
UC-Secure Non-Interactive Public-Key Encryption

Jan Camenisch∗, Anja Lehmann∗, Gregory Neven∗, Kai Samelin∗§
∗IBM Research – Zurich, Rüschlikon, Switzerland

{jca,anj,nev,ksa}@zurich.ibm.com
§TU Darmstadt, Darmstadt, Germany

Abstract—The universal composability (UC) framework en-
ables the modular design of cryptographic protocols by allowing
arbitrary compositions of lower-level building blocks. Public-
key encryption is unarguably a very important such building
block. However, so far no UC-functionality exists that offers
non-interactive encryption necessary for modular protocol con-
struction. We provide an ideal functionality for non-committing
encryption (i.e., public-key encryption secure against adaptive
corruptions) with locally generated, and therefore non-interactive,
ciphertexts. As a sanity check, we also provide a property-based
security notion that we prove to be equivalent to the UC notion.
We then show that the encryption scheme of Camenisch et al.
(SCN ’16) based on trapdoor permutations securely implements
our notion in the random-oracle model without assuming secure
erasures. This is the best one can hope to achieve as standard-
model constructions do not exist due to the uninstantiability of
round-optimal adaptively secure message transfer in the standard
model (Nielsen, Crypto ’02). We illustrate the modular reusability
of our functionality by constructing the first non-interactive
signcryption scheme secure against adaptive corruptions without
secure erasures in the UC framework.

I. INTRODUCTION

The universal composability (UC) framework [13] enables

the modular design of cryptographic protocols by analyzing the

security of composed protocols in a so-called “hybrid” model,

where subprotocols are replaced by their ideal functionalities,

thereby eliminating the need for explicit reductions from the

security of the individual building blocks in the overall security

proof. Faithful to its name, the UC framework guarantees that

any secure instantiation of the subprotocols yields a secure

instantiation of the composed protocol.

A wide variety of UC-secure cryptographic primitives have

appeared in the literature. Public-key encryption is an important

such primitive that may not have received the attention that it

deserves in the UC framework, especially given its widespread

use to build cryptographic protocols. The original UC paper by

Canetti [13] specifies an ideal functionality FPKE for public-

key encryption and proves it equivalent to the property-based

notion of indistinguishability against chosen-ciphertext attack

(IND-CCA2). However, this result only holds for non-adaptive

adversaries, that is, where the set of corrupted parties is fixed

a priori for each protocol instance.

a) Non-Committing Encryption: Security against adaptive

corruptions is obviously the more realistic notion for practi-

cal applications, but is notoriously difficult to achieve for

public-key encryption because of the so-called selective de-
commitment problem [22], [34]. In a nutshell, the problem is the

following. As long as both sender and receiver are honest, the

simulator communicates “dummy” ciphertext values without

knowing the actual plaintext. When later the receiver gets

corrupted, the simulator must provide the adversary with a

decryption key that makes these dummy ciphertexts decrypt to

the correct messages, which are only handed to the simulator

at the moment of corruption. Similarly, when the sender is

corrupted, the simulator must provide encryption randomness

that turns the messages into the dummy ciphertexts. One

can easily solve the latter problem by securely erasing the

randomness after encryption. However, secure erasures do not

help to provide correct decryption keys when the receiver

gets corrupted, and security cannot be proven. This is an

unsatisfactory situation, as already noted in prior work [7],

[23], [24], [36], [37].

Adaptively secure public-key encryption is therefore often

referred to as non-committing encryption (NCE). Nielsen [45]

showed that NCE cannot be achieved in the standard model

by non-interactive protocols, i.e., protocols sending only one

message per encryption. Canetti, Halevi, and Katz [16] circum-

vent Nielsen’s impossibility result by periodically changing

decryption keys and requiring a small amount of interaction

between senders, namely, the current time period that has to

be communicated.

Our main concern is that such interactive, i.e., non-local,

constructions are not suitable for all use cases. Examples

include scenarios where the sender and receiver are not on-line

simultaneously, as is for instance the case for encrypted email

which are typically stored on an IMAP server and are retrieved

by the receiver at any time, possibly when the sender is no

longer available. Indeed, many real-world communications are

“fire-and-forget,” where additional communication is impossible

or too expensive, e.g., for UDP, sensor networks, etc.

Security in the random-oracle model [5] can be a reasonable

price to pay for adaptive non-interactive encryption, especially

when other building blocks in a composed protocol rely on

random oracles already. Nielsen [45] provided a non-interactive

construction in the random-oracle model, but presented it

as a secure message transmission (SMT) protocol, which

lets a sender send a secure message to a receiver but does

not provide the environment any actual ciphertexts, which is

the same as in the work done by Choi et al. [20]. This is

problematic when a higher-level protocol needs to perform

further operations on ciphertexts, such as signing, hashing, or

re-encrypting ciphertexts. Another problem is that Nielsen’s

2017 IEEE 30th Computer Security Foundations Symposium

© 2017, Jan Camenisch. Under license to IEEE.

DOI 10.1109/CSF.2017.14

217

construction assumes authenticated channels between the sender

and receiver. When the underlying encryption scheme is used

without authenticated channels, the scheme becomes malleable

and thus does not satisfy the security properties that one

expects.

b) Our Contributions: We present a new non-committing

encryption functionality FLNCE that gives the encrypting party

access to actual ciphertexts, much like Canetti’s FPKE and

Canetti-Halevi-Katz’ FAFSE, but unlike Nielsen’s FSMT. We

also present a new property-based notion FULL-SIM that we

prove to be equivalent to FLNCE and to be strictly stronger

than most existing notions [30], [11], but incomparable to

Canetti et al.’s notion [16]. Apart from acting as a sanity

check for our UC functionality, our property-based notion

might also be easier to prove the security of new schemes.

We then consider the recently proposed encryption scheme by

Camenisch et al. [11] (the CLNS scheme) based on trapdoor

one-way permutations, which is a minor modification of Bellare-

Rogaway’s CCA-secure encryption scheme [5] as well as

Nielsen’s SMT scheme [45]. We prove that this scheme satisfies

FULL-SIM, and hence securely realizes FLNCE against adaptive

adversaries, in the random-oracle model. We do not require

secure erasures, which is important in practice because realizing

secure erasures is virtually impossible on modern hardware

and software, as intermediate results may be copied or moved

across the RAM, swap partitions, and SSD memory blocks.

Therefore, in scenarios where interactive encryption is simply

not an option, we believe that our functionality FLNCE and our

random-oracle construction can be conveniently used as a

building block to construct higher-level protocols and being

able to analyze their security. In particular, our functionality

allows, for the first time, to analyze adaptively-secure UC

hybrid protocols without secure erasures which require non-

interactive encryption. We demonstrate this with the example

of signcryption, showing that the generic encrypt-then-sign

construction from the property-based world also works in UC,

yielding the first adaptively UC-secure signcryption scheme

without erasures.

c) On Programmable Random Oracles: Because any

realization of our FLNCE functionality immediately gives rise

to a non-interactive secure message transmission protocol,

Nielsen’s impossibility result extends to FLNCE, meaning that

FLNCE cannot be securely instantiated in the standard model.

Moreover, Canetti, Jain, and Scafuro [18] pointed out that

a globally accessible and programmable random oracle (or

common reference string, for that matter) cannot be instantiated

with a single hash function.

Recommending a provably uninstantiable scheme for use

in cryptographic protocols is, of course, somewhat contro-

versial. Most other examples of uninstantiable random-oracle

schemes [15], [27] are contrived constructions that would never

be considered for real-world use. The quite natural construction

of the CLNS scheme clearly does not fall in this category.

Rather, we would compare the CLNS scheme to highly practical

random-oracle schemes, such as RSA-OAEP encryption [6]

or Schnorr signatures [48], that are widely used in practice

in spite of strong indications that they may not be securely

instantiable [8], [47].

Stronger even, RSA-OAEP and Schnorr signatures are used

in practice, in spite of the availability of reasonably efficient

alternatives that are provably secure in the standard model.

However, for non-interactive encryption, there is simply no

choice: Nielsen’s result shows that standard-model alternatives

do not exist, even if one were willing to sacrifice on efficiency.

Security in the random-oracle model, whether programmable

or not, is still meaningful in the sense that it does protect against

“generic” adversaries that treat the hash function as a black box.

At the very least, the random-oracle model provides some way

to rigorously analyze the security of a scheme and exclude

serious design flaws: a proof in the random-oracle model is

obviously still highly preferable over no security proof at all.

Moreover, while our main result focuses on security against

adaptive corruptions in the programmable random-oracle model,

it is useful to observe that the CLNS scheme remains secure

against non-adaptive corruptions (i.e., IND-CCA2 secure) in

the non-programmable random-oracle model [5], which can be

instantiated with a global random oracle [18].

d) Related Work: The first non-committing encryption

schemes [3], [14] were only able to encrypt single bits and

require new public keys to be distributed for each encrypted bit.

Unsurprisingly, in the light of Nielsen’s impossibility result [45],

most “two-sided” NCE schemes, i.e., where both sender and

receiver can be corrupted, are interactive [2], [3], [10], [14],

[16], [20], [21], [25], [28], [29], [31], [32], [42], [45], [51],

meaning that either encryption and decryption cannot be done

locally without additional communication, there is an a-priori

upper bound on the number of ciphertexts created before a

new key pair has to be generated, or there is no ciphertext at

all.

Nielsen [45] and Camenisch et al. [11] present non-

interactive schemes in the random-oracle model without this

a priori bound. However, as discussed earlier, the former is

presented as an SMT protocol and therefore not easily reusable

as a UC building block; also, it implicitly assumes authenticated

channels between parties. The latter scheme is the same as

the construction in our paper, but is proven secure under a

property-based (i.e., non-UC) definition and assumes secure

erasures in the analysis. We provide a UC analysis of their

scheme without assuming secure erasures.

Single-sided definitions of NCE have also been proposed,

where only the sender or the receiver can be corrupted [4],

[7], [23], [24], [30], [35], [36], [37], [38], but not both at

the same time. On the upside of these definitions is that

there are realizations in the standard, i.e., non-random-oracle

model, while some still resort to idealized models [33]. More

importantly, these constructions are not proven secure if both

sides can be corrupted.

II. PRELIMINARIES

a) Notation: Let τ ∈ N be the security parameter and 1τ

the string of τ ones. All algorithms implicitly receive 1τ as

their first input parameter. If S is a set, a
r← S denotes that

218

a is assigned a uniformly random element from S. If A is a

randomized PPT algorithm, we write y
r← A(x; r) to denote

that y is assigned the output of A on input x and random coins

r. If we drop r, we assume that A is run on freshly drawn coins.

When we write (y; r)
r← A(x), we mean that r is assigned the

value of the fresh coins used by A. The notation y ← A(x)
is used for deterministic algorithms. A function ε : N→ R is

negligible if ε(τ) = τ−ω(1). We denote the bit-wise exclusive

OR (XOR) as ⊕. If m is a string, then |m| denotes the length

in bits of m. If S is a set, |S| denotes the cardinality of S. If

an argument is a list, we require that the list has an injective

encoding, which allows to uniquely decode each element again.

We also assume that the size of the encoding of the list as

a bit string only depends on the length of the input, not the

concrete values.

b) Trapdoor One-Way Permutations (TDP): Let (f, f−1,
Σ)

r← Gen(1τ)1 be the instance generator for a deterministic

function f : Σ → Σ defining a permutation over Σ, with a

deterministic inversion function f−1 : Σ → Σ, such that we

have 1) for all τ ∈ N, for all (f, f−1,Σ)
r← Gen(1τ), and

for all x ∈ Σ we have x = f−1(f(x)), and 2) for all PPT

adversaries A we have Pr[(f, f−1,Σ)
r← Gen(1τ), x

r← Σ :
x = A(f, f(x),Σ)] ≤ ε(τ) for some negligible function ε.
3) We also require an algorithm SampleΣ, which returns a

uniformly sampled element from Σ. For simplicity, we define

that |Σ| ≥ 22τ . An RSA-key generator RSA.KGen is a trapdoor

one-way permutation under the RSA assumption with Σ = Z
∗
N ,

f(x) = xe mod N and f−1(y) = yd mod N [5]. We use the

convention that the randomness space of SampleΣ has the same

size as Σ.

c) Universal Composability: We assume that the reader is

familiar with the universal composability (UC) framework [13],

where security of a protocol is defined as an environment’s

inability to distinguish whether it is interacting with the real

protocol through a real-world adversary, or with an ideal

functionality through a simulator. Note, an ideal functionality

returns control to the environment if it receives input on an

interface not explicitly defined. If a protocol “ignores” an

incoming network message, the party gives control back to the

environment. The same is true for ideal functionalities, i.e.,

ignored inputs lead to an implicit output to the environment

such that it receives back control. Note, if an ideal functionality

gives some output, it directly gives up control. When we

write “wait for input from A”, we require that the adversary

immediately answers the request, as defined by Camenisch et

al. [9]. Moreover, to avoid unhelpful boilerplate notation, we

define that the adversary can only query these interfaces once

for each request, and only if requested to do so. Finally, we

require that a secret key always contains the corresponding

public key.

1The instance generator only returns a description of Σ.

Experiment ExpIND-CCA2
ENC,A (τ):

(epk , esk)
r← KGen(1τ)

b
r← {0, 1}

((m0,m1), �, stateA)
r← ARO(·),DEC(·,·)(epk)

where DEC(·) on input (c, �):
return m′ ← Dec(esk , c, �)

where RO(·) on input s:

return H(s)
If |m0| �= |m1| ∨m0 /∈M∨m1 /∈M:

c← ⊥
Else:

c
r← Enc(epk ,mb, �)

b∗ r← ARO(·),DEC
′(·,·)(stateA, c)

where DEC
′(·, ·) behaves as DEC(·, ·),

but returns ⊥ if (c, �) is queried.

return 1, if b∗ = b
return 0

Fig. 1. Labeled IND-CCA2 for messages with arbitrary length.

III. ADDITIONAL SECURITY DEFINITIONS

A. Standard Definitions

a) IND-CCA2-Security (With Labels): The following

definition is taken from [11], which itself in based on [12],

[43]. A label can be seen as a public piece of information,

which is non-malleably attached to a ciphertext. Definitions

with and without labels are essentially equivalent.

Definition 1 (IND-CCA2-Security (With Labels)): An en-

cryption scheme ENC = (KGen,Enc,Dec) for arbitrary length

messages with labels is IND-CCA2-secure, if for all PPT

adversaries A, |Pr[ExpIND-CCA2
ENC,A (τ) = 1] − 1/2| ≤ ε(τ) for

some negligible function ε, and the experiment given in

Figure 1.

This definition requires that an adversary A cannot decide

what plaintext a given ciphertext contains, even if A is allowed

to query for decryptions with arbitrary labels.

B. One-Sided Definitions

For the following definitions, we use the following conven-

tions. A variable v in bold face is a vector. I is an index set.

If we write vI we mean that we address the elements in v
indexed by I.

a) RECV-SIM-Security: The following definition is

plainly taken from [11].

Definition 2 (RECV-SIM-Security): An encryption scheme

NCE = (KGen,Enc,Dec) is RECV-SIM-secure if for all

PPT adversaries A there exists a stateful PPT simula-

tor SIMNCE such that
∣
∣Pr[ExpRECV-SIM−real

NCE,A (τ) = 1] −
Pr[ExpRECV-SIM−ideal

NCE,A,SIMNCE
(τ) = 1]

∣
∣ ≤ ε(τ) for some negligible

function ε and the experiments of Figure 2.

In a nutshell, this definition requires that an adversary cannot

decide whether is sees simulated ciphertexts or real ones, even

if it learns the secret decryption key at some point. In this

definition, the adversary does never receive any randomness

used.

219

Experiment ExpRECV-SIM−ideal
NCE,A,SIMNCE

(τ):

epk
r← SIMNCE(publickey, 1

τ)
Q ← ∅
stateA

r← ARO(·),ENC(·,·),DEC(·,·)(epk)
where ENC(·, ·) on input (m, �):

c
r← SIMNCE(encrypt, |m|, �)

Q ← Q∪ {(c,m, �)}
return c

where DEC(·, ·) on input (c, �):
if (c,m, �) ∈ Q, return m
else, return m← SIMNCE(decrypt, C, �)

where RO(·) on input s:

return hk
r← SIMNCE(roquery, s)

esk
r← SIMNCE(keyleak,Q)

return ARO(·)(esk , stateA)

Experiment ExpRECV-SIM−real
NCE,A (τ):

(epk , esk)
r← KGen(1τ)

stateA
r← ARO(·),ENC(·,·),DEC(·,·)(epk)

where ENC(·, ·) on input (m, �):
return Enc(epk ,m, �)

where DEC(·, ·) on input (c, �):
return Dec(esk , c, �)

where RO(·) on input s:

return H(s)
return ARO(·)(esk , stateA)

Fig. 2. Experiments RECV-SIM-ideal and RECV-SIM-real for the RECV-SIM definition.

Experiment ExpSSIM-SO−ideal
NCE,S,n (τ):

Dist
r← S(1τ)

m = (m1,m2, . . . ,mn)
r← Dist1,2,...,n

I r← S()
output

r← S(mI)
return (m,Dist, I, output)

Experiment ExpSSIM-SO−real
NCE,A,n (τ):

(epk , esk)
r← KGen(1τ)

(Dist, state1)
r← A(epk)

m = (m1,m2, . . . ,mn)
r← Dist1,2,...,n

(c; r) = ((c1; r1), (c2; r2), . . . , (cn; rn))
r← Enc(epk ,mi)1,2,...,n

(I, state2) r← A(c, state1)
output

r← A(rI ,mI , state2)
return (m,Dist, I, output)

Fig. 3. Experiments SSIM-SO-ideal and SSIM-SO-real for the SSIM-SO
definition.

b) SSIM-SO-Security: The following definition is plainly

taken from [30].

Definition 3 (SSIM-SO-Security): An encryption scheme

NCE = (KGen,Enc,Dec) is SSIM-SO-secure if for all PPT

adversaries A there exists a stateful PPT simulator S such

that for every binary-output distinguisher D and any n
polynomial in τ we have

∣
∣Pr[D(ExpSSIM-SO−real

NCE,A,n (τ)) = 1]−
Pr[D(ExpSSIM-SO−ideal

NCE,S,n (τ)) = 1]
∣
∣ ≤ ε(τ) for some negligible

function ε and the experiments of Figure 3.

In a nutshell, this definition requires that an adversary cannot

decide whether is sees simulated ciphertexts or real ones, even

if it learns the randomness used to generate the ciphertexts at

some point.

c) RSIM-SO-Security: The following definition is taken

from [30], but adjusted for our notation. Note, here the secret

key also contains the randomness used to create it.

Definition 4 (RSIM-SO-Security): An encryption scheme

NCE = (KGen,Enc,Dec) is RSIM-SO-secure if for all

PPT adversaries A there exists a stateful PPT simulator S
such that for every binary-output distinguisher D and any

n polynomial in τ we have
∣
∣Pr[D(ExpRSIM-SO−real

NCE,A,n (τ)) =

1] − Pr[D(ExpRSIM-SO−ideal
NCE,S,n (τ)) = 1]

∣
∣ ≤ ε(τ) for some

Experiment ExpRSIM-SO−ideal
NCE,S,n (τ):

Dist
r← S(1τ)

m = (m1,m2, . . . ,mn)
r← Dist1,2,...,n

I r← S()
output

r← S(mI)
return (m,Dist, I, output)

Experiment ExpRSIM-SO−real
NCE,A,n (τ):

(pk, sk, r) = ((epk1, esk1; r1) . . . , (epkn, eskn; rn))
r←

KGen(1τ)1,2,...,n
(Dist, state1)

r← A(pk)
m = (m1,m2, . . . ,mn)

r← Dist1,2,...,n
c = (c1, c2, . . . , cn)

r← Enc(epk i,mi)1,2,...,n
(I, state2) r← A(c, state1)
output

r← A(rI ,mI , state2)
return (m,Dist, I, output)

Fig. 4. Experiments RSIM-SO-ideal and RSIM-SO-real for the RSIM-SO
definition.

negligible function ε and the experiments of Figure 4.

In a nutshell, this definition requires that an adversary cannot

decide whether it sees simulated ciphertexts or real ones, even

if it learns the secret decryption key (with randomness) at some

point. The adversary does never receive any randomness used

for encryptions.

d) IND-NCER-Security: The following definition is taken

from [16], [30], but we have added state to the adversary.

Let ENC∗ = (KGen,Enc,Enc∗,Dec,Open). Algorithm

KGen, Enc, and Dec are a standard encryption scheme (without

labels). The fake encryption scheme Enc∗ outputs a ciphertext

c∗ and a trapdoor t. Given the secret key esk , the public key

epk , the fake-ciphertext c∗, the trapdoor t, and a plaintext

m, algorithm Open outputs esk∗. Refer to [30] for a formal

definition, including correctness.

Definition 5 (IND-NCER-Security): An encryption scheme

ENC∗ = (KGen,Enc,Enc∗,Dec,Open) is IND-NCER-secure,

if for all PPT adversaries A, we have |Pr[ExpIND-NCER
ENC,A (τ) =

1] − 1/2| ≤ ε(τ) for some negligible function ε and the

experiment given in Figure 5.

This definition requires that an adversary A cannot decide

220

Experiment ExpIND-NCER
ENC,A (τ):

(epk , esk0; rkey0)
r← KGen(1τ)

b
r← {0, 1}

(m, state)
r← A(epk)

c0
r← Enc(epk ,m)

(c1, t)
r← Enc∗(epk , 1|m|)

(esk1, rkey1)
r← Open(esk0, epk , c1, t,m)

b∗ r← A(state, (esk b, rkeyb), cb)
return 1, if b∗ = b
return 0

Fig. 5. IND-NCER-Security

whether is sees simulated secret key randomness (and cipher-

text), or the real one, even when it receives an encryption of a

message of its own choice.

IV. PROPERTY-BASED NON-COMMITTING ENCRYPTION

Most existing property-based security notions aim at

standard-model instantiations and therefore have to circumvent

Nielsen’s impossibility result [45]. They either do so by

encrypting only a single message under each public key (e.g.,

Canetti, Halevi, and Katz’ IND-NCER notion [16]) or by

considering only sender corruptions but no receiver corruptions

(e.g., the SSIM-SO notion [30]), or only receiver corruptions

but no sender corruptions (e.g., the RSIM-SO notion [30])

Camenisch et al.’s RECV-SIM notion [11] allows unlimited

ciphertexts and receiver corruptions, but, because it focuses

on a setting with secure erasures, does not give the adversary

access to the randomness used in encryption or key generation.

We first introduce a new property-based security notion

FULL-SIM for non-committing encryption. Unlike existing

property-based notions [11], [30], the FULL-SIM adversary

simultaneously has access to the randomness used in previous

ciphertexts as well as to the randomness used to generate the

key pair (and hence, the secret decryption key esk). We then

provide a FULL-SIM secure NCE scheme based on trapdoor

one-way permutations in the random-oracle model. We also

study the relationship of FULL-SIM to existing notions, finding

FULL-SIM to be either strictly stronger or incomparable.

A. Property-Based Definition of Non-Committing Encryption

A labeled non-committing encryption scheme NCE =
(KGen,Enc,Dec) consists of three algorithms. The first algo-

rithm is the key generation algorithm (epk , esk)
r← KGen(1τ),

which outputs a public and the corresponding secret key.

The public key implicitly specifies a message space M.

The encryption algorithm c
r← Enc(epk ,m, �) computes a

ciphertext c on input of a public key epk , a message m ∈M,

and a label � ∈ {0, 1}∗. The deterministic decryption algorithm

m′ ← Dec(esk , c, �) takes as input a secret key esk , a

ciphertext c and a label � and outputs either a message m′,
or ⊥ if decryption failed. Clearly, for definitions and schemes

without labels, one can simply fix all labels to the empty string

below.

The scheme must be correct, meaning that for all τ ∈ N, all

(epk , esk)
r← KGen(1τ), all messages m ∈M, and all labels

� ∈ {0, 1}∗, we have m = Dec(esk ,Enc(epk ,m, �), �) with

probability one.

We now define our notion of FULL-SIM-security for labeled

non-committing encryption schemes NCE. While not made

explicit in the notation, we allow SIMNCE to keep state between

invocations. Let H : {0, 1}∗ → {0, 1}τ be a random oracle [5].

Definition 6 (FULL-SIM-Security): An encryption scheme

NCE = (KGen,Enc,Dec) is FULL-SIM-secure if for all PPT

adversaries A with binary output there exists a stateful PPT

simulator SIMNCE such that:
∣
∣Pr[ExpFULL-SIM-real

NCE,A (τ) = 1] −
Pr[ExpFULL-SIM-ideal

NCE,A,SIMNCE,L(τ) = 1]
∣
∣ ≤ ε(τ) for some negligible

function ε, and the experiments depicted in Figure 6.

Our definition says that an encryption scheme NCE is

FULL-SIM-secure, if no PPT adversary A can distinguish

between simulated ciphertexts and real ones. The adversary A
receives full adaptive access to oracles for new encryptions,

decryptions, the randomness used for encryptions, as well

as the randomness used for generating the secret key. The

simulated ciphertexts do not contain any information about the

plaintext other than what is explicitly given to the simulator

by the leakage function L. In our case, we define that the

leakage function L : {0, 1}∗ → N0 returns the (bit-)length

of the message m in question, which is a reasonable leakage

definition for our use case. Only when the adversary asks for

the randomness used to generate a ciphertext or the secret key,

does the simulator obtain the corresponding messages, upon

which it must provide a consistent view to A.

B. Instantiation

We now give a concrete instantiation for an encryption

scheme NCE that is FULL-SIM-secure. Our construction is

identical to the RECV-SIM-secure encryption scheme by

Camenisch et al. [11], which, in turn, borrows ideas from

Bellare and Rogaway [5] and Nielsen [45]. We recall it here

and prove it secure under our stronger FULL-SIM notion.

Let H : {0, 1}∗ → {0, 1}τ be a hash function, modeled as a

random oracle. Further, we require an encoding scheme EC =
(Ecτ ,Dcτ) which allows to map arbitrary length messages to

a list of blocks with fixed length. More precisely, let Ecτ :
{0, 1}∗ → ({0, 1}τ)+ be a deterministic injective encoding

function and Dcτ : ({0, 1}τ)+ → {0, 1}∗ be the corresponding

deterministic decoding function that returns ⊥ if no valid pre-

image exists. We require that both functions are computable

in polynomial time and that the output length of Ecτ only

depends on the length of its input, while Dcτ and Ecτ need

to be perfectly correct, i.e., for all τ ∈ N, and all messages

m ∈ {0, 1}∗ we have m = Dcτ (Ecτ (m)) with probability one.

a) Algorithms: Let us describe the construction first,

which is compact enough to be implemented in real protocols,

which avoids the major obstacle for real-life deployment. Hence,

the complexity is hidden inside the simulator SIMNCE, which

we give after describing our construction.

KGen(1τ) : Generate a random trapdoor one-way permutation,

i.e., (f, f−1,Σ)
r← TDP.Gen(1τ). Set M = {0, 1}∗.

Output the public key epk = (f,Σ), and esk = f−1

as the secret key.

221

Experiment ExpFULL-SIM-ideal
NCE,A,SIMNCE,L(τ):

epk
r← SIMNCE(publickey, 1

τ)
Q ← ∅
return ARO(·),ENC(·,·),DEC(·,·),RAND(·,·),GETSK()(epk)

where ENC(·, ·) on input (m, �):
if GETSK() has been called:

let c
r← SIMNCE(encryptm,m, �)

else:

let c
r← SIMNCE(encryptl,L(m), �)

Q ← Q∪ {(c,m, �)}
return c

where DEC(·, ·) on input (c, �):
if (c,m, �) ∈ Q, return m
else, return SIMNCE(decrypt, c, �)

where RO(·) on input s:

return SIMNCE(roquery, s)
where GETSK():

return SIMNCE(keyleak,Q)
where RAND(·, ·) on input (c, �):

if (c,m, �) /∈ Q for some m, return ⊥
else, return SIMNCE(randomness, (c,m, �))

Experiment ExpFULL-SIM-real
NCE,A (τ):

(epk , esk ; rkey)
r← KGen(1τ)

Q ← ∅
return ARO(·),ENC(·,·),DEC(·,·),RAND(·,·),GETSK()(epk)

where ENC(·, ·) on input (m, �):
let (c; r)

r← Enc(epk ,m, �)
Q ← Q∪ {(c,m, �, r)}
return c

where DEC(·, ·) on input (c, �):
return Dec(esk , c, �)

where RO(·) on input s:

return H(s)
where GETSK():

return rkey
where RAND(·, ·) on input (c, �):

if (c,m, �, r) /∈ Q, for some r and m,

return ⊥
else, return r

Fig. 6. Experiments FULL-SIM-ideal and FULL-SIM-real.

Enc(epk ,m, �) : Let (m1,m2, . . . ,mk)← EC.Ecτ (m). Draw

x
r← TDP.SampleΣ(1

τ), and compute c(1) ← TDP.f(x),
c(i,2) ← H(i, x) ⊕ mi for all 0 < i ≤ k, and

c(3) ← H(x, k,m, �). Output the ciphertext c =
(c(1), (c(1,2), c(2,2), . . . , c(k,2)), c(3)).

Dec(esk , c, �) : Parse c as (c(1), (c(1,2), c(2,2), . . . , c(k′,2)), c(3))
for some k′ ≥ 1 with each |c(i,2)| = τ . Compute

x′ ← TDP.f−1(c(1)) and m′i ← H(i, x′)⊕ c(i,2) for all

0 < i ≤ k′. Set m′ ← EC.Dcτ (m
′
1,m

′
2, . . . ,m

′
k′). If

m′ = ⊥ or c(3) �= H(x′, k′,m′, �), output ⊥, else output

m′. This algorithm is deterministic.

The above construction clearly fulfills perfect correctness, if

EC is perfectly correct.

C. Security of the Construction

We now prove that the above construction is FULL-SIM

secure.

Theorem 1: The construction NCE = (KGen,Enc,Dec)
above is FULL-SIM-secure, if TDP.Gen is a secure trapdoor

permutation generator and if H is modeled as a fully pro-

grammable and observable random oracle.

We first give a rough sketch to make the proof more

understandable, and give the full proof afterwards.

Proof Sketch. Simplified, the proof works as follows. Decryp-

tion queries are answered by searching through the random-

oracle table for entries H(i, x) and H(x, k,m, �) such that

c(1) = TDP.f(x), or returns ⊥ if no such entries are found.

When our simulator SIMNCE is asked to encrypt a message of

a certain length, it returns a ciphertext with c(1) = TDP.f(x)
for a random x, but replacing c(1,2), . . . , c(k,2) and c(3) with

random strings. When the message m to which the ciphertext

should decrypt becomes known, the simulator programs the

random oracle H such that H(i, x) ⊕ c(i,2) = mi and

c(3) ← H(x, k,m, �). This programming could fail if one

of H(i, x) or H(x, k,m, �) was queried already. We show that

this event BAD only happens with negligible probability.

Namely, there are three possibilities. The first is that SIMNCE

already programmed one of these entries for a different

ciphertext, meaning, the simulator itself accidentally drew

the same x twice for different ciphertexts (denoted BADX).

Due to the birthday bound, this only happens with negligible

probability. The second case is that the programming of

H(x, k,m, �) makes a ciphertext valid that the simulator

previously had to decrypt and that it discarded as invalid. This

essentially means that the adversary has to guess a random

oracle output, which clearly happens only with negligible

probability, denoted BADH. In the third case, the adversary

made a random-oracle query involving x. Such an adversary

can be turned into an inverter for the TDP.

Proof. We provide a simulator SIMNCE such that the view

created by the simulator is indistinguishable from the view

provided by the real experiment. The general idea is that the

simulator honestly generates the key pair and honestly samples

the first part c(1) of all ciphertexts c, but draws c(2,i) and c(3)
randomly. Once the plaintext corresponding to a simulated

ciphertext becomes known, i.e., when the adversary makes a

RAND or GETSK query, the simulator programs the random

oracleH such that the ciphertext actually decrypts to the correct

message. As all the randomness used by the simulator is drawn

honestly, this can be simulated as well, so we do not require

secure erasures. The only thing that can make the simulation

fail, is that the programming of the random oracle fails because

entries have already been assigned. We show that such an event

gives rise to an algorithm breaking the one-wayness of the

TDP.

222

a) Description of the Simulator: The simulator SIMNCE

keeps two initially empty lists LH, and LR. The first list

LH contains pairs (s, h), where h is the value returned by

the random oracle on the query H(s). The second list LR
stores entries (c,m, �, r, x) to keep track of the relationship

between (simulated and non-simulated) ciphertexts c, messages

m, labels �, sampling randomness r and sampled values x.

Key Generation. On input of (publickey, 1τ), SIMNCE hon-

estly generates the key pair, i.e., ((f, f−1,Σ); rkey)
r←

TDP.Gen(1τ). It stores esk = f−1, and rkey. SIMNCE

returns (f,Σ) as epk .

Ramdom-Oracle Queries. For each query (roquery, s),
SIMNCE checks whether there is an entry (s, h) ∈ LH
for some h. If so, SIMNCE returns h. Else, SIMNCE draws

h
r← {0, 1}τ , adds (s, h) to LH, and returns h.

Encryption. Depending on the type of input, we need to

branch:

• On input (encryptm,m, �), SIMNCE encrypts honestly,

i.e., it runs (c; r)
r← NCE.Enc(epk ,m, �), using

SIMNCE(roquery, s) for random-oracle calls H(s), adds

(c,m, �, r,⊥x) to LR, and returns c.

• On input (encryptl,L(m) = |m|, �), SIMNCE

draws (x; r)
r← TDP.SampleΣ(1

τ). Let k ←
|EC.Ecτ (1|m|)|/τ . It sets c(1) ← TDP.f(x) and

chooses c(2,i)
r← {0, 1}τ for 1 ≤ i ≤ k and

c(3)
r← {0, 1}τ . It adds (c,⊥m, �, r, x) to LR and

returns c.

Decryption. On input of (decrypt, c, �), SIMNCE com-

putes x′ ← TDP.f−1(c(1)), lets m′i ← c(2,i) ⊕
SIMNCE(roquery, (i, x

′)) for i = 1, . . . , k, and computes

m′ ← EC.Dcτ (m
′
1,m

′
2, . . . ,m

′
k). If m′ = ⊥ or c(3) �=

SIMNCE(roquery, (x
′, k,m′, �)), it returns ⊥, otherwise it

returns m′. Note that SIMNCE never receives a request

where it has to decrypt a simulated ciphertext.

Encryption Randomness. On input of

(randomness, (c,m, �)), look up a tuple

(c,m′, �, r, x) ∈ LR where m′ ∈ {m,⊥m}. Note

that, from the description of experiment FULL-SIM-ideal,
such a tuple always exists. If m′ = m, then SIMNCE

simply returns r. If m′ = ⊥m, then SIMNCE must

first program H to ensure consistent encryption,

as with the given randomness r the adversary can

re-encrypt m to see whether it obtains c. It does

so as follows. Let (m1,m2, . . . ,mk) ← EC.Ecτ (m).
If ((x, k,m, �), c′(3)) ∈ LH for some c′(3) or if ((i,
x), hi) ∈ LH for some 1 ≤ i ≤ k, then we say that

event BAD happened and SIMNCE aborts. Otherwise,

SIMNCE adds ((i, x),mi⊕c(2,i)) for 1 ≤ i ≤ k as well as

((x, k,m, �), c(3)) to LH. It then updates (c,⊥m, �, r, x)
to (c,m, �, r, x) in LR and returns r.

Key Leakage. On input (keyleak,Q), SIMNCE first programs

the random oracle H to ensure consistent decryption for

all (c,m, �) ∈ Q in the same way as for answering RAND

queries above. SIMNCE then returns the random coins rkey
used to generate the secret key esk .

From the way random oracles are programmed, it is clear

that the simulation is perfect unless the event BAD happens.

Using Pr[REAL] and Pr[IDEAL] as shorthand notations for the

probability that the experiment outputs 1 for the real and ideal

experiments, respectively, we have that

∣
∣Pr[REAL]− Pr[IDEAL]

∣
∣

=
∣
∣(Pr[REAL|BAD]− Pr[IDEAL|BAD]) · Pr[BAD]
+ (Pr[REAL|BAD]− Pr[IDEAL|BAD]) · Pr[BAD]∣∣

=
∣
∣(Pr[REAL|BAD]− Pr[IDEAL|BAD])∣∣ · Pr[BAD](1)

≤ Pr[BAD] , (2)

where (1) is true because Pr[REAL | BAD] − Pr[IDEAL |
BAD] = 0 and (2) is true because the first factor of (1) is at

most one.

b) Reduction from Trapdoor Permutations: We have left

to prove that event BAD happens with negligible probability.

We do so by proving that any adversary that causes BAD to

occur gives rise to an algorithm breaking the one-wayness

of the trapdoor permutation. The reduction is similar to the

analysis of Camenisch et al. [11], but is tighter and explicitly

gives out the randomness used for encryption to the adversary.

Let qe be the number of encryption queries, qd the number

of decryption queries, and qh the number of random-oracle

queries to H. Assume towards contradiction that Pr[BAD] >
ε(τ). We can then construct an algorithm B which outputs

the preimage of a TDP challenge point y with non-negligible

probability. Algorithm B receives (f, y,Σ) as input from the

TDP challenger. It then interacts with A as follows.

Key Generation. On input of (publickey, 1τ), B draws j
r←

{1, 2, . . . , qe}, and returns (f,Σ) as epk .

RO Queries. On input (roquery, s), B checks if there is an

entry (s, h) ∈ LH for some h. If so, B returns h. Else, B
draws h

r← {0, 1}τ .

If s is of the form (x, k,m, �) and there exists a previously

rejected ciphertext that, by assigning h as the output

of H(s), should have been considered valid, then we

say that event BADH happened and B aborts. More

precisely, if there exists a tuple (c, �) ∈ Lc with c =
(c(1), c(1,2), . . . , c(k,2), c(3)) such that c(1) = TDP.f(x),
c(3) = h, and m = EC.Dcτ (c(1,2)⊕H(1, x), . . . , c(k,2)⊕
H(k, x)), then BADH happened and B aborts, whereby

random-oracle queries H(i, x) are simulated as described

here.

Otherwise, B adds (s, h) to LH and returns h.

Encryption. On input (encryptl, |m|, �), it proceeds as fol-

lows. If this is the jth encryption query, then B sets

c(1) ← y and x, r ← ⊥. Otherwise, it draws (x; r)
r←

TDP.SampleΣ(1
τ), sets c(1) ← TDP.f(x), and tests

whether x ∈ Lx. If so, then we say that event BADX hap-

pened and B aborts, otherwise B adds x to Lx. Let k ←
|EC.Ecτ (1|m|)|/τ . Algorithm B chooses c(2,i)

r← {0, 1}τ
for all 1 ≤ i ≤ k and c(3)

r← {0, 1}τ , adds (c,⊥m, �, r, x)
to LR, and returns c. Note, (encryptm,m, �) is never

received.

223

Decryption. On input (decrypt, c, �) from A, B proceeds

as follows. Look for an entry ((x, k,m, �), c(3)) ∈
LH such that TDP.f(x) = c(1) and m =
EC.Dcτ (m1,m2, . . . ,mk) for mi ← c(2,i) ⊕ H(i, x),
where calls to H are simulated as above. Note that at

most one such entry can exist because, TDP being a

permutation, there exists only one x ∈ Σ such that

TDP.f(x) = c(1), which then unique defines m1, . . . ,mk

and thereby m. If no such entry exists, then B adds (c, �)
to Lc and returns ⊥, otherwise it returns m.

Encryption Randomness. On input of

(randomness, (c,m, �)), look up a tuple

(c,m′, �, r, x) ∈ LR for m′ ∈ {m,⊥m}. If m′ = m then

B returns r. If m′ = ⊥m then B must program H to

ensure consistent encryption. If now the conditions of the

BAD event in SIMNCE are satisfied, i.e., if there exists a

tuple ((x′, k,m, �), ·) ∈ LH or a tuple ((i, x′), ·) ∈ LH
such that TDP.f(x′) = c(1), and if additionally c is the

j-th simulated ciphertext, i.e., if x = r = ⊥, then B
outputs x′ as its preimage for y = c(1). If the conditions

for BAD are satisfied but c is not the j-th ciphertext,

then B aborts. If the conditions for BAD are not satisfied,

then B programs the random oracle in the same way as

SIMNCE, i.e., by adding ((i, x),mi⊕ c(2,i)) for 1 ≤ i ≤ k
as well as ((x, k,m, �), c(3)) to LH. Algorithm B updates

(c,⊥m, �, r, x) to (c,m, �, r, x) in LR and returns r.

Key Leakage. On input of (keyleak,Q), B checks each entry

(i, x) and (x, k,m, �) in LH whether f(x) = y. If so,

then B returns x as the preimage of y to the challenger.

Otherwise, it aborts.

Algorithm B succeeds in inverting y with probability 1/qe
whenever event BAD happens and neither BADH nor BADX
happen, i.e.

Pr[B succeeds] =
1

qe
Pr[BAD ∧ BADH ∧ BADX]

≥ 1

qe

(
Pr[BAD]− Pr[BADH]− Pr[BADX]

)

Note that not being able to respond to a keyleak input does not

influence the success probability of B, because after a keyleak
input the BAD event can no longer happen anyway.

The event BADH happens when the response to a new

random-oracle query H(x, k,m, �) turns a ciphertext that was

previously rejected during a decryption query into a valid

ciphertext. For each decryption query DEC(c, �), there is only

a single random-oracle query H(x, k,m, �′) that could cause

BADH to happen though, namely the query where TDP.f(x) =
c(1), k is the number of blocks in c(2) = (c(1,2), . . . , c(k,2)),
m = EC.Dcτ (c(1,2) ⊕ H(1, x), . . . , c(k,2) ⊕ H(k, x)), and

�′ = �. Each of those random-oracle queries H(x, k,m, �′)
has probability 1/2τ to hit c(3), so the overall probability of

BADH is at most Pr[BADH] ≤ qd/2
τ .

The event BADX happens when during encryption, a

randomly chosen value x
r← Σ hits one of the at most qe

elements of LR. Since |Σ| ≥ 22τ , the probability of this

happening is Pr[BADX] ≤ q2e/2
2τ . Putting everything

FULL-SIM

SSIM-SORECV-SIM RSIM-SO

IND-NCER

IND-CCA2

SSIM-SO+

RSIM-SO

Fig. 7. Implications of security definitions. Solid arrows denote strict
implications, while striked out arrows denote separations.

together, if ε′(t) is the maximum advantage of a PPT algo-

rithm to break the one-wayness of TDP, then we have that

|Pr[REAL]−Pr[IDEAL]| ≤ qeε
′(t)+ qd

2τ +
q2e
22τ which proves

the theorem. �
We stress that Nielsen’s underlying construction [45] is

not a FULL-SIM-secure encryption scheme, as it is trivially

malleable. Refer to Appendix A for his construction.

The following corollary immediately follows from our

construction.

Corollary 1: If trapdoor one-way permutations exist, then

FULL-SIM-secure encryption schemes exist in the (fully

programmable and observable) random-oracle model without

erasures.

V. RELATIONSHIPS BETWEEN SECURITY NOTIONS

As depicted in Figure 7, we show that our definition is strictly

stronger than the state-of-the-art definitions RECV-SIM [11],

SSIM-SO [30], and RSIM-SO [30], while being incomparable

to IND-NCER [16], [30].

Clearly, the RECV-SIM notion of Camenisch et al. [11],

is the basis of our FULL-SIM notion, but does not give the

adversary access to encryption or key generation randomness.

As one would expect, our notion implies RECV-SIM. Since

Camenisch et al. already proved that RECV-SIM security

implies IND-CCA2 security [11], it automatically follows that

FULL-SIM security also implies IND-CCA2 security.

The proofs of the following propositions are given in

Appendix B.

Proposition 1 (FULL-SIM =⇒ RECV-SIM): Any

encryption scheme that is FULL-SIM secure is also RECV-SIM

secure.

Next, we focus on the chosen-plaintext definitions given by

Hazay, Patra, and Warinschi [30]. As RSIM-SO and SSIM-SO

do not incorporate labels, we define that the encryption and

decryption oracles only accept empty labels, as the notions

are essentially equivalent [49]. First, we address RSIM-SO

security.

Proposition 2 (FULL-SIM =⇒ RSIM-SO): Any public-key

encryption scheme that is FULL-SIM secure is also RSIM-SO

secure.

Proposition 3 (FULL-SIM =⇒ SSIM-SO): Any public-key

encryption scheme that is FULL-SIM secure is also SSIM-SO

secure.

Next, we need some additional results to show the separations

in the other direction, i.e., to show that our FULL-SIM

224

definition is strictly stronger than RECV-SIM, RSIM-SO, and

SSIM-SO.

Theorem 2: There is no FULL-SIM-secure NCE in the

standard model.

Proof. This follows by construction. In the full version, we

show how to realize the round-optimal secure message trans-

fer functionality FLSMT using our functionality FLNCE, which

is black-box realized by any FULL-SIM-secure encryption

scheme. The theorem follows by plugging in the impossibility

result by Nielsen [45]. �
This means, that there is no standard model model instantiation

of FULL-SIM-secure encryption schemes. Hence, the above

implications are strict, as for the other notions there exist

standard model instantiations under reasonable assumptions.

Note, this also means that we cannot avoid programmability

of the random oracle in our construction, which also follows

from the results given by Nielsen [45]. Thus, the global random-

oracle (as defined by Canetti et al. [18]) cannot be used, and

not even a CRS helps.

Proposition 4: If one-way trapdoor permutations exist, and

the Decisional composite residuosity [46] (DCR) assumption

holds, then IND-NCER security is incomparable to FULL-SIM

security in the random oracle model. Meaning, there exists a

scheme that is IND-NCER secure but not FULL-SIM secure

and vice versa.

Moreover, even SSIM-SO-Security and RSIM-SO-Security

together do not imply FULL-SIM-Security, as the adversary

cannot proceed adaptively in the SSIM-SO game, i.e., the

distribution is fixed, which is not the case in the FULL-SIM-

Security game.

Proposition 5 (RECV-SIM �=⇒ FULL-SIM): If perfectly

binding commitments exist, then there exists a scheme that is

RECV-SIM secure but not FULL-SIM secure.

VI. UNIVERSALLY COMPOSABLE NON-COMMITTING

ENCRYPTION

In this section, we introduce an ideal functionality in the UC

framework for non-committing encryption FLNCE. We show that

FLNCE and FULL-SIM security are essentially equivalent, in the

sense that any FULL-SIM-secure scheme immediately gives

rise to a secure instantiation of FLNCE and vice versa. We also

show that FLNCE can be used to instantiate the secure message

transmission functionality FSMT, so that, as an immediate

consequence, Nielsen’s impossibility result [45] excludes any

secure instantiations of FLNCE (and therefore, of FULL-SIM-

secure encryption schemes) in the standard model.

A. Ideal Functionality for Non-Committing Encryption

The ideal functionality FLNCE is depicted in Figure 8. In a

nutshell, FLNCE encapsulates local public-key encryption, which

is one of the most basic operations in modern cryptography.

The functionality is based on the FAFSE functionality of Canetti

et al. [16], but without the a-priori bound on the ciphertexts

to be generated, while we also support labels. We therefore

neither need any update interfaces, nor any special corruption

interfaces. Compared to the definition by Canetti et al. [19], we

also enforce that once a ciphertext is decrypted, the decryption

remains fixed.

Encryption and decryption in our functionality are local

operations that generate and decrypt actual ciphertexts. The

ciphertexts are provided by the adversary A which, as long

as the owner of the key pair is honest, only receives the

information explicitly provided by the leakage function L. We

use the notation “send x to A and wait for y from A” as

a shorthand notation for requests to responsive environments

as defined by Camenisch et al. [9], so that the functionality

stalls until A provides a response y through a dedicated

interface. While the functionality waits for a message from

A, the adversary cannot invoke any other interfaces of the

ideal functionality, generate any network traffic, or activate or

corrupt parties.

Previous functionalities in the literature require the adversary

to provide an encryption algorithm that the functionality runs

to generate ciphertexts for the encrypted messages [13], [17],

[39], [40], [41]. All realizations using this paradigm suffer from

the selective de-commitment problem [13], [40] or inherently

require static adversaries. We avoid this problem by querying

the adversary for each ciphertext that needs to be generated.

The public key for an instance of FLNCE is also provided by

the adversary. To avoid implying certified keys, the encryption

interface also accepts queries for different public keys than

the registered key of this instance. Decryption for simulated

ciphertexts works as expected, in the sense that for every ci-

phertext generated by the encryption interface, the functionality

returns the original message without any involvement of the

adversary. If, however, a ciphertext was not honestly generated,

the functionality asks the adversary to provide the decryption.

a) The Interfaces: We briefly explain the interfaces of

the FLNCE functionality.

• KeyGeneration. This interface can only be called once and

allows the key-pair owner P to generate a key pair. The

public key pk is provided by the adversary.

• Encryption. This interface allows any party, including the

key-pair owner itself, to encrypt a message of arbitrary

length. If the public key that is given as part of the input

equals the public key stored for this instance, then the

adversary only receives the information explicitly given by

the leakage function L, as long as P is honest. Otherwise,

the functionality does not give any security guarantees, and

gives the adversary the plaintext. Note, the adversary does

not learn which party wants to encrypt, while the provided

pk may also be adversarially chosen. The adversary must

provide fresh ciphertexts for the stored public key and cannot

overwrite ciphertexts.

• Decryption. This interface allows the key-pair owner to

decrypt a given ciphertext. For simulated ciphertexts and

ciphertexts that were decrypted before, the corresponding

plaintexts are directly returned by the functionality. All other

ciphertexts are sent to the adversary which needs to provide

a decryption. Decryption is consistent, in the sense that once

225

1) Key Generation. On input (KEYGEN, sid) from party P:

• If sid �= (P, sid ′) or a record (keyrec, ·) exists, ignore.

• Send (KEYGEN, sid) to A and wait for (KEYCONF, sid , pk) from
A.

• If pk = ⊥, ignore.

• Create record (keyrec, pk) and output (KEYCONF, sid , pk) to P .

2) Encryption. On input (ENCRYPT, sid , pk ,m, �) from party Q:

• If pk = ⊥, ignore.

• If no record (keyrec, pk) exists, send (ENCRYPTM, sid , pk ,m, �) to
A and wait for (CIPHERTEXT, sid , c) from A.

• Else, if sid = (P, sid ′) and P is corrupt, send
(ENCRYPTM, sid , pk ,m, �) to A and wait for
(CIPHERTEXT, sid , c) from A.

• Else, send (ENCRYPTL, sid , pk ,L(m), �) to A and wait for
(CIPHERTEXT, sid , c) from A.

• If there is a record (keyrec, v), let pk ′ ← v, else let pk ′ ← ⊥.

• If there is a record (encryptionrec, sid , pk , ·, �, c) and pk = pk ′,
ignore.

• If there is a record (decryptionrec, sid , ·, �, c) and pk = pk ′, ignore.

• Create record (encryptionrec, sid , pk ,m, �, c).
• Output (CIPHERTEXT, sid , c,m, �, pk) to Q.

3) Decryption. On input (DECRYPT, sid , c, �) from party P:

• If sid �= (P, sid ′), ignore.

• If no record (keyrec, pk) exists, ignore.

• If a record (encryptionrec, sid , pk ,m, �, c) exists, output
(PLAINTEXT, sid , c,m, �) to P .

• If a record (decryptionrec, sid ,m, �, c) exists, output
(PLAINTEXT, sid , c,m, �) to P .

• Send (DECRYPT, sid , c, �) to A and wait for (PLAINTEXT, sid ,m)
from A.

• Create record (decryptionrec, sid ,m, �, c).
• Output (PLAINTEXT, sid , c,m, �) to P .

Fig. 8. Our functionality FL
NCE with leakage function L.

a ciphertext is mapped to a given plaintext, the result of

decrypting that ciphertext will always be the same.

B. Instantiation of FLNCE
Our construction is a wrapper around any FULL-SIM-

secure labeled non-committing encryption scheme NCE =
(KGen,Enc,Dec) to match the input and output behavior of the

ideal functionality FLNCE, using the label to bind a ciphertext to

a session sid . Any calls that NCE makes to a random oracle are

relayed to a local instance of the random-oracle functionality

FRO with session identifier (sid ,FRO). The definition of FRO

can be found in the full version of this paper.

Key Generation. On input of (KEYGEN, sid), check that

sid = (P, sid ′), and P is the identity. If this is not the case,

ignore. If a record (key , sid , epk , esk) exists, ignore. Generate

(epk , esk)
r← KGen(1τ), store (key , sid , epk , esk), and output

(KEYCONF, sid , epk).

Encryption. On input of (ENCRYPT, sid , pk ,m, �), ig-

nore if pk = ⊥, or sid �= (P, sid ′). Generate c
r←

Enc(pk ,m, (�, sid)). Output (CIPHERTEXT, sid , c,m, �, pk).

Decryption. On input of (DECRYPT, sid , c, �), check

that sid = (P, sid ′). If this is not the case, or no

record (key , sid , epk , esk) exists, ignore. Otherwise, let m←
Dec(esk , c, (�, sid)). Output (PLAINTEXT, sid , c,m, �).

Theorem 3: If NCE is FULL-SIM secure, then the above

protocol securely realizes FLNCE in the FRO-hybrid model

without secure erasures and with adaptive corruptions.

Proof. By the FULL-SIM security of NCE, there must exist

a simulator SIMNCE so that no PPT adversary exists that

can distinguish between the real FULL-SIM game and the

ideal FULL-SIM game with SIMNCE. Given such a simulator

SIMNCE, we now describe a UC simulator SIM for the

above instantiation of FLNCE. We subsequently show that any

environment that can distinguish whether it is interacting with

the real protocol and a real-world adversary A or with FLNCE
and SIM can be used to build a FULL-SIM distinguisher for

SIMNCE, contradicting the FULL-SIM security of NCE.

a) Simulator: Given a FULL-SIM simulator SIMNCE and

a real-world UC adversary A, consider the following UC

simulator SIM for FLNCE.

Key Generation. On input (KEYGEN, sid), the sim-

ulator SIM calls SIMNCE with (publickey, 1τ), which re-

turns epk . SIM then records (key , sid , epk) and sends

(KEYCONF, sid , epk) to FLNCE.

Encryption. On input (ENCRYPTM, sid , pk ,m, �), the

simulator SIM computes (c; r)
r← Enc(pk ,m, (�, sid)),

creates a record (encryptionrec, sid , c,m, �, r, pk , false),
and sends (CIPHERTEXT, sid , c) to FLNCE. On input

(ENCRYPTL, sid , pk ,L(m), �), SIM calls SIMNCE with

(encryptl,L(m), (�, sid)) to SIMNCE to receive c. It then

creates a record (encryptionrec, sid , c,⊥m, �,⊥r, pk , false)
and sends (CIPHERTEXT, sid , c) to FLNCE. Note that this

case implies pk = epk .

Decryption. On input (DECRYPT, sid , c, �), SIM calls

SIMNCE with (decrypt, c, (�, sid)) to obtain m and sends

(DECRYPT, sid ,m) to FLNCE.

Random oracle. In the FRO-hybrid model, SIM must also

provide responses to all parties’ inputs to the FRO functionality.

On input (ROQUERY, sid ′, s) from a party P , SIM outputs

SIMNCE(roquery, s) if sid ′ = (sid ,FRO), or runs the actual

code of FRO otherwise.

Corruption. We work with the standard corruption defi-

nition [13] where, upon corruption of a party, the simulator

receives all previous inputs and outputs of that party and needs

to provide a consistent view of the real-world state for that party

to the real-world adversary A. We need to consider different

cases depending on which party gets corrupted.

If the holder of the secret key P becomes corrupted,

SIM receives six lists corresponding to the inputs and out-

puts of the three interfaces of FLNCE to and from P . The

simulator SIM has to provide a realistic snapshot of P’s

real-world state to the adversary A that must contain, apart

from the list of previous inputs and outputs that SIM just

obtained from FLNCE, the randomness used in key generation

226

and encryption. To obtain the key generation randomness

from SIMNCE, SIM must compile the set Q of all honestly

generated ciphertexts and corresponding plaintexts (c,m, �)
that were encrypted under epk by any party (not just P).

The list of ciphertexts c and labels � can be looked up in

its own records (encryptionrec, sid , c,⊥m, �,⊥r, epk , false).
Since P is now corrupt, SIM can obtain the corresponding

plaintexts m by querying the decryption interface on FLNCE
with (DECRYPT, sid , c, �). After thus composing the list Q,

SIM calls SIMNCE(keyleak,Q) to obtain the key generation

randomness rkey.

To obtain the randomness used for every encryption under

epk performed by P , SIM considers P’s previous outputs from

the encryption interface (CIPHERTEXT, sid , c,m, �, epk) that

it received from FLNCE. For each of these outputs, SIM
calls SIMNCE with (randomness, (c,m, (�, sid))) to obtain the

encryption randomness r. For ciphertexts generated by P
under other public keys pk �= epk , SIM also has records

of the form (encryptionrec, sid , c,m, �, r, pk , false), so that

SIM can simply give the stored r and update the record to

(encryptionrec, sid , c,m, �, r, pk , true). The latter is important

to ensure that randomness will not be given out for another party

later. Namely, when encrypting under an adversarial public key

pk , we cannot exclude that different randomness r, r′ yield the

same ciphertext c. If this happens for two encryption calls made

by two different parties, and these parties later get corrupted,

then the simulator must ensure that different randomness r
and r′ is given out to each of these parties. (Recall that the

simulator doesn’t learn which party initiated an encryption, so

it doesn’t know which randomness it used for which party.) By

flagging a record with true when the randomness was given

out, SIM ensures that the same randomness will not be given

out again to a different party.

If any other party Q becomes corrupted, SIM needs to

provide to A all Q’s previous inputs and outputs, as well as the

randomness used to create the ciphertexts that Q generated. For

all previous encryption outputs (CIPHERTEXT, sid , c,m, �,
pk) to Q, which SIM now obtains from FLNCE, SIMNCE is called

with (randomness, (c,m, (�, sid))) to return the randomness

r, which SIM simply passes on to A. It also includes the ran-

domnesses used for other public keys pk �= epk , which are all

stored in the records (encryptionrec, sid , c,m, �, r, pk , false).
b) Reduction From FULL-SIM: Fix an environment and

a real-world adversary A that can distinguish the real protocol

with A from the ideal functionality FLNCE with simulator

SIM. We can then construct an adversary B that breaks the

FULL-SIM-security of the underlying encryption scheme with

essentially the same probability (ignoring negligible parts).

Essentially, we let B’s inputs and oracles handle the key

generation, encryption, decryption, random-oracle, and corrup-

tion queries, much like SIM lets these be handled by SIMNCE.

First, B receives the public key epk from the challenger in the

FULL-SIM experiment.

If the environment, before the KEYGEN interface is

called, instructs an honest party to encrypt a message m
by providing it with input (ENCRYPT, sid , pk ,m, �), B sim-

ply calculates (c; r)
r← Enc(pk ,m, (�, sid)), and outputs

(CIPHERTEXT, sid , c,m, �, pk). It also saves (c,m, �, r, pk).
If at any point this party becomes corrupted, the reduction

simply hands over the corresponding rs stored in (c,m, �, r, pk).
Decryption queries are simply ignored before the KEYGEN
interface is called. Queries to the random-oracle functionality

for sid ′ = (sid ,FRO) are rewired to B’s own RO oracle; for

other session identifiers, it executes the real code of FRO.

When at some point the environment instructs the

honest key-pair owner P to generate its keys by providing

input (KEYGEN, sid), then B embeds the key epk in the

(KEYCONF, sid , epk) output. The encryption queries for a

“incorrect” public keys pk �= epk are answered as before.

However, for an encryption query with pk = epk , B refers to

its own encryption oracle, by calling ENC(m, (�, sid)) which

returns a ciphertext c. We then store (c,m, �,⊥r, epk) and

output (CIPHERTEXT, sid , c,m, �, epk). Decryption queries

are handled similarly, i.e., on input (DECRYPT, sid , c, �),
B calls DEC(c, (�, sid)) to obtain m and returns

(PLAINTEXT, sid , c,m, �).
If at some point a party becomes corrupted, B needs

to provide a consistent view of its state to A. It uses the

records (c,m, �,⊥r, epk) belonging to the corrupted party to

call RAND(c, (�, sid)) to obtain the randomness r, which is

passed to A. The randomness used for “incorrect” public

keys pk �= epk is obtained from its records of the form

(c,m, �, r, pk). If the key-pair holder becomes corrupted, B
additionally calls GETSK() to receive rkey and passes it to

A. At some point, the environment then outputs its guess b∗

indicating whether it is running in the real world with A or

in the ideal world with SIM. B returns b∗ as its own guess,

indicating that it is running in the FULL-SIM-real experiment

with the real encryption scheme, or in FULL-SIM-ideal with

SIMNCE.

It is clear that if B is running in FULL-SIM-real, then the

environment’s view is exactly as when interacting with the

real protocol. Likewise, if B is running in FULL-SIM-ideal,

then all its oracle queries are handled by SIMNCE, as is also

done by the UC simulator SIM. We therefore have that B’s

advantage is negligibly close to that of A. �
We now know that any FULL-SIM-secure encryption scheme

securely realizes FLNCE. To prove the equivalence, we also need

to prove the other direction. In a nutshell, we show how one

can build a FULL-SIM-secure scheme from FLSMT, while any

adversary against the resulting scheme can be used to construct

an environment which can be used to distinguish between the

real world and the ideal one.

Theorem 4 (FLNCE =⇒ FULL-SIM): Any protocol that

securely realizes FLNCE gives rise to a FULL-SIM-secure non-

committing encryption scheme.

Proof. The construction of the FULL-SIM-secure encryption

scheme NCE = (KGen,Enc,Dec) from an instantiation of

FLNCE is quite straightforward. First, a choose random, yet

correctly structured, sid . The key generation algorithm invokes

the KEYGEN interface, and returns the resulting public key

227

epk as the public key. Encryption, and decryption, invoke the

ENCRYPT and DECRYPT interfaces, respectively.

For the proof, we first construct a simulator SIMNCE for

FULL-SIM-ideal given a UC-simulator SIM. Essentially, we

have to implement the five oracles given in the FULL-SIM-

experiment, by translating the answer given by SIM. Namely,

for oracle RO, the queries received are simply re-routed to the

SIM’s random-oracle interface. epk is obtained by calling SIM
with (KEYGEN, sid). SIM answers with (KEYCONF, sid , pk).
This pk is the public key epk which is given to the ad-

versary. For encryption (oracle ENC), SIM is called with

(ENCRYPTL, sid , epk ,L(m), �) if oracle GETSK has not been

queried, or (ENCRYPTM, sid , epk ,m, �) in all other cases.

Here, (m, �) is the corresponding input. In both cases, SIM
responds with (CIPHERTEXT, sid , c,m, �, epk). This c is

given to the adversary. Decryption (oracle DEC) is similar,

i.e., for each query (c, �) to decrypt, and not seen so far,

(DECRYPT, sid , c, �) is sent to SIM, which answers with

(PLAINTEXT, sid ,m). If (c, �) has been seen before, SIMNCE

directly returns m as given in the prior corresponding query

to SIM. This m is simply given to the adversary. If the oracle

RAND on input (c, �) is called, and (c, �) has never been

queried before, SIMNCE hands (ENCRYPT, sid , epk ,m, �),
and (CIPHERTEXT, sid , c,m, �, pk) to SIM. SIM then re-

sponds with a complete execution history, where the used

randomness r is contained. If (c, �) has been seen before,

SIMNCE looks up the prior corresponding answer from SIM,

which contains r. In any case, the randomness r is then

given to the adversary. Finally, the oracle GETSK is simu-

lated by handing over all lists of the form (KEYGEN, sid),
(KEYCONF, sid , epk), (ENCRYPTL, sid , epk ,L(m), �), and

(CIPHERTEXT, sid , c,m, �, epk) to SIM, if this oracle has not

been called before. In the execution history given to SIMNCE,

there is the randomness rkey, which can be returned to the

adversary by SIMNCE. If oracle GETSK has been called before,

SIMNCE directly hands over rkey to the adversary. Clearly,

SIMNCE perfectly translates all requests.

In the second step, assume that there is an adversary A
which wins against the constructed simulator SIMNCE. We can

then construct an environment B, and an adversary Ad which

together can distinguish between the ideal world with SIM, and

the real world. Namely, we proceed as follows. B requests a

public key epk from FLNCE by sending (KEYGEN, sid) to FLNCE
(through the dummy party defined by sid). The received epk is

embedded to initialize A, which is run inside the adversary Ad.

Every query to the random oracle by A is also rewired. How-

ever, as we have local random oracles, we need a workaround.

Namely, B directsAd to query the random oracle for each query.

The returned value is simply given to A. On the ith encryption

query for message mi, B spawns a new party Pi which

it feeds with (ENCRYPT, sid , epk ,mi, �i). Upon receiving

(CIPHERTEXT, sid , ci,mi, �i, epk), B records (mi, ci, �i, i),
and gives ci to A. Decryption queries are delegated through

the functionality as well. The answer is simply given to A.

If A wants to see randomness of given ciphertext ci with

label �i, B looks up record (mi, ci, �i, i), and corrupts Pi. The

simulator then returns the randomness ri somewhere in the

execution history, which is then given to A. Likewise, if A
wants to see rkey, B corrupts the holder of the secret key

(defined by sid), which presents the execution history, where

rkey is stored. Eventually, whatever A outputs, is also output

by B. The probability that B wins its own game is the same

as A’s. �
VII. UNIVERSALLY COMPOSABLE SIGNCRYPTION

We illustrate the use of our non-committing encryption

functionality FLNCE by showing that the generic encrypt-

then-sign approach that is known to be secure for building

signcryption schemes under property-based definitions [50],

[1] also works in the UC setting against adaptive adversaries,

if one relies on strongly unforgeable signatures. Gjøsteen and

Kråkmo [26] already considered UC-secure signcryption, but

explicitly left security against adaptive corruptions as an open

problem.

In a nutshell, signcryption is a primitive allowing a sender

S to send an encrypted and authenticated message to a

receiver R, where both sender and receiver have their own key

pairs. The goal of signcryption is to obtain better efficiency

than a generic composition of encryption and signatures,

but proving the generic construction secure is important to

set a benchmark to which direct schemes can be compared.

Interactive functionalities such as secure message transmission

(FSMT) are clearly not well suited to build a local primitive

such as signcryption, so it is a good use case for our non-

interactive functionality FLNCE. Moreover, as our signcryption

directly gives rise to a protocol implementing FSMT, also this

functionality cannot be instantiated in the standard model.

The signcryption functionality FLSC is depicted in Figure 9.

Following Gjøsteen and Kråkmo [26], as well as our own

design choices for FLNCE, we let the adversary determine the

ciphertext strings. Unlike Gjøsteen and Kråkmo, however, our

functionality includes labels and lets public keys be determined

by the adversary, modeling the case where the public keys are

not necessarily certified or registered through a PKI, which

avoids implying a PKI.
a) Explanation: Let us give a high-level description what

each interface does.

• KeyGeneration. This interface allows the sender and receiver

to generate their public keys. The key pair of the receiver is

used to encrypt the message, while that of the sender will

be used to authenticate it. For simplicity, we have merged

the interface for both participants.

• Signcryption. This interface allows the sender to create the

signcryption of a message m to a receiver’s public key pkr.

In case the public key is not the one registered for the

receiver, or the receiver is corrupted, then the adversary

learns the message. For the registered receiver’s public key,

the signcryption ciphertexts provided by the adversary must

be unique.

• De− signcryption. This interface allows the receiver to de-

signcrypt a ciphertext. If the receiver was not initialized,

this interface ignores requests. In case the signcryption was

228

1) Key Generation. Upon input (KEYGEN, sid) from a party P:

• If sid �= (P, ·, sid ′) and sid �= (·,P, sid ′), ignore.

• If there is a record (keyrec, sid ,P, ·), ignore.

• Send (KEYGEN, sid ,P) to A and wait for (KEYCONF, sid ,P, v) from
A.

• If v = ⊥, ignore.

• Create record (keyrec, sid ,P, v).
• Output (KEYCONF, sid , v) to P .

2) SignCryption. On input (SIGNCRYPT, sid ,m, �, pkr) from party P:

• If sid �= (P,Q, sid ′), or pkr = ⊥, ignore.

• If there is no record (keyrec, sid ,P, pks), ignore.

• If there is a record (keyrec, sid ,Q, v), let pk ′
r ← v.

• If pkr = pk ′
r , and Q is honest, send (SENDL, sid ,L(m), �, pkr) to A

and wait for (SIGNCRYPTRES, sid , �, s) from A.

• Else, send (SENDM, sid ,m, �, pkr) to A, and wait for
(SIGNCRYPTRES, sid , �, s) from A.

• If there is a record (sc, sid , ·, ·, s, ·, pks, pk
′
r), pk ′

r taken from
(keyrec, sid ,Q, pk ′

r), where sid = (P,Q, sid ′), ignore.

• If pk ′
r = pkr , create record (sc, sid ,m, �, s, true, pks, pkr).

• Output (SIGNCRYPTRES, sid ,m, �, s) to P .

3) De-signcryption. On input (DESIGNCRYPT, sid , s, �, pks) from
party P:

• If sid �= (Q,P, sid ′), or pks = ⊥, ignore.

• If there is no record (keyrec, sid ,P, pkr), ignore.

• If there is a record (sc, sid ,m, �, s, b, pks, pkr), output
(DESIGNCRYPT, sid , s,m, �, b) to P .

• If there is a record (keyrec, sid ,Q, pks), and Q is honest,
create record (sc, sid ,m, �, s, false, pks, pkr), and output
(DESIGNCRYPT, sid , s,m, �, false) to P .

• Else, send (DESIGNCRYPT, sid , s, �, pks) to A and wait for
(DESIGNCRYPTA, sid , s,m, �, φ) from A.

• If φ /∈ {false, true}, ignore.

• If there is no record (sc, sid ,m, �, ·, true, pk ′
s, pkr), and pk ′

s = pks,
where pk ′

s is taken from (keyrec, sid ,Q, pk ′
s), let φ← false.

• If φ = false, let m← ⊥.

• Create record (sc, sid ,m, �, s, φ, pks, pkr).
• Output (DESIGNCRYPT, sid , s,m, �, φ) to P .

Fig. 9. Our functionality FL
SC with leakage function L.

honestly generated, the functionality can directly answer the

requests. In all other cases, the adversary has to determine

whether the ciphertext is valid and, if so, provide the plaintext.

The adversary is then committed to its decision, in the sense

that future de-signcryptions of the same ciphertext will yield

the same result.

b) Protocol Description: We now describe the generic

encrypt-then-sign construction for a signcryption scheme using

FLNCE and FSig as sub-functionalities. FSig is the ideal signature

functionality, enforcing strong unforgeability. The definition of

FSig can be found in the full version of this paper.

Step 1a. Key Generation (Sender S):
1) Upon input (KEYGEN, sid), ignore, if a record

(key, sid , ·) exists.

2) If sid �= (S,R, sid ′), ignore.

3) Create a signature key pair by inputting

(KEYGEN, (S, (sid ,FSig))) to FSig.

4) Upon obtaining output (KEYCONF, (S, (sid ,FSig)), spk),
create a record (key, sid , spk).

5) Output (KEYCONF, sid , spk).

Step 1b. Key Generation (Receiver R):
1) Upon input (KEYGEN, sid), ignore, if a record

(key, sid , ·) exists.

2) If sid �= (S,R, sid ′), ignore.

3) Create an encryption scheme key pair by inputting

(KEYGEN, (R, (sid ,FLNCE))) to FLNCE.

4) Upon obtaining output

(KEYCONF, (R, (sid ,FLNCE)), epk), create a record

(key, sid , epk).

5) Output (KEYCONF, sid , epk).

Step 2. Create Signcryption (Sender S):
1) Upon input (SIGNCRYPT, sid ,m, �, pk), ignore, if no

record (key, sid , spk) exists.

2) If sid �= (S,R, sid ′) or pk = ⊥, ignore.

3) Encrypt m under pk with label �′ = (�, spk , pk), i.e., in-

put (ENCRYPT, (R, (sid ,FLNCE)), pk ,m, (�, spk , pk)) to

FLNCE.

4) Sign the resulting ciphertext together with the label

�′, i.e., upon obtaining (CIPHERTEXT, (R, (sid ,
FLNCE)), c,m, (�, spk , pk), pk) from FLNCE, send (SIGN,
(S, sid), (c, (�, spk , pk))) to FSig. Upon receiving

(SIGNATURE, (S, sid), (c, (�, spk , pk)), σ), output

(SIGNCRYPTRES, sid ,m, �, (c, σ)).

Step 3. De-signcryption (Receiver R):
1) Upon receiving (DESIGNCRYPT, sid , s, �, pk), ignore if

there is no record (key, sid , epk) or pk = ⊥.

2) If s �= (c, σ) or sid �= (S,R, sid ′), ignore.

3) Verify the signature, i.e., input (VERIFY, (S, sid),
(c, (�, pk , epk)), σ, pk) to FSig. Upon receiving

(VERIFY, (S, sid), (m, (�, pk , epk)), σ, pk , v) from FSig,

output (DESIGNCRYPT, sid , s,⊥, (�, pk , epk), false),
if v = false. Else, decrypt the ciphertext, i.e., send

(DECRYPT, (R, sid), c, (�, pk , epk)) to FLNCE. Upon

receiving (PLAINTEXT, (R, sid), c,m, (�, pk , epk)),
output (DESIGNCRYPT, sid , s,m, �, true).

The full proof of the following theorem is given in Ap-

pendix C.

Theorem 5: The above construction securely realizes FLSC
in the (FLNCE,FSig)-hybrid model with adaptive corruptions

without secure erasures.

Proof-Sketch. The proof is straightforward. Namely, signa-

tures are simulated honestly, while ciphertexts are programmed

as soon as any party becomes corrupted.

We want to stress that defining a functionality for multiple

senders, and receivers, is straightforward.

VIII. CONCLUSION

We defined and gave a secure realization of FLNCE, a UC

functionality for local public-key encryption, in a setting of

adaptive corruptions without erasures. We also introduced

a new property-based notion of FULL-SIM security, which

we showed to be equivalent to our UC definition. Our non-

interactive construction assumes the existence of trapdoor

one-way permutations in the random-oracle model. It is very

efficient, as it only has a constant overhead, only requires

229

one evaluation of a trapdoor permutation, and a handful of

hash evaluations. Due to Nielsen’s impossibility result for

round-optimal adaptively secure secure message transmission, a

standard model instantiation of our primitive is also impossible.

Still, we believe that our functionality FLNCE and its instanti-

ation can be a very useful building block for other UC-secure

protocols, which until now had to provide direct constructions

tailored to one specific application scenario. As an example,

we showed how FLNCE can be used to model and realize the

signcryption functionality FLSC in the presence of adaptive

adversaries without erasures.

IX. ACKNOWLEDGEMENTS

The authors were supported by the European Research

Council under grant agreement number 321310 (PERCY).

REFERENCES

[1] An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and
encryption. In: Eurocrypt. pp. 83–107 (2002)

[2] Beaver, D.: Plug and play encryption. In: Crypto. pp. 75–89 (1997)
[3] Beaver, D., Haber, S.: Cryptographic protocols provably secure against

dynamic adversaries. In: Eurocrypt. pp. 307–323 (1992)
[4] Bellare, M., Dowsley, R., Waters, B., Yilek, S.: Standard security does

not imply security against selective-opening. In: Eurocrypt. pp. 645–662
(2012)

[5] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for
designing efficient protocols. In: CCS. pp. 62–73 (1993)

[6] Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: Eurocrypt.
pp. 92–111 (1994)

[7] Böhl, F., Hofheinz, D., Kraschewski, D.: On definitions of selective
opening security. In: PKC. pp. 522–539 (2012)

[8] Boldyreva, A., Fischlin, M.: Analysis of random oracle instantiation
scenarios for OAEP and other practical schemes. In: CRYPTO. pp.
412–429 (2005)

[9] Camenisch, J., Enderlein, R.R., Krenn, S., Küsters, R., Rausch, D.:
Universal composition with responsive environments. ePrint 34 (2016)

[10] Camenisch, J., Enderlein, R.R., Neven, G.: Two-server password-
authenticated secret sharing uc-secure against transient corruptions. In:
PKC. pp. 283–307 (2015)

[11] Camenisch, J., Lehmann, A., Neven, G., Samelin, K.: Virtual smart cards:
How to sign with a password and a server. In: SCN. pp. 353–371 (2016)

[12] Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption
of discrete logarithms. In: Crypto. pp. 126–144 (2003)

[13] Canetti, R.: Universally composable security: A new paradigm for
cryptographic protocols. ePrint 67 (2000)

[14] Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-
party computation. In: STOC. pp. 639–648 (1996)

[15] Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology,
revisited. J. ACM 51(4), 557–594 (2004)

[16] Canetti, R., Halevi, S., Katz, J.: Adaptively-secure, non-interactive public-
key encryption. In: TCC. pp. 150–168 (2005)

[17] Canetti, R., Herzog, J.: Universally composable symbolic analysis of
mutual authentication and key-exchange protocols. In: TCC. pp. 380–403
(2006)

[18] Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global
random oracle. In: CCS. pp. 597–608 (2014)

[19] Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext
security. In: CRYPTO. pp. 565–582 (2003)

[20] Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Improved non-
committing encryption with applications to adaptively secure protocols.
In: Asiacrypt. pp. 287–302 (2009)

[21] Damgård, I., Nielsen, J.B.: Improved non-committing encryption schemes
based on a general complexity assumption. In: Crypto. pp. 432–450
(2000)

[22] Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.J.: Magic functions.
In: FOCS. pp. 523–534 (1999)

[23] Fehr, S., Hofheinz, D., Kiltz, E., Wee, H.: Encryption schemes secure
against chosen-ciphertext selective opening attacks. In: Eurocrypt. pp.
381–402 (2010)

[24] Fuchsbauer, G., Heuer, F., Kiltz, E., Pietrzak, K.: Standard security does
imply security against selective opening for markov distributions. In:
TCC-1. pp. 282–305 (2016-A)

[25] Garay, J.A., Wichs, D., Zhou, H.: Somewhat non-committing encryption
and efficient adaptively secure oblivious transfer. In: Crypto. pp. 505–523
(2009)

[26] Gjøsteen, K., Kråkmo, L.: Universally composable signcryption. In:
EuroPKI. pp. 346–353 (2007)

[27] Goldwasser, S., Kalai, Y.T.: On the (in)security of the fiat-shamir
paradigm. In: FOCS. pp. 102–113 (2003)

[28] Hazay, C., Lindell, Y., Patra, A.: Adaptively secure computation with
partial erasures. In: PODC. pp. 291–300 (2015)

[29] Hazay, C., Patra, A.: Efficient one-sided adaptively secure computation.
J. Cryptology 30(1), 321–371 (2017)

[30] Hazay, C., Patra, A., Warinschi, B.: Selective opening security for
receivers. ePrint 860 (2015)

[31] Hemenway, B., Ostrovsky, R., Richelson, S., Rosen, A.: Adaptive security
with quasi-optimal rate. In: TCC-A I. pp. 525–541 (2016)

[32] Hemenway, B., Ostrovsky, R., Rosen, A.: Non-committing encryption
from Φ-hiding. In: TCC. pp. 591–608 (2015)

[33] Heuer, F., Poettering, B.: Selective opening security from simulatable
data encapsulation. IACR Cryptology ePrint Archive 2016, 845 (2016)

[34] Hofheinz, D.: Possibility and impossibility results for selective decom-
mitments. J. Cr. 24(3), 470–516 (2011)

[35] Hofheinz, D., Jager, T., Rupp, A.: Public-key encryption with simulation-
based selective-opening security and compact ciphertexts. ePrint 180
(2016)

[36] Hofheinz, D., Rao, V., Wichs, D.: Standard security does not imply
indistinguishability under selective opening. ePrint 792 (2015)

[37] Hofheinz, D., Rupp, A.: Standard versus selective opening security:
Separation and equivalence results. In: TCC. pp. 591–615 (2014)

[38] Jarecki, S., Lysyanskaya, A.: Adaptively secure threshold cryptography:
Introducing concurrency, removing erasures. In: Eurocrypt. pp. 221–242
(2000)

[39] Küsters, R., Tuengerthal, M.: Joint state theorems for public-key
encryption and digital signature functionalities with local computation.
In: CSF. pp. 270–284 (2008)

[40] Küsters, R., Tuengerthal, M.: Universally composable symmetric encryp-
tion. In: CSF. pp. 293–307 (2009)

[41] Küsters, R., Tuengerthal, M.: Ideal key derivation and encryption in
simulation-based security. In: CT-RSA. pp. 161–179 (2011)

[42] Lei, F., Chen, W., Chen, K.: A non-committing encryption scheme based
on quadratic residue. In: ISCIS. pp. 972–980 (2006)

[43] Naor, M., Yung, M.: Public-key cryptosystems provably secure against
chosen ciphertext attacks. In: STOC. pp. 427–437 (1990)

[44] Nielsen, J.B.: Non-committing encryption is too easy in the random
oracle model. Tech. rep., BRICS (2001)

[45] Nielsen, J.B.: Separating random oracle proofs from complexity theoretic
proofs: The non-committing encryption case. In: Crypto. pp. 111–126
(2002)

[46] Paillier, P.: Public-key cryptosystems based on composite degree residu-
osity classes. In: EUROCRYPT. pp. 223–238 (1999)

[47] Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be
equivalent to discrete log. In: ASIACRYPT. pp. 1–20 (2005)

[48] Schnorr, C.: Efficient signature generation by smart cards. J. Cryptology
4(3), 161–174 (1991)

[49] Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen
ciphertext attack. J. Cryptology 15(2), 75–96 (2002)

[50] Zheng, Y.: Digital signcryption or how to achieve cost(signature &
encryption) << cost(signature) + cost(encryption). In: Crypto. pp. 165–
179 (1997)

[51] Zhu, H., Bao, F.: Error-free, multi-bit non-committing encryption with
constant round complexity. In: Inscrypt. pp. 52–61 (2010)

APPENDIX A

NIELSEN’S CONSTRUCTIONS

The construction of the underlying encryption scheme by

Nielsen looks very similar to ours, but without labels and

without c(3). We omit the message and party IDs to focus on

the construction itself, which essentially the IND-CPA-secure

Bellare-Rogaway encryption-scheme [5].

230

1) Send. Upon input (SEND,mid , j,m) of party Pi do:

• Deliver (RECEIVE,mid , i,m) to Pj , and send (RECEIVE,mid , i,L(m)) to A.

Fig. 10. Secure Message Transmission functionality [44].

KGen(1τ) : Generate a random trapdoor one-way permutation,

i.e., (f, f−1,Σ)
r← TDP.Gen(1τ). Set M = {0, 1}τ .

Output the public key epk = (f,Σ), and esk = f−1

as the secret key.

Enc(epk ,m) : Draw x
r← TDP.SampleΣ(1

τ) (Σ is given by

epk), and compute c(1) ← TDP.f(x), and c2 ← H(x)⊕
m. Output the ciphertext c← (c(1), c(2)).

Dec(esk , c) : Parse c as (c(1), c(2)). Compute x′ ←
TDP.f−1(c(1)), and m′ ← H(x′)⊕ c(2). Output m′.

A. Nielsen’s Secure Message Transfer

As usual, L returns the length of a message m. Depicted in

Figure 10 is the plain definition given by Nielsen [44].

APPENDIX B

PROOF OF PROPOSITIONS 1-5

A. Proof of Proposition 1

Proof. Assume there is an adversary A which can guess

whether it is run in RECV-SIM-real, or RECV-SIM-ideal resp.,

with a probability non-negligibly better than 1
2 . We can then

construct an adversary B which uses A internally to distinguish

between FULL-SIM-real and FULL-SIM-ideal with the same

probability.

B proceeds as follows. It receives epk from its own

challenger. It then initializes A with epk . Then, for every query

s to H from A, B forwards the query to its own oracle H, and

returns the result unmodified to A. Likewise, for every query

(m, �) to Enc, B asks the encryption oracle provided by its

own challenger. Again, the answer is passed to A unmodified.

Finally, every query (c, �) to the decryption is also honestly

answered using the decryption oracle provided to B. Eventually,

A returns stateA. B saves stateA. B then asks its own oracle

GetSK() to receive rkey. B then generates the corresponding

secret key of epk by letting (epk ′, esk) r← KGen(1τ ; rkey). B
then continues simulating A with input (esk , stateA). The

random oracle queries made by A are answered as before.

Finally, A will return its guess b∗. B uses b∗ as its own guess.

Clearly, B’s advantage is the same as A’s, as B can perfectly

simulate A’s environment. �

B. Proof of Proposition 2

Proof. Let A be an adversary, together with a distinguisher

D, which together guess in which RSIM-SO-experiment it is

run in with a probability non-negligibly better than 1
2 . We can

then construct an adversary B which can distinguish between

FULL-SIM-real and FULL-SIM-ideal with a non-negligible

probability.

We prove this statement by a series of hybrids. Let Exp0
be RSIM-SO-ideal, while Expn is the experiment RSIM-SO-

real. Also, define Expi such that the first i public keys are

simulated, while the remaining n− i are honestly generated.

Further assume towards contradiction that there is an adversary

A that can distinguish between Expi, and Expi+1 for some

index i. We can then construct an adversary B which can break

our FULL-SIM-security definition. In particular, B proceeds as

follows. It receives epk from its own challenger. It then embeds

epk as epk i+1, and leaves the other epks untouched, and gives

the complete public key vector to A. Algorithm B then samples

the message vector m according to the received distribution

Dist. It generates each cj , j �= i according to the current

experiment, but asks its own challenger to receive the ciphertext

ci. The ciphertext vector c is then given to A. Eventually, A
returns I , and B then receives all the randomness used to create

the corresponding secret keys, and the messages mI , which it

provides to A. Finally, A outputs output, which B, together

with m, and I to D. Whatever D then outputs, is then also

output by B. Clearly, the probability that B can successfully

distinguish between FULL-SIM-real, and FULL-SIM-ideal is

thus non-negligible. �

C. Proof of Proposition 3

Proof. Assume we have a distinguisher D with some arbitrary,

but fixed adversary A which together can decide whether they

run in SSIM-SO-real or SSIM-SO-ideal with a probability

non-negligibly better than 1
2 . We can then construct an

adversary B which distinguishes between FULL-SIM-real and

FULL-SIM-ideal with the same probability.

In the first step, the random oracle is rewired to B’s own

random oracle. B then receives the challenge public key epk .

epk is simply passed to A to initialize the adversary. B receives

Dist and state1 from A. B then samples the message vector

m according to the received Dist. Each mi is then sent to

B’s own encryption oracle to receive each ciphertext ci. Let

c denote the complete vector of the ciphertexts. A is then

given state1 and c. Eventually, A outputs (I, state2). For

each i ∈ I, B then queries its own oracle Rand(·) with ci to

receive each ri. Let the vector of all received ri be r. A is then

given (r,mI , state2). Finally, A returns output. D is given

(m,Dist, I, output). Whatever D outputs, is also output by B.

Clearly, as we can perfectly simulate the environment of A
and D, B success probability equals the one of A with D. �

D. Proof of Proposition 4

Proof. For the first direction, note that there are constructions

in the standard model, i.e., under the DCR-Assumption, for

IND-NCER security [16], but none for FULL-SIM security,

as proven before. Thus, IND-NCER security does not imply

FULL-SIM security.

For the other direction, we show that there is a FULL-SIM-

secure construction, which is not IND-NCER-secure. Namely,

we already know that our construction is FULL-SIM-secure,

231

if TDPs exist in the random oracle model. We now show that

our construction is not IND-NCER-secure.

Let Open, and Enc∗ be arbitrarily defined, while the

remaining algorithms are defined as in our construction. In

particular, A draws a random message m
r← {0, 1}τ . Then,

the challenger (Note, Open and Enc∗ are public, i.e., there

is no random-oracle programming possible) needs to return

a ciphertext c, which correctly decrypts to m, i.e., at least

c3 = H(x, k,m, �) must hold. The probability that Enc∗

guesses the messages correctly upfront (and therefore the

correct output) is negligible, i.e., at most qh/2
τ , where qh

is the number of random oracle queries. The other case is

similar, i.e., that c3 was drawn randomly, and one hopes that

the unique random oracle query (x, k,m, �) (Note, k,�, and x
are fixed), makes the ciphertext valid. Clearly, this is negligible

as well. Thus, the probability that Open returns randomness

for the secret key such that the ciphertext returned decrypts

correctly is negligible (1/2τ), regardless of the choice of Open,

and Enc∗. It thus follows that the probability that this happens

is equal/less than (qh + 1)/2τ , which is negligible. �
E. Proof of Proposition 5

Proof. The idea of the proof is as follows. If there exists is a

perfectly-binding (bit-)commitment-scheme, then RECV-SIM-

Security does not imply FULL-SIM-Security. With perfectly-

binding we mean that even a computationally unbounded

adversary can find only one way to open a given commitment

c w.r.t. to the (even adversarially chosen) public parameters pp.

Refer to the full version of this paper for additional information.

Let NCE be any FULL-SIM-secure encryption, and

COMMIT be a perfectly-binding commitment-scheme as

defined before. We now construct NCE′ as follows, such that

is only RECV-SIM-secure, but not FULL-SIM-secure.

NCE′.KGen(1τ) : Generate (epk , esk)
r← NCE.KGen(1τ). Re-

turn (epk , esk).
NCE′.Enc(epk ,m, �) : Generate pp

r← COMMIT.PPGen(1τ).
Then, for each bit bi ∈ m, let (ci, ri)

r←
COMMIT.Commit(pp, bi). Set �′ ← (�, pp, (c1, c2, . . . ,
c|m|)). Let c

r← NCE.Enc(epk ,m, �′), and return (c, pp,
(c1, c2, . . . , c|m|)).

NCE′.Dec(esk , c, �) : Parse c as (c, pp, (c1, c2, . . . ,
c|m|)). Let �′ ← (�, pp, (c1, c2, . . . , c|m|)) Return

NCE.Dec(esk , c, �′).
It is obvious that the construction is still RECV-SIM-secure

by the following argument. If the commitment scheme used

is computationally hiding, the ciphertext c is indistinguishable

from an encryption using any other message m′ of the same

length, as the randomnesses used to generate the commitments

are never given to the adversary attacking the scheme. Thus,

the simulator can choose a random message of the same length.

However, the scheme NCE′ cannot be FULL-SIM-secure, as

the probability that any simulator SIMNCE guesses the correct

message is negligible, as the commitment-scheme is perfectly

binding, i.e., no simulator can equivocate the commitments.

For any other (meaningful) definition of the leakage oracle L,

similar arguments exist. �

APPENDIX C

PROOF OF THEOREM 5

Proof. Given a (FLNCE,FSig)-hybrid-model adversary A, we

construct a simulator SIM so that no environment can distin-

guish running with A and the real protocol in the (FLNCE,FSig)-
hybrid world from running with SIM and FLSC in the ideal

world. Note that, apart from interacting correctly with FLSC,

the simulator must also play the role of the subfunctionalities

FLNCE and FSig to A when they are called by corrupt parties.

The simulator SIM proceeds as follows:

Key Generation (Sender). Upon receiving

(KEYGEN, sid ,S) from FLSC, send

(KEYGEN, (S, (sid ,FSig)))) to A and wait

for (KEYCONF, (S, (sid ,FSig))), spk) from A.

Create a record (keyrec, sid ,S, spk) and send

(KEYCONF, sid ,S, spk) to FLSC.

Key Generation (Receiver). Upon receiv-

ing (KEYGEN, sid ,R) from FLSC, send

(KEYGEN, (R, (sid ,FLNCE))) to A and wait

for (KEYCONF, (R, (sid ,FLNCE))), epk) from A.

Create a record (keyrec, sid ,R, epk) and send

(KEYCONF, sid ,R, epk) to FLSC.

Encryption. Upon receiving (ENCRYPT, sid ′, epk ′,m, �)
from A, SIM executes the real code of FLNCE, asking

A to provide a ciphertext c, creating an encryption

record (encryptionrec, sid , epk ′,m, �, c), and returning

(CIPHERTEXT, sid , c,m, �, epk ′).
Decryption. Upon receiving (DECRYPT, sid ′, c, �) from A

in name of the corrupt receiver R, SIM executes the real

code of FLNCE, asking A for a plaintext m if necessary,

creating a decryption record (decryptionrec, sid ,m, �, c),
and returning (PLAINTEXT, sid , c,m, �).

Signing. Upon receiving (SIGN, sid ′,m) from A in name

of the corrupt sender S, SIM executes the real code

of FSig, asking A for a signature σ, creating a sign-

ing record (signature, sid ,m, σ, spk , true), and returning

(SIGNATURE, sid ,m, σ).
Verification. Upon receiving (VERIFY, sid ′,m, σ, spk ′) from

A, SIM executes the real code of FSig, asking A for a ver-

ification outcome φ if necessary, creating signature record

(signature, sid ′,m, ·, spk ′, true) or (signature, sid ′,m, σ,
spk ′, φ), and returning (VERIFY, sid ′,m, σ, spk ′, φ).

Signcryption. When S and R are both honest and

pkr = epk , SIM is notified by FLSC by receiving

(SENDL, sid ,L(m), �, pkr). The simulator doesn’t know

the message m, but obtains a ciphertext by send-

ing (ENCRYPTL, (sid ,FLNCE), epk ,L(m), (�, spk , epk))
to A and waiting for (CIPHERTEXT, (sid ,FLNCE), c)
from A. It then creates an incomplete encryption

record (encryptionrec, sid , epk ,⊥, (�, spk , epk), c), indi-

cating that it doesn’t know the corresponding mes-

sage m. It then obtains a signature σ for (c, �) using

the procedure for signing simulation above and sends

(SIGNCRYPTRES, sid , (�, spk , epk), s = (c, s)) back to

FLSC.

232

When S is honest and (R is corrupt or pkr �= epk), then

SIM executes the real signcryption algorithm with the

code of FLNCE and FSig.

De-signcryption. When a new de-signcryption request

occurs, SIM is notified by FLSC by a message

(DESIGNCRYPT, sid , s = (c, σ), �, pks). First check

whether the signature σ should be deemed valid

for message (c, (�, pks, epk)) by performing the ver-

ification simulation above. If not, then SIM sends

(DESIGNCRYPTA, sid , s,⊥, �, false) back to FLSC, indi-

cating that the signcryption is invalid. If so, then it

must be the case that pks �= spk , because the strong

unforgeability enforced by FLSC would have rejected

the ciphertext already. If c was part of a signcryption

generated by the honest sender (for which we don’t

know the corresponding plaintext), then SIM sends

(DESIGNCRYPTA, sid , s,⊥, �, false) back to FLSC, be-

cause the ciphertext label of c includes the wrong

sender’s public key spk �= pks. Otherwise, A decrypts

c by performing the decryption simulation above to

obtain the plaintext message m. If m = ⊥, then send

(DESIGNCRYPTA, sid , s,⊥, �, false) back to FLSC, else

send (DESIGNCRYPTA, sid , s,m, �, true) back to FLSC.

Corruption. When a party is corrupted, then SIM obtains the

full input and output history of that party. Based on this

history, SIM can also compile the list of inputs and outputs

of that party to the FLNCE and FSig sub-functionalities,

which it couldn’t do earlier because some of the messages

were unknown. It submits this full list of inputs and outputs

to A.

�

233

