∑
𝑗

𝜓𝑗 ∣𝑗⟩𝑎∣𝐷𝑗⟩𝑑

where ∣𝐷𝑗⟩𝑑 represents the state stored in the 𝑗th
memory cell. If we discard the address register and only
leave the data as an input to the quantum algorithm, it
would be an ensemble of quantum states and should be
represented by a density matrix.

2) In Definition 1, the difference between two classical data
sets 𝐷 and 𝐷′ is be measured by 𝑙1-norm. We will use
trace distance to measure the difference between quan-
tum data because it is a natural quantum generalisation
of 𝑙1-norm (see [18], Section 9.2.1). The trace distance
between two density operators 𝜌 and 𝜎 is defined to be

𝜏(𝜌, 𝜎) =
1

2
Tr∣𝜌 − 𝜎∣

where for an operator 𝐴, we define:

∣𝐴∣ =
√

𝐴†𝐴.

3) Roughly speaking, a quantum computation process or
algorithm consists of a series of quantum gates (i.e.
unitary transformations) and measurements with an input
and an output of either classical information or quantum
states. Obviously, it can be appropriately treated as
an open quantum system. To simplify our model and
capture the key point, we choose to describe a quantum
computation process by a quantum operation ℰ .

4) The output ℰ(𝜌) of quantum computation ℰ upon in-
put 𝜌 is a quantum state. So, we have to perform a
measurement, say 𝑀 = {𝐾𝑚}, in order to acquire
classical information from ℰ(𝜌). Since 𝑀 happens at the
end of the computational process, we are not concerned
with its post-measurement states. Then 𝑀 can be sim-
plified as a POVM (Positive Operator-Valued Measure)
𝑀 = {𝑀𝑚} with 𝑀𝑚 = 𝐾†

𝑚𝐾𝑚 for every 𝑚 because

𝑝𝑚 = tr(𝐾𝑚𝜌𝐾†
𝑚) = tr(𝑀𝑚𝜌)

(for details, see [18], Section 2.2.6). We write
Out(𝑀) = {𝑚} for the set of all possible outcomes
of 𝑀 . If we perform 𝑀 on a quantum system in
state 𝜌, then the probability of obtaining outcome 𝑚
is Tr[𝜌𝑀𝑚]. For any subset 𝑆 ⊆ 𝑂𝑢𝑡(𝑀), we write
Pr[𝜌 ∈𝑀 𝑆] for the probability that the outcome falls
into 𝑆 when performing 𝑀 on 𝜌; that is,

Pr[𝜌 ∈𝑀 𝑆] =
∑
𝑚∈𝑆

Tr[𝜌𝑀𝑚].

The above design decisions straightforwardly lead to the
following:

Definition 2 (Quantum Differential Privacy). Let 𝑑 ∈ (0, 1]
and 𝜀, 𝛿 > 0 be three constants. A quantum operation ℰ is
(𝜀, 𝛿)-differentially private if for every 𝑃𝑂𝑉 𝑀 𝑀 = {𝑀𝑚},
for all 𝑆 ⊆ 𝑂𝑢𝑡(𝑀), and for all inputs 𝜌, 𝜎 such that
𝜏(𝜌, 𝜎) ≤ 𝑑, it holds that

Pr[ℰ(𝜌) ∈𝑀 𝑆] ≤ exp(𝜀) ⋅ Pr[ℰ(𝜎) ∈𝑀 𝑆] + 𝛿. (4)

In particular, if 𝛿 = 0, we say that ℰ is 𝜀-differentially private.
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In the above definition, the trace distance 𝜏 is chosen to
characterize the difference between two adjacent databases 𝜌
and 𝜎. Indeed, it can be replaced by other distances between
mixed quantum states. The reason for using it is that it is
commonly used in quantum information theory and is easy to
compute in some cases. Moreover, the parameter 𝑑 appeared
in the above definition, but its value is not essential because
our theory of quantum differential privacy does not depends
on a concrete value of 𝑑.

Similar to the case of classical computing, quantum differ-
ential privacy is immune to post-processing: without additional
knowledge about the private databases, any quantum operation
performed on the output of a quantum differentially private
mechanism does not increase privacy loss.

Proposition 1 (Post-Processing). Let ℰ be a quantum opera-
tion that is (𝜀, 𝛿)-differentially private. Let ℱ be an arbitrary
quantum operation. Then the composition of ℰ and ℱ:

ℱ ∘ ℰ : 𝜌 �→ ℱ(ℰ(𝜌))

is (𝜀, 𝛿)-differentially private too.

The proof of this proposition is straightforward from Prop.
2 and Prop. 4 in Sec. V.

III. QUANTUM DIFFERENTIAL PRIVATE MECHANISM

To prevent that a user acquires private information contained
in the input from the precise output, various privacy mecha-
nisms have been proposed in the studies of differential privacy
and its applications [21]. The basic idea is to deliberately
introduce a certain noise to the output in order to protect the
privacy. This idea can be easily generalized to the quantum
case. Let 𝜌 be the input. Then ℰ(𝜌) is the precise output of
quantum computation modelled by quantum operation ℰ . The
computation agent might not directly give the output ℰ(𝜌)
to the user. Instead, it introduces a quantum noise, which is
described by another quantum operation ℰ𝑁 , at the end of the
computation. Thus, the user will receive ℰ𝑁 (ℰ(𝜌)). Then the
quantum noise mechanism for privacy-preserving computation
can be modelled by quantum operation:

ℰ𝑁 ∘ ℰ : 𝜌 �→ ℰ𝑁 (ℰ(𝜌)).

In this section, we consider the quantum privacy mecha-
nisms using three different models of quantum noises: ampli-
tude damping, phase damping and depolarizing, and compute
their differential privacy parameters. Each of the three kind
noises has a corresponding physical realization and can be
actually applied. For example, generalized amplitude damping
can be regarded as energy dissipation - an open system
interacts with its environment (bath) of nonzero temperature
[18], [22]. Phase damping can be realized as the evolution
of a photon which scatters randomly through a waveguide
[18], and an experiment realization using nuclear spin systems
was reported by Leung et al. in [23]. Depolarizing channel is
essentially a description of depolarizing phenomenon of mixed
quantum states.

A. Generalized amplitude damping

We first examine how can differential privacy be protected
by a generalized amplitude damping channel [18] for a single
qubit, which is defined as the quantum operation

ℰGAD(𝜌) =
3∑

𝑘=0

𝐸𝑘𝜌𝐸†𝑘

in the 2-dimensional Hilbert space ℋ2, where

𝐸0 =
√

𝑝

[
1 0
0

√
1 − 𝛾

]
, 𝐸1 =

√
𝑝

[
0

√
𝛾

0 0

]
,

𝐸2 =
√

1 − 𝑝

[ √
1 − 𝛾 0
0 1

]
, 𝐸3 =

√
1 − 𝑝

[
0 0√
𝛾 0

]
and 𝑝 and 𝛾 are two parameters. Suppose that a quantum
computation is modelled by a quantum operation ℰ : ℋ → ℋ2.
Then the privacy-preserving computation with generalized
amplitude damping as noise is depicted as the mapping:

𝜌 �→ ℳGAD(𝜌) = ℰGAD[ℰ(𝜌)].

To simplify the calculation, we only consider the case of
𝑝 = 0.5 and regard 𝛾 as a parameter.

Theorem 1. For all inputs 𝜌 and 𝜎 with 𝜏(𝜌, 𝜎) ≤ 𝑑,
the generalized amplitude damping noise mechanism ℳGAD

provides 𝜀-differential private where

𝜀 = ln

[
1 +

2𝑑
√

1 − 𝛾

1 −√
1 − 𝛾

]
.

In particular, if 𝑑/𝛾 ≪ 1, then

𝜀 ≈ 2𝑑
√

1 − 𝛾

1 −√
1 − 𝛾

,

which is linear in 𝑑.
The privacy parameter 𝜀 given here is optimal.

The proof of this theorem is very technical and daunting.
For readability, we postpone it to Subsection VI-A.

B. Composition of phase and amplitude damping

The phase damping channel [18] is defined by the operator-
sum representation

ℰPD(𝜌) = 𝐸0𝜌𝐸†0 + 𝐸1𝜌𝐸†1

where

𝐸0 =

[
1 0
0

√
1 − 𝜆

]
, 𝐸1 =

[
0 0

0
√

𝜆

]

Let see how the phase damping can be combined with
the amplitude damping to protect differential privacy. For a
quantum computation modelled by quantum operation ℰ :
ℋ → ℋ2, the phase-amplitude damping mechanism can be
depicted by the mapping:

𝜌 �→ ℳPAD(𝜌) = ℰGAD[ℰPD(ℰ(𝜌))].

Theorem 2. Let 𝑝 = 0.5 in ℰGAD. If the parameter 𝛾 in ℰGAD

and 𝜆 in ℰPD satisfy 𝜆 ≤ 𝛾, then for all inputs 𝜌 and 𝜎 such
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that 𝜏(𝜌, 𝜎) ≤ 𝑑, the phase-amplitude damping mechanism
ℳPAD provides 𝜀-differential private where

𝜀 = ln

[
1 +

2𝑑
√

1 − 𝛾
√

1 − 𝜆

1 −√
1 − 𝛾

√
1 − 𝜆

]
.

We omit the proof of the above theorem because it is almost
the same as the proof of Theorem 1.

C. Depolarizing mechanism

Depolarizing operation is an important type of quantum
noise which can be represented by the quantum operation:

ℰDep(𝜌) =
𝑝𝐼

𝐷
+ (1 − 𝑝)𝜌

where 𝐷 is the dimension of the state Hilbert space and 𝑝
is the probability parameter. Let a quantum computation be
described by quantum operation ℰ : ℋ → ℋ𝐷, where ℋ𝐷

is the 𝐷-dimensional Hilbert space. Then the depolarizing
mechanism is defined as the mapping:

𝜌 �→ ℳDep(𝜌) = ℰDep(ℰ(𝜌)).

Theorem 3. For all inputs 𝜌 and 𝜎 such that 𝜏(𝜌, 𝜎) ≤ 𝑑, the
depolarizing mechanism ℳDep in the 𝐷-dimension Hilbert
space provides 𝜀-differential private where

𝜀 = ln

[
1 +

1 − 𝑝

𝑝
𝑑𝐷

]
.

If 𝑑𝐷/𝑝 ≪ 1, then

𝜀 ≈ (1 − 𝑝)𝑑𝐷/𝑝,

which is linear in 𝑑.

For readability, the proof of this theorem is deferred to
Subsection VI-B.

D. Comparison between GAD, PAD and Dep mechanisms

The differential privacy parameters were computed for the
three mechanisms ℳGAD, ℳPAD and ℳDep. Now, let us
briefly compare the differences between the disturbed output
in these mechanisms and the exact output in the 2-dimensional
case. For any input 𝜌, assume the exact output is

ℰ(𝜌) =

[
𝑎 𝑏
𝑏∗ 𝑐

]

then the trace distances between the disturbed output and the
exact output are given as follows:

𝜏(ℰ(𝜌),ℳGAD(𝜌)) =√
𝑏2(1 −√1 − 𝛾𝑔)2 + (𝑎 − 𝑐)2𝛾2

𝑔/4;

𝜏(ℰ(𝜌),ℳPAD(𝜌)) =√
𝑏2(1 −√1 − 𝛾𝑝

√
1 − 𝜆)2 + (𝑎 − 𝑐)2𝛾2

𝑝/4;

𝜏(ℰ(𝜌),ℳDep(𝜌)) =
√

𝑏2𝑝2 + (𝑎 − 𝑐)2𝑝2/4.

Here, the parameter 𝛾 in the GAD mechanism ℳGAD and
in the PAD mechanism ℳPAD are denoted by 𝛾𝑔 and 𝛾𝑝,
respectively. If we set:

1 − 𝛾𝑔 = (1 − 𝛾𝑝)(1 − 𝜆),

the differential privacy parameter 𝜀 for GAD and PAD given
in Theorems 1 and 2 are the same. It is easy to see that

𝜏(ℰ(𝜌),ℳGAD(𝜌)) ≥ 𝜏(ℰ(𝜌),ℳPAD(𝜌)).

So, we conclude that whenever PAD and GAD preserve the
same level of privacy, the disturbance of PAD is smaller than
that of GAD; that is, PAD gives a higher authenticity than
GAD. We further see that whenever 𝛾𝑝 = 𝜆, PAD reaches
the highest authenticity. On the other hand, we note that the
PAD mechanism and the depolarizing mechanism are actually
the same when 𝛾𝑝 = 𝜆 = 𝑝. Therefore, for the most cases,
the disturbance of output in the three mechanisms has the
following ordering:

𝜏(ℰ(𝜌),ℳDep(𝜌)) ≤ 𝜏(ℰ(𝜌),ℳPAD(𝜌)) ≤ ℳGAD(𝜌)).

E. An Illustrative Example

To conclude this section, we give a simple example that
shows how the quantum privacy mechanisms presented above
work. Suppose the curator holds a database which stores
one qubit information; that is, a quantum state ∣𝜓⟩ ∈
Span{∣0⟩, ∣1⟩}, for each participant. The curator only accepts
the query of averaging and she/he responds with a quantum
state of which the density operator is:

ℰ(𝜌) =
1

𝑛

∑
𝑖

∣𝜓𝑖⟩⟨𝜓𝑖∣

where 𝜌 represents the database, 𝑛 is the number of partici-
pants, ∣𝜓𝑖⟩ is the information of 𝑖th participants, and the sum
is over all participants.

To convince a potential participant 𝐴 that joining this
database would not leak his personal information, we need
to ensure that it is almost impossible to decide whether an
individual 𝐴 participates or not from the curator’s response
for any given query. So, we consider the worst case that there
is a very powerful adversary who knows the information of
all the participants except 𝐴. We further assume that 𝐴’s
information is represented by state ∣1⟩ and all of the others’
are represented by ∣0⟩. Thus, without 𝐴’s information, we have
ℰ(𝜌1) = ∣0⟩⟨0∣. If 𝐴 joins the database, then

ℰ(𝜌2) =
𝑛 − 1

𝑛
∣0⟩⟨0∣ +

1

𝑛
∣1⟩⟨1∣.

The adversary has a certain probability to fully distinguish 𝜌1

and 𝜌2; for example, she/he can use POVM {𝑀𝑦𝑒𝑠, 𝑀𝑛𝑜∣}
to measure the respond state, where 𝑀𝑦𝑒𝑠 = ∣0⟩⟨0∣, 𝑀𝑛𝑜 =
∣1⟩⟨1∣. If the measurement result is “no”, then the adversary
knows that 𝐴 participates in the database.
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To avoid this, one can use, for example, the depolarizing
mechanism and choose the parameter 𝑝 = 2

𝑛+2 . Then:

ℳDep(𝜌1) =

( 𝑛+1
𝑛+2 0

0 1
𝑛+2

)
,

ℳDep(𝜌2) =

( 𝑛
𝑛+2 0

0 2
𝑛+2

)
.

Now, it is impossible to fully distinguish ℳDep(𝜌1) and
ℳDep(𝜌2) with a small number of copies of the response.
Using Theorem 3 we obtain the differential privacy parameter

𝜀 = ln

[
1 +

1 − 𝑝

𝑝
⋅ 1

𝑛
⋅ 2

]
= ln 2,

which means that, for any POVM 𝑀 = {𝑀𝑚} and any
possible outcome 𝑚, we have:

1

2
≤ 𝑝𝑚[ℳDep(𝜌1)]

𝑝𝑚[ℳDep(𝜌2)]
≤ 2.

The above inequality actually characterizes the difference
between computational outcomes for 𝜌1 and 𝜌2 in the worst
case.

IV. COMPOSITION THEOREMS

In the previous sections, we only considered the differential
privacy for a single quantum operation. In many practical
applications, however, we often need to deal with much more
complicated situations where a data user may combine the
responses of several queries based on different databases, and
then perform the linkage attacks or re-identification [21] to
discover personal information. Thus, it is desirable to establish
some laws for the differential privacy of the combination of
several quantum operations. Such laws will be very useful in
the design of sophisticated quantum algorithms for privacy
preserving data analytics.

The aim of this section is to prove several combination
theorems for quantum differential privacy. These theorems
are quantum generalisations of the combination theorems for
classical differential privacy [21]. Let us start from the simple
case of 𝜀-differential privacy (without parameter 𝛿).

Theorem 4. Let ℳ1 : ℋ1 �→ ℋ𝐴 be an 𝜀1-differentially
private quantum algorithm, and let ℳ2 : ℋ2 �→ ℋ𝐵 be an
𝜀2-differentially private quantum algorithm, and assume that
they are independent. Their combination

ℳ1,2 : ℋ1 ⊗ℋ2 �→ ℋ𝐴 ⊗ℋ𝐵

is defined by

ℳ1,2(𝜌, 𝜎) = ℳ1(𝜌) ⊗ℳ2(𝜎)

for all density operators 𝜌 in ℋ1 and 𝜎 in ℋ2. Then ℳ1,2 is
(𝜀1 + 𝜀2)-differentially private.

Before we start to prove the theorem, let us make some
clarifications. First, the input 𝜌 and 𝜎 of ℳ1,2 should not be
entangled because they are assumed to be independent of each
other. Second, two input states 𝜑 = 𝜌⊗𝜎 and 𝜑′ = 𝜌′⊗𝜎′ of

ℳ1,2 are considered as adjacent if and only if 𝜌 and 𝜌′ are
adjacent databases, and 𝜎 and 𝜎′ are adjacent. Moreover, the
parameter 𝑑 in Def. 2 is not essential here, as we only care
about when the databases inputted to ℳ1,2 are adjacent.

Proof. Suppose 𝜌1 = ℳ1(𝜌) and 𝜌2 = ℳ1(𝜌′), where quan-
tum states 𝜌 and 𝜌′ are used to denote two adjacent databases.
The same way, assume 𝜎1 = ℳ2(𝜎) and 𝜎2 = ℳ2(𝜎′),
where 𝜎 and 𝜎′ represent two adjacent databases. Now, we
prove that for any pure state ∣𝜙⟩ ∈ ℋ𝐴 ⊗ℋ𝐵 , we have:

Tr[𝜌1 ⊗ 𝜎1∣𝜙⟩⟨𝜙∣] ≤ 𝑒𝜀1+𝜀2Tr[𝜌2 ⊗ 𝜎2∣𝜙⟩⟨𝜙∣],
which directly leads to the theorem. Using the Schmidt de-
composition theorem, we can write:

∣𝜙⟩ =
∑
𝑖

𝑝𝑖∣𝛼𝑖⟩∣𝛽𝑖⟩

where ∣𝛼𝑖⟩ and ∣𝛽𝑖⟩ are orthonormal states for system 𝐴 and
𝐵, respectively. We also decompose 𝜎1 in these bases as
follows:

𝜎1 =
∑
𝑘

𝑟𝑘

(∑
𝑙

𝑏𝑘𝑙∣𝛽𝑙⟩
∑
𝑙′

𝑏†𝑘𝑙′⟨𝛽𝑙′ ∣
)

=
∑
𝑘

𝑟𝑘
∑
𝑙𝑙′

𝑏𝑘𝑙𝑏
†
𝑘𝑙′ ∣𝛽𝑙⟩⟨𝛽𝑙′ ∣.

Then we have:

Tr[𝜌1 ⊗ 𝜎1∣𝜙⟩⟨𝜙∣] =
∑
𝑖𝑗

𝑝𝑖𝑝
†
𝑗⟨𝛼𝑗 ∣𝜌1∣𝛼𝑖⟩⟨𝛽𝑗 ∣𝜎1∣𝛽𝑖⟩

=
∑
𝑖𝑗

𝑝𝑖𝑝
†
𝑗⟨𝛼𝑗 ∣𝜌1∣𝛼𝑖⟩

∑
𝑘

𝑟𝑘
∑
𝑙𝑙′

𝑏𝑘𝑙𝑏
†
𝑘𝑙′⟨𝛽𝑗 ∣𝛽𝑙⟩⟨𝛽𝑙′ ∣𝛽𝑖⟩

=
∑
𝑘

𝑟𝑘
∑
𝑖𝑗

(𝑝𝑖𝑏
†
𝑘𝑖)(𝑝𝑗𝑏

†
𝑘𝑗)

†⟨𝛼𝑗 ∣𝜌1∣𝛼𝑖⟩

=
∑
𝑘

𝑟𝑘Tr[𝜌1∣𝜓𝑘⟩⟨𝜓𝑘∣]

≤
∑
𝑘

𝑟𝑘𝑒𝜀1Tr[𝜌2∣𝜓𝑘⟩⟨𝜓𝑘∣]

= 𝑒𝜀1Tr[𝜌2 ⊗ 𝜎1∣𝜙⟩⟨𝜙∣]
≤ 𝑒𝜀1+𝜀2Tr[𝜌2 ⊗ 𝜎2∣𝜙⟩⟨𝜙∣].

Here, the states

∣𝜓𝑘⟩ =
∑
𝑖

𝑝𝑖𝑏
†
𝑘𝑖∣𝛼𝑖⟩

for every 𝑘.

As a straightforward corollary of the above theorem, we can
combine more than two quantum algorithms.

Corollary 1. For each 𝑖 ∈ [𝑘], let ℳ𝑖 : ℋ𝑖 �→ ℋ′𝑖 be an
𝜀𝑖-differentially private quantum algorithm, and assume that
they are independent. Their combination

ℳ[𝑘] :
𝑘⊗

𝑖=1

ℋ𝑖 �→
𝑘⊗

𝑖=1

ℋ′𝑖
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is defined by

ℳ[𝑘](𝜌1, 𝜌2, ⋅ ⋅ ⋅ , 𝜌𝑘) =

𝑘⊗
𝑖=1

ℳ𝑖(𝜌𝑖)

for all density operators 𝜌𝑖 in ℋ𝑖. Then ℳ[𝑘] is (
∑𝑘

𝑖=1 𝜀𝑖)-
differentially private.

We now extend Theorem 4 to the general case of (𝜀, 𝛿)-
differential privacy.

Theorem 5. Let ℳ1 be an (𝜀1, 𝛿1)-differentially private
quantum algorithm and ℳ2 an (𝜀2, 𝛿2)-differentially private
quantum algorithm, and assume that they are independent.
Then their combination ℳ1,2(𝜌, 𝜎) is (𝜀1 + 𝜀2, 𝛿1 + 𝛿2)-
differentially private.

The proof of the above theorem requires a technical lemma,
which is essentially a quantum generalisation of Lemma
3.17(1) in [21].

Lemma 1. Consider two arbitrary density operators 𝜌 and 𝜎
satisfying the condition:

Tr[𝜌𝑀 ] ≤ 𝑒𝜀Tr[𝜎𝑀 ] + 𝛿

for any positive semi-definite matrices 𝑀 ≤ 𝕀. Then there
exists a density operator 𝜚 such that for any positive semi-
definite matrices 𝑀 ≤ 𝕀, the following two conditions always
holds:

Tr[𝜌𝑀 ] ≤ Tr[𝜚𝑀 ] + 𝛿 ⇔ 𝜏(𝜌, 𝜚) ≤ 𝛿

Tr[𝜚𝑀 ] ≤ 𝑒𝜀Tr[𝜎𝑀 ]

Proof. We first present Algorithm 1 to find such 𝜚 and
then prove that it satisfies the above conditions. Using an
orthonormal basis ∣𝜓1⟩, ⋅ ⋅ ⋅ , ∣𝜓𝑛⟩, operator 𝜌 − 𝑒𝜀𝜎 can be
diagonalised, as so 𝜌 and 𝜎 have the property: 𝜌𝑖𝑗 = 𝑒𝜀𝜎𝑖𝑗 for
all 𝑖 ∕= 𝑗. Furthermore, we perform a quantum measurement

Algorithm 1: Separation of 𝜀 and 𝛿

1 Given inputs 𝜌 and 𝜎 and 𝜀, 𝛿.
2 // 𝜌 and 𝜎 are two density operators

in Hilbert space ℋ.
3 Let 𝑛 be the dimension of the Hilbert space ℋ.
4 Let ∣𝜓𝑖⟩ be the eigenvectors of 𝜌 − 𝑒𝜀𝜎.
5 Let 𝑝𝑖 = Tr[𝜌∣𝜓𝑖⟩⟨𝜓𝑖∣], and 𝑞𝑖 = Tr[𝜎∣𝜓𝑖⟩⟨𝜓𝑖∣].
6 For two distributions 𝑃 = {𝑝𝑖} and 𝑄 = {𝑞𝑖}, find the

distribution 𝑅 = {𝑟𝑖} s.t.:

Δ(𝑃, 𝑅) ≤ 𝛿 , 𝐷∞(𝑅∣∣𝑄) ≤ 𝜀.

7 Let 𝜚 = 𝜌 +
∑𝑛

𝑖=1(𝑟𝑖 − 𝑝𝑖)∣𝜓𝑖⟩⟨𝜓𝑖∣.
8 Return 𝜚;

{𝑀𝑖 = ∣𝜓𝑖⟩⟨𝜓𝑖∣} on states 𝜌 and 𝜎 in the same basis. Suppose
that the distributions of outcomes are 𝑃 = {𝑝𝑖} and 𝑄 = {𝑞𝑖},
respectively. Then these two distributions satisfy:∑

𝑖∈𝑆
𝑝𝑖 ≤ 𝑒𝜀

∑
𝑖∈𝑆

𝑞𝑖 + 𝛿

for all 𝑆 ⊆ [𝑛]. Adopting the definitions of max divergence
𝐷∞, 𝛿-approximate max divergence 𝐷𝛿

∞ and 𝛿-close Δ in
[21], we have:

𝐷𝛿
∞(𝑃 ∣∣𝑄) ≤ 𝜀.

So, there exists 𝑅 = {𝑟𝑖} such that Δ(𝑅, 𝑃 ) ≤ 𝛿 and
𝐷∞(𝑅∣∣𝑄) ≤ 𝜀 according to Lemma 3.17 in [21]. We now
see that

𝜏(𝜌, 𝜚) =
1

2
Tr∣𝜌 − 𝜚∣

=
1

2
Tr

∣∣∣∣∣
𝑛∑
𝑖=1

(𝑟𝑖 − 𝑝𝑖)∣𝜓𝑖⟩⟨𝜓𝑖∣
∣∣∣∣∣

= Δ(𝑅, 𝑃 ) ≤ 𝛿.

Moreover, for all ∣𝜙⟩ =
∑𝑛

𝑖=1 𝜆𝑖∣𝜓𝑖⟩, we have:

Tr[𝜚∣𝜙⟩⟨𝜙∣] =

𝑛∑
𝑖=1

𝜆𝑖𝜆𝑖𝜚𝑖𝑖 +
∑
𝑖∕=𝑗

𝜆𝑖𝜆𝑗𝜚𝑖𝑗

=

𝑛∑
𝑖=1

𝜆𝑖𝜆𝑖𝑟𝑖 +
∑
𝑖∕=𝑗

𝜆𝑖𝜆𝑗𝜌𝑖𝑗

≤
𝑛∑
𝑖=1

𝜆𝑖𝜆𝑖𝑒
𝜀𝑞𝑖 +

∑
𝑖 ∕=𝑗

𝜆𝑖𝜆𝑗𝑒
𝜀𝜎𝑖𝑗

=

𝑛∑
𝑖=1

𝜆𝑖𝜆𝑖𝑒
𝜀𝜎𝑖𝑖 +

∑
𝑖∕=𝑗

𝜆𝑖𝜆𝑗𝑒
𝜀𝜎𝑖𝑗

=𝑒𝜀Tr[𝜎∣𝜙⟩⟨𝜙∣]
Finally, combining the above two inequalities immediately
yields the lemma.

Now, we are ready to prove Theorem 5.

Proof of Theorem 5. Let 𝜌1 and 𝜎1 be the outputs of ℳ1 of
two adjacent databases, and let 𝜌2 and 𝜎2 be the outputs of
ℳ2 of other two adjacent databases. Using Algorithm 1, we
can first find 𝜚1 and 𝜚2 such that:

𝜏(𝜌1, 𝜚1) ≤ 𝛿1, 𝜏(𝜌2, 𝜚2) ≤ 𝛿2,

∀ 0 ≤ 𝑀 ≤ 𝕀𝐴, Tr[𝜚1𝑀 ] ≤ 𝑒𝜀1Tr[𝜎1𝑀 ],

∀ 0 ≤ 𝑀 ≤ 𝕀𝐵 , Tr[𝜚2𝑀 ] ≤ 𝑒𝜀2Tr[𝜎2𝑀 ].

Then for any measurement 𝑀 in ℋ𝐴⊗ℋ𝐵 (0 ≤ 𝑀 ≤ 𝕀𝐴𝐵),
using Theorem 4 we obtain:

Tr[𝜌1 ⊗ 𝜌2𝑀 ]

= Tr[𝜚1 ⊗ 𝜚2𝑀 ] + {Tr[𝜌1 ⊗ 𝜌2𝑀 ] − Tr[𝜚1 ⊗ 𝜚2𝑀 ]}
≤ 𝑒𝜀1+𝜀2Tr[𝜎1 ⊗ 𝜎2𝑀 ] + 𝜏(𝜌1 ⊗ 𝜌2, 𝜚1 ⊗ 𝜚2)

≤ 𝑒𝜀1+𝜀2Tr[𝜎1 ⊗ 𝜎2𝑀 ] + 𝜏(𝜌1, 𝜚1) + 𝜏(𝜌2, 𝜚2)

= 𝑒𝜀1+𝜀2Tr[𝜎1 ⊗ 𝜎2𝑀 ] + (𝛿1 + 𝛿2).

Symmetrically, we can prove:

Tr[𝜎1 ⊗ 𝜎2𝑀 ] ≤ 𝑒𝜀1+𝜀2Tr[𝜌1 ⊗ 𝜌2𝑀 ] + (𝛿1 + 𝛿2)

for all measurements 𝑀 in ℋ𝐴⊗ℋ𝐵 (0 ≤ 𝑀 ≤ 𝕀𝐴𝐵). Thus,
we complete the proof.
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Theorem 5 can also be easily generalised to the case of
combining more than two quantum algorithms.

Corollary 2. For each 𝑖 ∈ [𝑘], let ℳ𝑖 : ℋ𝑖 �→ ℋ′𝑖 be an
(𝜀𝑖, 𝛿𝑖)-differentially private quantum algorithm, and assume
that they are independent. Then their combination ℳ[𝑘] is
(
∑𝑘

𝑖=1 𝜀𝑖,
∑𝑘

𝑖=1 𝛿𝑖)-differentially private.

A. Advanced Composition Theorem

Theorems 4 and 5 show that once an individual shares
her/his information in several databases, the risk of leaking
his information will increase; more precisely, the differential
privacy parameter 𝜀 and 𝛿 will grow linearly in the number
of databases. Of course, if these parameters can degrade more
slowly, then we can design quantum algorithms with less noise
and preserve more useful information. Dwork and Roth [21]
introduced an adaptive combination of classical algorithms and
proved an advanced composition theorem that allows the priva-
cy parameters to degrade much slower. In this subsection, we
generalise this advanced composition theorem into a quantum
setting where a certain measurement is performed at each step.

Let us first formally define the computational model. As-
sume that ℱ is a set of quantum algorithms. We introduce
two experiments that can be seen as adaptive combination of
quantum algorithms in ℱ .

Definition 3 (Experiment 𝑏 ∈ {0, 1}). The experiment 𝑏
consists of 𝑘 rounds of data access experiment. For each
𝑖 = 1, ⋅ ⋅ ⋅ , 𝑘:

1) The input at step 𝑖 is two adjacent databases represented
by quantum states (density operators) 𝜎0

𝑖 and 𝜎1
𝑖 .

2) The adversary A chooses:

a) a quantum algorithm ℳ𝑖 ∈ ℱ;
b) a POVM 𝑃𝑖 used to measure the output quantum

state; and
c) parameters 𝑤0

𝑖 and 𝑤1
𝑖 . The parameter 𝑤𝑏

𝑖 is
determined by the previous results; that is,

𝑤𝑏
𝑖 = 𝑓(𝑦𝑏1, 𝑦

𝑏
2, ⋅ ⋅ ⋅ , 𝑦𝑏𝑖−1).

3) The adversary A receives a quantum state

𝜌𝑏𝑖 = ℳ𝑖(𝑤
𝑏
𝑖 , 𝜎

𝑏
𝑖 ),

performs the POVM 𝑃𝑖, and gains the result 𝑦𝑏𝑖 .

It is clear that in the experiments defined above, the ad-
versary 𝐴 is given the most powerful ability to influence the
databases and queries. So, these experiments can be regarded
as the worst case where no more information can be leaked.
The situation considered in the above definition is referred
as the measure-each-step scenario because at each round the
adversary 𝐴 performs a POVM.

For each 𝑏 ∈ {0, 1}, the view 𝑉 𝑏 of adversary 𝐴 in
experiment 𝑏 is defined to be the vector (𝑦𝑏1, 𝑦

𝑏
2, ⋅ ⋅ ⋅ , 𝑦𝑏𝑘) of

the results at all steps.

Definition 4. We say the set ℱ of quantum algorithms is (𝜀, 𝛿)-
differential private under 𝑘-fold adaptive composition if for
any adversary 𝐴, we have:

𝐷𝛿
∞(𝑉 0∣∣𝑉 1) ≤ 𝜀

where 𝐷𝛿
∞(𝑌 ∣∣𝑍) stands for the 𝛿-max divergence of random

variables 𝑌 and 𝑍; that is,

𝐷𝛿
∞(𝑌 ∣∣𝑍) = max

𝑆⊆Supp(𝑌 );
Pr[𝑌 ∈𝑆]≥𝛿

ln
Pr[𝑌 ∈ 𝑆] − 𝛿

Pr[𝑍 ∈ 𝑆]
.

Theorem 6 (Advanced Composition Theorem for Mea-
sure-Each-Step Scenario). Let 𝜀, 𝛿, 𝛿′ ≥ 0, and let ℱ be a
set of quantum algorithms. If each algorithm in ℱ is (𝜀, 𝛿)-
differentially private, then ℱ is (𝜀′, 𝑘𝛿+𝛿′)-differential private
under 𝑘-fold adaptive composition, where:

𝜀′ =
√

2𝑘 ln(1/𝛿′)𝜀 + 𝑘𝜀(𝑒𝜀 − 1).

Proof. If we combine the quantum algorithm and POVM
together, with the same parameter 𝑤0

𝑖 = 𝑤1
𝑖 , then we know

that
𝐷𝛿
∞(𝑦0

𝑖 ∣∣𝑦1
𝑖 ) ≤ 𝜀, 𝐷𝛿

∞(𝑦1
𝑖 ∣∣𝑦0

𝑖 ) ≤ 𝜀.

The rest part of the proof is exactly the same as that for the
classical case given in [21].

V. ALGORITHM FOR COMPUTING QUANTUM PRIVACY

PARAMETERS

In Section III, we gave the privacy parameters 𝜆 and 𝛿 for
three simple quantum noise models. In general, however, it is
very hard to compute the privacy parameters 𝜀 and 𝛿 directly
using Definition 2. In this section, we develop an algorithm for
the calculation of privacy parameters for a general quantum
operation.

A. Proportional Distance

Let us first prepare a very useful mathematical tool.

Definition 5 (Proportional Distance). For two density opera-
tors 𝜌 and 𝜎, their proportional distance is defined as:

PD(𝜌, 𝜎) = sup
{𝑀𝑚},𝑚

max

(
ln

𝑞𝑚
𝑝𝑚

, ln
𝑝𝑚
𝑞𝑚

)
(5)

where the supremum is over all POVMs {𝑀𝑚} and all
possible outcomes 𝑚,

𝑝𝑚 ≡ Tr[𝜌𝑀𝑚], 𝑞𝑚 ≡ Tr[𝜎𝑀𝑚]

are the probabilities of obtaining outcome 𝑚 when the mea-
surement is performed on 𝜌, 𝜎, respectively, and we make the
conventions 0

0 = 1, 1
0 = +∞, ln 0 = −∞, ln +∞ = +∞.

From the defining equation (4) of quantum differential
privacy, we see that a key step to compute privacy parameters
𝜀 and 𝛿 is to evaluate the quantity

ln
Pr[ℰ(𝜌) ∈𝑀 𝑆]

Pr[ℰ(𝜎) ∈𝑀 𝑆]
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which can often be done by calculating the proportional
distance between ℰ(𝜌) and ℰ(𝜎), as clearly indicated by
equation (5).

Some basic properties of proportional distance are collected
in the following:

Proposition 2. 1) PD is a distance; that is,

a) PD(𝜌, 𝜎) ≥ 0, and PD(𝜌, 𝜎) = 0 if and only if
𝜌 = 𝜎.

b) PD(𝜌, 𝜎) = PD(𝜎, 𝜌).
c) Triangle inequality:

𝑃𝐷(𝜌, 𝜎) ≤ PD(𝜌, 𝛿) + PD(𝛿, 𝜎).

2) PD is preserved by unitary transformations, and every
quantum operation ℰ is contractive with respect to PD;
that is,

PD(ℰ(𝜌), ℰ(𝜎)) ≤ PD(𝜌, 𝜎).

The second part of this proposition shows that no physical
process can increase the proportional distance between two
quantum states. A similar result for a different distance be-
tween quantum states, namely trace distance, was presented
in [18], Theorem 9.2.

The proof of the first part of the above proposition is trivial,
and the second part is a special case of Proposition 4 below.

As we pointed out before, proportional distance PD can be
used to compute the differential privacy parameters 𝜀 and 𝛿
for quantum operations. However, PD itself is also not easy to
compute if we simply use Definition 5. The following proposi-
tion gives a way for computing the proportional distance much
simpler than its definition.

Proposition 3.

PD(𝜌, 𝜎) = sup
∣𝜓⟩

∣∣∣∣ln ⟨𝜓∣𝜌∣𝜓⟩
⟨𝜓∣𝜎∣𝜓⟩

∣∣∣∣ (6)

where the supremum is over all pure states.

Proof. For any POVM 𝑀 = {𝑀𝑚} and any outcome 𝑚 of
𝑀 , 𝑀𝑚 is a positive operator. So, 𝑀𝑚 can be diagonalized
as

𝑀𝑚 =
∑
𝑖

𝑝𝑖∣𝜓𝑖⟩⟨𝜓𝑖∣

where 0 < 𝑝𝑖 ≤ 1 (and
∑

𝑖 𝑝𝑖 ≤ 1). Then we have:

Tr[𝜌𝑀𝑚]

Tr[𝜎𝑀𝑚]
=

∑
𝑖 𝑝𝑖Tr[𝜌𝑃𝑖]∑
𝑖 𝑝𝑖Tr[𝜎𝑃𝑖]

≤ max
𝑖

Tr[𝜌𝑃𝑖]

Tr[𝜎𝑃𝑖]

where 𝑃𝑖 = ∣𝜓𝑖⟩⟨𝜓𝑖∣. This directly leads to equation (6).

B. Computing Proportional Distance

As discussed in the above subsection, computation of pri-
vacy parameters 𝜀, 𝛿 depends heavily on the calculation of the
proportional distance of quantum states. Furthermore, Propo-
sition 3 provides a way to compute proportional distance PD .
But actually, it is mainly useful for the theoretical calculation.

In this subsection, we present an efficient algorithm that can
compute approximate values of PD in practical applications.
To simplify the presentation, let us first introduce a notation:

dPD(𝜌, 𝜎) = sup
0<𝑀≤𝕀

ln
Tr(𝑀𝜌)

Tr(𝑀𝜎)
.

Obviously, we have:

PD(𝜌, 𝜎) = max(dPD(𝜌, 𝜎), dPD(𝜎, 𝜌)). (7)

Now we can present Algorithm 2, which efficiently calculate
dPD with an error smaller than 𝜃. Then the proportional
distance PD between 𝜌 and 𝜎 can be computed using equation
(7).

Remark 1. Essentially, calculating PD is a Linear Program-
ming Problem and can be solved in polynomial time (w.r.t.
the dimension of density operator). It can be done using cvx
toolkit based on convex geometry [24]. For a fixed accuracy 𝜃,
we guess that the complexity of Algorithm 2 is 𝑂(𝑁3 log 𝑁),
where N is the dimension of the density operators 𝜌, 𝜎 and the
factor 𝑁3 comes from that of diagonalizing the matrices, but
we failed to prove it.

Algorithm 2: Computing dPD

1 Function DPD (𝜌, 𝜎, 𝜃)
2 // 𝜌 and 𝜎 are two density operators

in Hilbert space ℋ and 𝜃 is the
desired accuracy.

3 Let 𝑛 be the dimension of the Hilbert space ℋ.
4 Set real number 𝑚𝑎𝑥 = 0, 𝜆 = ∞.
5 while ∣𝑚𝑎𝑥 − 𝜆∣ > 𝜃 do
6 𝜆 = 𝑚𝑎𝑥;
7 𝑚𝑎𝑥 = max𝑖(𝜌𝑖𝑖/𝜎𝑖𝑖);
8 𝜂 = 𝜌 − 𝑚𝑎𝑥 ∗ 𝜎;
9 Diagonalize 𝜂: 𝜂 = 𝑃𝐷𝑃 †;

10 // 𝑃 is unitary and 𝐷 is diagonal
matrix.

11 𝜌 = 𝑃 †𝜌𝑃 ;
12 𝜎 = 𝑃 †𝜎𝑃 ;
13 end
14 Return ln 𝑚𝑎𝑥;

C. Accuracy of Sampling Inputs

For a given pair 𝜌, 𝜎, we can compute PD(𝜌, 𝜎) using
Algorithm 2. However, it is clear from Definition 2 that
computing the privacy parameters 𝜀, 𝛿 requires us to consider
all adjacent inputs 𝜌, 𝜎 (i.e. input pairs 𝜌, 𝜎 with 𝜏(𝜌, 𝜎) ≤ 𝑑).
To address this issue, our strategy is to find a sample set 𝒫 ′
to represent 𝒫 , where 𝒫 denotes the set of all possible inputs.
Now the question is: how accurate can be the computed values
of 𝜀, 𝛿 by a sampling of inputs?

To answer the above question, we need a notion of 𝛿-
approximation of proportional distance.
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Definition 6 (𝛿-Proportional Distance). Using the same nota-
tions as in Def. 5, 𝛿-proportional distance is defined to be:

PD𝛿(𝜌, 𝜎)

= sup
{𝑀𝑚},
𝒮⊆{𝑚}

ln max

(∑
𝑚∈𝒮 𝑞𝑚 − 𝛿∑

𝑚∈𝒮 𝑝𝑚
,

∑
𝑚∈𝒮 𝑝𝑚 − 𝛿∑

𝑚∈𝒮 𝑞𝑚
, 0

)
.

Obviously, if 𝛿 = 0, then

PD𝛿(𝜌, 𝜎) = PD(𝜌, 𝜎).

The following proposition is a generalisation of clause 2) of
Proposition 2 , and it shows that any physical process cannot
increase the 𝛿-proportional distance between two quantum
states.

Proposition 4. PD𝛿 is preserved by unitary transformations,
and every quantum operation ℰ is contractive with respect to
PD𝛿; that is,

PD𝛿(ℰ(𝜌), ℰ(𝜎)) ≤ PD𝛿(𝜌, 𝜎).

Proof. Let ℰ(𝜌) =
∑

𝑘 𝐸𝑘𝜌𝐸†𝑘 be an operator-sum represen-
tation of ℰ . For an arbitrary POVM 𝑀 = {𝑀𝑚}, we define:

𝑄𝑚𝑘 = 𝐸†𝑘𝑀†
𝑚𝑀𝑚𝐸𝑘

for every 𝑚, 𝑘. Then
∑

𝑘,𝑚 𝑄𝑚𝑘 = 𝐼 and 𝑄 = {𝑄𝑚𝑘} is a
POVM too. We assume that 𝜖 = 𝑃𝐷𝛿(𝜌, 𝜎) < ∞, and write:

𝑝𝑚𝑘 = Tr[𝜌𝑄𝑚𝑘], 𝑞𝑚𝑘 = Tr[𝜌𝑄𝑚𝑘].

Then for any subset 𝒮 ⊆ 𝑂𝑢𝑡(𝑀), note that

{𝑚𝑘∣𝑚 ∈ 𝒮, 𝑘 ∈ {𝑘}} ⊆ 𝑂𝑢𝑡(𝑄)

and so we obtain: ∑
𝑚∈𝒮,𝑘 𝑝𝑚𝑘 − 𝛿∑

𝑚∈𝒮,𝑘 𝑞𝑚𝑘
≤ 𝑒𝜖,∑

𝑚∈𝒮,𝑘 𝑞𝑚𝑘 − 𝛿∑
𝑚∈𝒮,𝑘 𝑝𝑚𝑘

≤ 𝑒𝜖
(8)

Now we perform POVM 𝑃 on ℰ(𝜌) and ℰ(𝜎). For every 𝑚,
we have:

𝑝′𝑚 = Tr[ℰ(𝜌)𝑀𝑚]

= Tr

[∑
𝑘

𝐸𝑘𝜌𝐸†𝑘𝑀𝑚

]

=
∑
𝑘

Tr
[
𝐸𝑘𝜌𝐸†𝑘𝑀𝑚

]

=
∑
𝑘

Tr [𝜌𝑄𝑚𝑘] =
∑
𝑘

𝑝𝑚𝑘

and

𝑞′𝑚 = Tr[ℰ(𝜌)𝑀𝑚] =
∑
𝑘

𝑞𝑚𝑘.

It follows from equation (8) that for any 𝒮 ⊆ 𝑂𝑢𝑡(𝑀)∑
𝑚∈𝒮 𝑝′𝑚 − 𝛿∑

𝑚∈𝒮 𝑞′𝑚
=

∑
𝑚∈𝒮,𝑘 𝑝𝑚𝑘 − 𝛿∑

𝑚∈𝒮,𝑘 𝑞𝑚𝑘
≤ 𝑒𝜖,

∑
𝑚∈𝒮 𝑞′𝑚 − 𝛿∑

𝑚∈𝒮 𝑝′𝑚
=

∑
𝑚∈𝒮,𝑘 𝑞𝑚𝑘 − 𝛿∑

𝑚∈𝒮,𝑘 𝑝𝑚𝑘
≤ 𝑒𝜖

and PD𝛿(ℰ(𝜌), ℰ(𝜎)) ≤ 𝜖.

Similar to Algorithm 2, we can develop an algorithm to
compute 𝛿-proportional distance. We write:

dPD𝛿(𝜌, 𝜎) = max
0<𝑀≤𝕀

Tr(𝑀𝜌)≥𝛿
ln

Tr(𝑀𝜌) − 𝛿

Tr(𝑀𝜎)

Then it is obvious that

PD𝛿(𝜌, 𝜎) = max(dPD𝛿(𝜌, 𝜎), dPD𝛿(𝜎, 𝜌)).

Algorithm 3 can efficiently compute dPD𝛿(𝜌, 𝜎) (and thus
PD𝛿(𝜌, 𝜎)) with an error smaller than 𝜃.

Algorithm 3: Computing dPD𝛿

1 Function DPDD (𝜌, 𝜎, 𝛿, 𝜃)
2 // 𝜌 and 𝜎 are two density operators

in Hilbert space ℋ and 𝜃 is the
desired accuracy.

3 Let 𝑛 be the dimension of the Hilbert space ℋ.
4 Set real number 𝑚𝑎𝑥 = 0, 𝜆 = ∞.
5 while ∣𝑚𝑎𝑥 − 𝜆∣ > 𝜃 do
6 𝜆 = 𝑚𝑎𝑥;

7 𝑚𝑎𝑥 = max𝑆⊆[𝑛]
(
∑

𝑖∈𝑆 𝜌𝑖𝑖)−𝛿∑
𝑖∈𝑆 𝜎𝑖𝑖

;

8 𝜂 = 𝜌 − 𝑚𝑎𝑥 ∗ 𝜎;
9 Diagonalize 𝜂: 𝜂 = 𝑃𝐷𝑃 †;

10 // 𝑃 is unitary and 𝐷 is diagonal
matrix.

11 𝜌 = 𝑃 †𝜌𝑃 ;
12 𝜎 = 𝑃 †𝜎𝑃 ;
13 end
14 Return ln 𝑚𝑎𝑥;

The following proposition is required to estimate the accu-
racy of our sampling strategy.

Proposition 5. Suppose that 𝜌, 𝜎, 𝜌 + 𝜑, 𝜌 + 𝜃 and 𝜎 + 𝜑 are
all density operators, and parameter 𝛿 ≥ 0. Then:

1) 𝑃𝐷𝛿(𝜌, 𝜌 + 𝑝𝜑) ≤ 𝑃𝐷𝛿(𝜌, 𝜌 + 𝜑) for 𝑝 ∈ [0, 1];
2) For 𝑝, 𝑞 ∈ [0, 1] and 𝑝 + 𝑞 ≤ 1, we have:

𝑃𝐷𝛿(𝜌, 𝜌+𝑝𝜑 + 𝑞𝜃)

≤ max{𝑃𝐷𝛿(𝜌, 𝜌 + 𝜑), 𝑃𝐷𝛿(𝜌, 𝜌 + 𝜃)};

3) For 𝑝 ∈ [0, 1], we have:

𝑃𝐷𝛿(𝑝𝜌+(1 − 𝑝)𝜎, 𝑝𝜌 + (1 − 𝑝)𝜎 + 𝜑)

≤ max{𝑃𝐷𝛿(𝜌, 𝜌 + 𝜑), 𝑃𝐷𝛿(𝜎, 𝜎 + 𝜑)};
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4) If 𝑃𝐷𝛿(𝜌, 𝜌 + 𝜃) = 𝜖, then 𝑃𝐷𝛿′(𝜎, 𝜎 + 𝜑) ≤ 𝜖, where:

𝛿′ = 𝛿 + (𝑒𝜖 − 1)𝜏(𝜌, 𝜎) + 𝑒𝜖𝜏(𝜃, 𝜑).

In particular, all of the above inequalities hold for proportion-
al distance PD .

Now we are ready to figure out the accuracy of sampling
inputs. Let Δ denote the set of the differences of two adjacent
inputs; that is,

Δ = {𝜌 − 𝜎∣𝜌, 𝜎 ∈ 𝒫 with 𝜏(𝜌, 𝜎) ≤ 𝑑},

where 𝒫 is the set of all possible inputs, and 𝑑 is the constant
fixed in Definition 2. Then a quantum algorithm ℳ is (𝜀, 𝛿)-
differentially private if and only if:

max
𝜌∈𝒫,𝜂∈Δ;
𝜌+𝜂∈P

{𝑃𝐷𝛿(ℳ(𝜌),ℳ(𝜌 + 𝜂))} ≤ 𝜀.

We define the following indexes of the sample sets:

𝑑𝒫 = max
𝜌1 /∈Conv(𝒫′),𝜌1∈𝒫;

𝜌2∈Conv(𝒫′)

𝜏(𝜌1, 𝜌2);

𝑑Δ = max
𝜂1 /∈Conv(Δ′),𝜂1∈Δ;

𝜂2∈Conv(Δ′)

𝜏(𝜂1, 𝜂2);

𝑝𝒫 = Pr[input 𝜌 ∈ Conv(𝒫 ′)];
𝑝Δ = Pr[difference 𝜂 ∈ Conv(Δ′)]

(9)

where Conv() denotes the convex hull, and 𝒫 ′, Δ′ are the
sample sets of 𝒫, Δ, respectively. In order to understand why
we use the convex sets in equation (9), we may regard a density
operator as a point in the Bloch sphere. Note that in above
properties only the convex hulls of the sample sets appears, and
this implies we can just choose those points near the boundary
of 𝒫 (resp. Δ) to form 𝒫 ′ (resp. Δ′). Now, with a pre-selected
parameter 𝛿𝑚, we calculate

𝜀𝑚 = max
𝜌∈𝒫′,𝜂∈Δ′

{𝑃𝐷𝛿𝑚(ℳ(𝜌),ℳ(𝜌 + 𝜂))}.

Then we conclude:
1) with at least probability (1 − 𝑝𝒫 − 𝑝Δ) (the probability

space is over the choice of databases), the algorithm ℳ
is (𝜀𝑚, 𝛿𝑚)-differentially private;

2) the algorithm ℳ is (𝜀𝑚, 𝛿′𝑚)-differentially private
where: 𝛿′𝑚 = 𝛿𝑚 + (𝑒𝜀𝑚 − 1)𝑑𝒫 + 𝑒𝜀𝑚𝑑Δ.

VI. TECHNICAL PROOFS

The proofs of the theorems in Section III are very technical
and involved. So, for readability we presented these theorems
there without proofs. In this section, we complete the picture
by providing their proofs.

A. Proof of Theorem 1

We write 𝜌′ = ℰ(𝜌), 𝜎′ = ℰ(𝜎), 𝜌′′ = ℰGAD(𝜌′) and
𝜎′′ = ℰGAD(𝜎′). By Definition 2, it suffices to show that
PD(𝜌′′, 𝜎′′) ≤ 𝜀 whenever 𝜏(𝜌, 𝜎) ≤ 𝑑. Since 𝜌′ and 𝜎′ are
density operators, we can assume that

𝜌′ =

[
𝑎 𝑏
𝑏∗ 𝑐

]
, 𝛿′ = 𝜌′ − 𝜎′ =

[
𝛿𝑎 𝛿𝑏
𝛿∗𝑏 −𝛿𝑎

]

where 𝑐 = 1 − 𝑎. It follows from Theorem 9.2 in [18] that

𝜏(ℰ(𝜌), ℰ(𝜎)) ≤ 𝜏(𝜌, 𝜎) = 𝑑.

So, we have:

𝜏(𝜌′, 𝜎′) =
1

2
Tr∣𝜌′ − 𝜎′∣

=
1

2
Tr ∣𝛿′∣ =

√
𝛿2𝑎 + 𝛿2𝑏 ≤ 𝑑

After the generalized amplitude damping channel, we have:

𝜌′′ = ℰGAD(𝜌′) =

[
𝑎 + 1

2 (𝑐 − 𝑎)𝛾 𝑏
√

1 − 𝛾
𝑏∗
√

1 − 𝛾 𝑐 + 1
2 (𝑎 − 𝑐)𝛾

]
𝛿′′ = 𝜌′′ − 𝜎′′

= ℰGAD(𝛿′) =

[
𝛿𝑎(1 − 𝛾) 𝛿𝑏

√
1 − 𝛾

𝛿∗𝑏
√

1 − 𝛾 −𝛿𝑎(1 − 𝛾)

]

Now we compute the proportional difference PD(𝜌′′, 𝜎′′).
According to Proposition 3 we only need to consider all the
projectors of the form 𝑃 = ∣𝜑⟩⟨𝜑∣ where ∣𝜑⟩ = (𝑥, 𝑦)⊤ is a
pure state. A routine calculation yields:

𝑝(𝜌) = Tr[𝜌′′𝑃 ] = 𝑎𝑥2 + 𝑐𝑦2 +
1

2
(𝑐 − 𝑎)𝛾(𝑥2 − 𝑦2)+

(𝑏𝑥∗𝑦 + 𝑏∗𝑥𝑦∗)
√

1 − 𝛾

and 𝑝(𝜎) = Tr[𝜎′′𝑃 ] = 𝑝(𝜌) + Δ where

Δ = 𝛿𝑎(1 − 𝛾)(𝑥2 − 𝑦2) + (𝛿𝑏𝑥
∗𝑦 + 𝛿∗𝑏𝑥𝑦∗)

√
1 − 𝛾.

We further calculate the supremum of PD(𝜌′′, 𝜎′′) over all
possible 𝜌′′ and 𝜎′′. By symmetry we only need to compute
the maximum of

𝑝(𝜎)/𝑝(𝜌) = 1 + Δ/𝑝(𝜌).

In order to find the maximum of Δ/𝑝(𝜌), we minimize the
(𝑏𝑥∗𝑦+𝑏∗𝑥𝑦∗)

√
1 − 𝛾 and maximize (𝛿𝑏𝑥

∗𝑦+𝛿∗𝑏𝑥𝑦∗)
√

1 − 𝛾.
To this end, we choose:

(𝑏𝑥∗𝑦 + 𝑏∗𝑥𝑦∗) = −√
𝑎𝑐∣𝑥𝑦∣,

(𝛿𝑏𝑥
∗𝑦 + 𝛿∗𝑏𝑥𝑦∗) = 2∣𝛿𝑏∣∣𝑥𝑦∣.

Then, we only need to consider real number 𝑥, and

𝑝(𝜌) = 𝑎𝑥2 + (1 − 𝑎)(1 − 𝑥2) +
1

2
(1 − 2𝑎)(2𝑥2 − 1)𝛾

− 2
√

𝑎(1 − 𝑎)𝑥
√

1 − 𝑥2
√

1 − 𝛾

Δ = 𝛿𝑎(1 − 𝛾)(2𝑥2 − 1) + 2∣𝛿𝑏∣𝑥
√

1 − 𝑥2
√

1 − 𝛾

Let us first compute the maximum of Δ. We write

𝐴 = (1 − 𝛾)(2𝑥2 − 1), 𝐵 = 2𝑥
√

1 − 𝑥2
√

1 − 𝛾.

Then Δ = 𝐴𝛿𝑎 + 𝐵𝛿𝑏 with constrain 𝛿2𝑎 + 𝛿2𝑏 ≤ 𝑑2. It is clear
that

Δ ≤
√

𝐴2 + 𝐵2𝑑

with the equality when

𝛿𝑎 =
∣𝐴∣√

𝐴2 + 𝐵2
𝑑, 𝛿𝑏 =

∣𝐵∣√
𝐴2 + 𝐵2

𝑑.
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On the other hand, it is not difficult to see that the maximum
1 − 𝛾 of 𝐴2 + 𝐵2 is attained when 𝑥 = 1/

√
2. To compute

the minimum of 𝑝(𝜌), we put 𝜆𝑎 = 1
2 − 𝑎 and 𝜆𝑏 = 𝑥2 − 1

2 .
Then − 1

2 ≤ 𝜆𝑎, 𝜆𝑏 ≤ 1
2 and

𝑝(𝜌) =

(
1

2
− 𝜆𝑎

)(
1

2
+ 𝜆𝑏

)
+

(
1

2
+ 𝜆𝑎

)(
1

2
− 𝜆𝑏

)

+ 2𝜆𝑎𝜆𝑏𝛾 − 2

√(
1

4
− 𝜆2

𝑎

)(
1

4
− 𝜆2

𝑏

)√
1 − 𝛾

=
1

2
− 2𝜆𝑎𝜆𝑏(1 − 𝛾) − 2

√(
1

4
− 𝜆2

𝑎

)(
1

4
− 𝜆2

𝑏

)√
1 − 𝛾

≥ 1

2
− 2𝜆𝑎𝜆𝑏(1 − 𝛾) − 2

1

2

(
1

4
− 𝜆2

𝑎 +
1

4
− 𝜆2

𝑏

)√
1 − 𝛾

=
1

2
(1 −

√
1 − 𝛾) + (𝜆2

𝑎 + 𝜆2
𝑏)
√

1 − 𝛾 − 2𝜆𝑎𝜆𝑏(1 − 𝛾)

≥ 1

2
(1 −

√
1 − 𝛾) + 2∣𝜆𝑎𝜆𝑏∣

√
1 − 𝛾 − 2𝜆𝑎𝜆𝑏(1 − 𝛾)

≥ 1

2
(1 −

√
1 − 𝛾)

(
∵
√

1 − 𝛾 ≥ (1 − 𝛾) ≥ 0
)

All of the equalities hold when 𝜆𝑎 = 𝜆𝑏 = 0, or 𝑥 = 1/
√

2
and 𝑎 = 1/2. Combining with the condition for Δ, we see
that when 𝑥 = 1/

√
2, 𝑎 = 1/2, 𝛿𝑎 = 0 and 𝛿𝑏 = 𝑑, Δ has the

maximum
√

1 − 𝛾𝑑 and 𝑝(𝜌) has the minimum 1
2 (1−√

1 − 𝛾).
So, it holds that

𝑝(𝜎)

𝑝(𝜌)
= 1 +

Δ

𝑝(𝜌)
≤ 1 +

2𝑑
√

1 − 𝛾

1 −√
1 − 𝛾

(10)

and PD(𝜌′′, 𝜎′′) ≤ 𝜀.
Finally, we prove the optimality of 𝜖. Since 𝑑 ≤ 1, we can

choose 𝑏 = −1/2 and thus det(𝜎′) ≥ 0. Then the upper bound
in equation (10) can be achieved.

B. Proof of Theorem 3

We write 𝜌′ = ℰ(𝜌) and 𝜎′ = ℰ(𝜎). Then it follows from
Theorem 9.2 in [18] that 𝜏(𝜌′, 𝜎′) ≤ 𝑑. For an arbitrary POVM
𝑀 = {𝑀𝑚}, we first prove that

Tr[(𝜌′ − 𝜎′)𝑀𝑚] ≤ 𝑑Tr(𝑀𝑚) (11)

for all outcomes 𝑚. In fact, if it is not true for some outcome
𝑛, then we diagonalize: 𝑀𝑛 = 𝑈Λ𝑈 †, and define 𝜆 to be the
maximal element of Λ. We further define the positive operator
𝑄𝑛 = 1

𝜆𝑀𝑛. Obviously, Tr(𝑄𝑛) ≥ 1 and 𝑄𝑛 ≤ 𝐼 . The second
inequality implies that we can extend 𝑄𝑛 to a new POVM
𝑄 = {𝑄𝑘} such that 𝑄𝑛 is one of its elements. Let

𝑞𝑘(𝜌′) ≡ Tr[𝜌′𝑄𝑘], 𝑞𝑘(𝜎′) ≡ Tr[𝜎′𝑄𝑘]

be the probabilities of obtaining the measurement outcome
labeled by 𝑘. Then we have:

𝑞𝑛(𝜌′) − 𝑞𝑛(𝜎′) = Tr[(𝜌′ − 𝜎′)𝑄𝑛]

=
1

𝜆
Tr[(𝜌′ − 𝜎′)𝑀𝑛]

>
1

𝜆
𝑑Tr(𝑀𝑛) = 𝑑Tr(𝑄𝑛) ≥ 𝑑.

Using Theorem 9.1 in [18], we see that the above inequality
contradicts to 𝜏(𝜌′, 𝜎′) ≤ 𝑑, and thus (11) is proved.

Now we put

𝑝𝑚(𝜌) ≡ Tr[𝜌′′𝑀𝑚], 𝑝𝑚(𝜎) ≡ Tr[𝜎′′𝑀𝑚],

where 𝜌′′ = ℰDep(𝜌′) and 𝜎′′ = ℰDep(𝜎′). Then it holds that

𝑝𝑚(𝜌)

𝑝𝑚(𝜎)
− 1 =

𝑝
𝐷Tr[𝑀𝑚] + (1 − 𝑝)Tr[𝜌′𝑀𝑚]
𝑝
𝐷Tr[𝑀𝑚] + (1 − 𝑝)Tr[𝜎′𝑀𝑚]

− 1

=
(1 − 𝑝)Tr[(𝜌′ − 𝜎′)𝑀𝑚]

𝑝
𝐷Tr[𝑀𝑚] + (1 − 𝑝)Tr[𝜎′𝑀𝑚]

≤ (1 − 𝑝)𝑑Tr[𝑀𝑚]
𝑝
𝐷Tr[𝑀𝑚]

=
1 − 𝑝

𝑝
𝑑𝐷.

So we conclude:

𝑒−𝜀 ≤ 𝑝𝑚(𝜌)

𝑝𝑚(𝜎)
≤ 𝑒𝜀

and

𝜀 = ln

[
1 +

1 − 𝑝

𝑝
𝑑𝐷

]
.

The same holds if we exchange 𝜌 and 𝜎. For the case that
𝑑𝐷/𝑝 is close to zero, using the Maclaurin series we can show
that

𝜀 ≈ 1 − 𝑝

𝑝
𝑑𝐷.

VII. DISCUSSIONS AND CONCLUSION

In this paper, we generalise the notion of differential privacy
for classical computation defined in [9] to quantum computa-
tion. Three simple privacy mechanisms using quantum noises
are proposed, and their abilities for protecting privacy are
examined by estimating their differential privacy parameters.
Furthermore, we establish several composition theorems that
allow us to figure out the differential privacy parameters of
complex and sophisticated mechanisms where several quantum
algorithms are combined. With the discovery of more and more
quantum algorithms for data mining and big data analytics,
we believe that the framework of quantum differential privacy
developed in this paper will be very useful for privacy pro-
tection in quantum computing, e.g. against the so-called joint-
measurement attack, which may cause a noticeable disclosure
of data privacy.

A. Physical Implementation of Quantum Privacy Mechanism

As pointed out in Section III, there are certain physical
technologies that can realise the three types of quantum noises
considered in this paper. However, implementing them in prac-
tical applications is very hard. In the current stage, controlling
quantum noises is one of the greatest difficulties in building
a quantum computer. The decoherence time and/or relaxation
time of the materials used to implement quantum computation
(e.g., [25]) is crucial. To ensure that the quantum states during
the calculation are reliable, the evolution time of the whole
computation should not be longer than the decoherence time
and/or relaxation time. So, a crude way to implement the
quantum noises needed for our quantum privacy mechanism is
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to control the evolution time of the calculation; for example,
if we leave the used quantum states in the material for some
extra time, then the decoherence and relaxation is naturally
happened. But such a method can only introduce the typical
noise of the material, which may not be the type of the
noises that we want. The theory of decoherence-free subspace,
noiseless subsystems, and dynamical decoupling provides us
with some further techniques to overcome decoherence and to
introduce the required noise (see [26] for a review). Assume
that the interaction of the system and the environment (bath)
is described by a Hamiltonian 𝐻𝑆𝐵 . Then we can find a
noiseless subsystem such that under the evolution of 𝐻𝑆𝐵 ,
the state in this subsystem is preserved up to a global phase.
If the information is encoded into this subsystem, then the state
undergoes the calculation is not disturbed by the environment.
This gives rise to a way to implement noises: 𝐻𝑆𝐵 can be
decomposed into two part 𝐻𝑆𝐵 = 𝐻 ′

𝑆𝐵 + 𝐻𝑁 , where 𝐻𝑁 is
the system where the desired noise arises. Now, if we encode
the information into the noiseless subsystem 𝐻 ′

𝑆𝐵 , then the
state only suffers the noise that we desire while other types
of noises do not work.

B. Related Work

A very interesting related work is the delegated quantum
computation [27], [28], [29]. The basic idea of delegated
quantum computation is as follows: similar to today’s cloud
computing, a large quantum computer plays a central role.
A client which is not capable of a full-blown quantum com-
putation, sends the input which may be either quantum or
classical data as well as the program (the descriptions of the
computation she/he wants to perform), to the server who is
able to perform universal quantum computation, and then the
server executes the desired computation and sends the output
back to the client. Two important features of delegated quan-
tum computation are: (1) Blindness: the computation remains
hidden from the server, and (2) Verifiability: the client is able
to confirm that the final output of the computation is correct.
Furthermore, the composable security of delegated quantum
computation was carefully studied by Dunjko et al. [30]. It
worth noting that the client’s security in delegated quantum
computation is well-addressed, but no enough attentions has
been paid to the server’s security, i.e. the security of the
private resources held by the server; for example, when the
computation of the server is based on some private (either
classical or quantum) databases, the output sent to the client
should not leak private information of the databases. It seems
that quantum differential privacy mechanism studied in this
paper can be introduced into the framework of delegated
quantum computation in order to protect the server’s privacy.

C. Topics for Future Research

Only the measure-each-step scenario is dealt with in The-
orem 6. As a topic for future research, we can consider an
extension of Theorem 6 for a more “quantum” scenario where
at each round only a part of the quantum state is measured,
and the other part of the state is used as the input of next

query. It seems that the proof techniques employed in the case
of classical computing presented in [21] do not work for this
case, and some radically new ideas are required to established
such a generalised version of advanced composition theorem
for quantum computing.

A probabilistic relational Hoare logic and a machine-
checked framework for reasoning about differential privacy
for (classical) programs were established by Barthe, Köpf,
Olmedo et al. [31], [32]. On the other hand, a Hoare logic
for proving correctness of quantum programs was proposed
in [33] (see also [34], Chapter 4). Then another topic for
future research is to build a logic and tools for derivation
of differential privacy guarantees in quantum computation by
combining the techniques developed in [31], [32], [33].

ACKNOWLEDGMENT

We would like to thank Professor Zhengfeng Ji for valuable
discussions.

REFERENCES

[1] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proceedings of the Twenty-eighth Annual ACM Symposium on
Theory of Computing, ser. STOC’96. New York: ACM, 1996, pp. 212–
219. [Online]. Available: http://doi.acm.org/10.1145/237814.237866

[2] A. Ambainis, “Quantum walk algorithm for element distinctness,” SIAM
J. Comput., vol. 37, no. 1, pp. 210–239, 2007. [Online]. Available:
http://dx.doi.org/10.1137/S0097539705447311

[3] S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum principal
component analysis,” Nat. Phys., vol. 10, no. 9, pp. 631–633, 2014.
[Online]. Available: http://dx.doi.org/10.1038/nphys3029

[4] A. Daskin, “Obtaining a linear combination of the principal components
of a matrix on quantum computers,” arXiv:1512.02109, 2015. [Online].
Available: https://arxiv.org/abs/1512.02109

[5] P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum support
vector machine for big data classification,” Phys. Rev.
Lett., vol. 113, p. 130503, Sep 2014. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevLett.113.130503

[6] S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum algorithms
for supervised and unsupervised machine learning,” arXiv:1307.0411,
2013. [Online]. Available: http://arxiv.org/abs/1307.0411

[7] X.-D. Cai, D. Wu, Z.-E. Su, M.-C. Chen, X.-L. Wang,
L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Entanglement-
based machine learning on a quantum computer,” Phys. Rev.
Lett., vol. 114, p. 110504, Mar 2015. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevLett.114.110504

[8] M. Ying, Y. Feng, and N. Yu, “Quantum information-flow security:
Noninterference and access control,” in Proceedings of the 2013
IEEE 26th Computer Security Foundations Symposium, ser. CSF’13.
Washington: IEEE Computer Society, 2013, pp. 130–144. [Online].
Available: http://dx.doi.org/10.1109/CSF.2013.16

[9] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to
sensitivity in private data analysis,” in Proceedings of the Third Con-
ference on Theory of Cryptography, ser. TCC’06. Berlin, Heidelberg:
Springer, 2006, pp. 265–284.

[10] C. Dwork, “Differential privacy,” in Proceedings of the 33rd Interna-
tional Conference on Automata, Languages and Programming - Volume
Part II, ser. ICALP’06. Berlin, Heidelberg: Springer, 2006, pp. 1–12.

[11] T. Dalenius, “Towards a methodology for statistical disclosure control,”
statistik Tidskrift, vol. 15, pp. 429–444, 1977.

[12] F. McSherry and K. Talwar, “Mechanism design via differential
privacy,” in Proceedings of the 48th Annual IEEE Symposium
on Foundations of Computer Science, ser. FOCS’07. Washington:
IEEE Computer Society, 2007, pp. 94–103. [Online]. Available:
http://dx.doi.org/10.1109/FOCS.2007.66

261



[13] K. Nissim, R. Smorodinsky, and M. Tennenholtz, “Approximately
optimal mechanism design via differential privacy,” in Proceedings of
the 3rd Innovations in Theoretical Computer Science Conference, ser.
ITCS’12. New York: ACM, 2012, pp. 203–213. [Online]. Available:
http://doi.acm.org/10.1145/2090236.2090254

[14] X. Xiao, G. Wang, and J. Gehrke, “Differential privacy via wavelet
transforms,” IEEE Trans. Knowl. Data Eng., vol. 23, no. 8, pp. 1200–
1214, Aug 2011.

[15] S. P. Kasiviswanathan, K. Nissim, S. Raskhodnikova, and A. Smith,
“Analyzing graphs with node differential privacy,” in Proceedings of the
10th Theory of Cryptography Conference on Theory of Cryptography,
ser. TCC’13. Berlin, Heidelberg: Springer, 2013, pp. 457–476.

[16] A. Friedman and A. Schuster, “Data mining with differential
privacy,” in Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser.
KDD’10. New York: ACM, 2010, pp. 493–502. [Online]. Available:
http://doi.acm.org/10.1145/1835804.1835868

[17] C. Dwork, G. N. Rothblum, and S. Vadhan, “Boosting and differential
privacy,” in Proceedings of the 2010 IEEE 51st Annual Symposium
on Foundations of Computer Science, ser. FOCS’10. Washington:
IEEE Computer Society, 2010, pp. 51–60. [Online]. Available:
http://dx.doi.org/10.1109/FOCS.2010.12

[18] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

[19] V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum random access
memory,” Phys. Rev. Lett., vol. 100, p. 160501, Apr 2008. [Online].
Available: http://link.aps.org/doi/10.1103/PhysRevLett.100.160501

[20] S. Arunachalam, V. Gheorghiu, T. Jochym-O’Connor, M. Mosca, and
P. V. Srinivasan, “On the robustness of bucket brigade quantum ram,”
New J. Phys., vol. 17, no. 12, p. 123010, 2015. [Online]. Available:
http://stacks.iop.org/1367-2630/17/i=12/a=123010

[21] C. Dwork and A. Roth, “The algorithmic foundations of differential
privacy,” Found. Trends Theor. Comput. Sci., vol. 9, no. 3-4, pp. 211–
407, 2014. [Online]. Available: http://dx.doi.org/10.1561/0400000042

[22] R. Srikanth and S. Banerjee, “Squeezed generalized amplitude damping
channel,” Phys. Rev. A, vol. 77, p. 012318, Jan 2008. [Online].
Available: http://link.aps.org/doi/10.1103/PhysRevA.77.012318

[23] D. Leung, L. Vandersypen, X. Zhou, M. Sherwood, C. Yannoni,
M. Kubinec, and I. Chuang, “Experimental realization of
a two-bit phase damping quantum code,” Phys. Rev. A,
vol. 60, pp. 1924–1943, Sep 1999. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevA.60.1924

[24] M. Grant and S. Boyd, “Cvx: Matlab software for disciplined
convex programming, version 1.21 (2011),” 2010. [Online]. Available:
http://cvxr.com/cvx

[25] F. A. Zwanenburg, A. S. Dzurak, A. Morello, M. Y. Simmons,
L. C. Hollenberg, G. Klimeck, S. Rogge, S. N. Coppersmith,
and M. A. Eriksson, “Silicon quantum electronics,” Rev. Mod.
Phys., vol. 85, no. 3, p. 961, 2013. [Online]. Available:
https://doi.org/10.1103/RevModPhys.85.961

[26] D. A. Lidar, “Review of decoherence free subspaces,
noiseless subsystems, and dynamical decoupling,” Adv. Chem.
Phys., vol. 154, pp. 295–354, 2014. [Online]. Available:
https://doi.org/10.1002/9781118742631.ch11

[27] A. M. Childs, “Secure assisted quantum computation,” Quantum Info.
Comput., vol. 5, no. 6, pp. 456–466, 2005. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2011670.2011674

[28] A. Broadbent, J. Fitzsimons, and E. Kashefi, “Universal blind quantum
computation,” in Proceedings of the 50th Annual IEEE Symposium
on Foundations of Computer Science, ser. FOCS’09. Washington:
IEEE Computer Society, 2009, pp. 517–526. [Online]. Available:
http://dx.doi.org/10.1109/FOCS.2009.36

[29] T. Morimae, “Continuous-bariable blind quantum computation,” Phys.
Rev. Lett., vol. 109, no. 23, p. 230502, 2012.

[30] V. Dunjko, J. F. Fitzsimons, C. Portmann, and R. Renner, “Composable
security of delegated quantum computation,” in International Conference
on the Theory and Application of Cryptology and Information Security.
Springer, 2014, pp. 406–425.
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