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Abstract—We propose the first user authentication and key
exchange protocols that can tolerate strong corruptions on the
client-side. If a user happens to log in to a server from a
terminal that has been fully compromised, then the other past
and future user’s sessions initiated from honest terminals stay
secure. We define the security model for Human Authenticated
Key Exchange (HAKE) protocols and first propose two generic
protocols based on human-compatible (HC) function family,
password-authenticated key exchange (PAKE), commitment, and
authenticated encryption. We prove our HAKE protocols secure
under reasonable assumptions and discuss efficient instantiations.
We thereafter propose a variant where the human gets help from
a small device such as RSA SecurID. This permits to implement
an HC function family with stronger security and thus allows to
weaken required assumptions on the PAKE. This leads to the very
efficient HAKE which is still secure in case of strong corruptions.
We believe that our work will promote further developments in
the area of human-oriented cryptography.

Index terms—Human computation, key exchange, one-time pass-
words, PAKE, strong corruptions.

I. INTRODUCTION

MOTIVATION AND FOCUS. Consider a very common scenario

when a user needs to log in to and securely communicate to a

server, with which she shares a secret. This problem has been

extensively studied under the name of Password-Authenticated

Key Exchange (or PAKE), since the seminal paper by Bellovin

and Merritt [1]. But what happens if the client terminal the

user logs in from has been compromised? The machine may

have a spyware keylogger recording the user’s keystrokes and

sending them to the attacker. A session hijacking malware may

alter the legitimate computation and impersonate the user or

the server.

The existing security definitions for PAKE acknowledge the

problem by modeling strong corruptions when the adversary

learns all the current state of the machine. However, none of

the existing protocols try to offer any solution in this case.

Basically, the consensus is that in case of strong corruption,

all is lost to the user, and the only thing guaranteed is that this

should not violate security of other users. Indeed, cryptography

cannot do much since the attacker invading a machine would

know everything, as it can read all secrets being stored or

typed.

In this paper, we take a fresh look at this problem of strong

corruptions with the intention of providing a solution. The

informal goal is as follows. Given fully untrusted machines, a

user’s sessions (past and future) from other trusted terminals

are still protected, even though the same long-term secret

is used. As we said, it seems like nothing can be done

cryptographically. But there are possibilities. The basic idea

is to store no long-term secrets on the machines, and instead,

employ human computation or an additional secure device

such as RSA SecurID to boost security. (We think it is

much more reasonable to assume that the human or the small

device not connected to a network stays uncompromised, than

terminals and other devices used for connecting to servers.)

In a bit more detail, we ask the human user to log in by

computing (in her head or with an additional device) a function

of the memorized long-term secret and a challenge sent by

the server, and entering it into the terminal. Then we can

use a PAKE-like protocol ran on the response as a common

ephemeral secret, also known as a one-time password.

A PAKE, that is usually used to prevent off-line dictionary

attacks, here provides the guarantee that no information is

leaked about the one-time passwords in passive and even active

sessions. It is important to limit the information leakage about

the long-term secret of the user, since one-time passwords,

were they in the clear, could have helped recovering the long-

term secret. This is unfortunately the case when they are

generated with functions that are easy enough to be computed

by a human. On the other hand, if an additional device is used

to derive the one-time passwords, their privacy may be less

critical, and so resistance to off-line dictionary attacks is not

required anymore, which allows the use of a weaker variant

of PAKE. To make these ideas “work”, numerous problems

need to be resolved to finalize the solutions. We discuss these

after we describe our security model.

PROTOCOL AND SECURITY DEFINITIONS. The novelty be-

hind our definitions is the unavoidable incorporation of a

human player. We define a human authenticated key exchange
(or HAKE) protocol as an interactive protocol between a

human user U and a server S, via a terminal T . The server

can only directly communicate with the terminal, and the user

can only directly communicate with the terminal. In addition,
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the messages sent by the terminal to the user must be human-
readable, the messages sent by the user to the terminal must

be human-writable, and the long-term secret of the user must

be human-memorizable, unless an additional device is used for

computing the ephemeral secrets.

Our security model is a non-trivial extension of the se-

curity model for PAKE protocols by Bellare, Pointcheval,

and Rogaway [2], later called BPR, as we take into ac-

count really strong corruptions and model human computa-

tions/interactions. As already mentioned, the goal of a HAKE

protocol is to ensure that a human user sharing the long-term

secret with a server can establish a secure channel with the

server, in presence of a very strong attacker. Our model takes

into account various types of attacks possible in practice. As

usual, to model a network compromise (e.g., taking advantage

of an insecure Wi-Fi), we allow the adversary to control the

messages parties exchange. The attacker can read and modify

the communication between a server and a terminal. However,

we assume that the channel between the human user and the

honest terminal is secure, since this is a direct communication

from the keyboard and the screen. At least, it is authentic and

private, unless the terminal is compromised.

We thus also have to model malicious terminals and this, in

fact, is the gist of our work. Even though taking the full

control of a computer is an extremely hard job, compromising

its parts, such as a browser, is very common. And such

compromises can be of various strengths. Using a keylogger,

screen capture or similar malware the adversary can learn the

terminal’s inputs/outputs. The attacker may also learn some

random coins or intermediate values from the internal state of

the compromised computer. This also models human “over-

the-shoulder” attacks. Even though such compromise can be

referred to as honest-but-curious, the existing protocols, such

as PAKE, do not offer protection against it. The existing

protocols only protect against weak corruptions, where the

attacker just learns the session key (with reveal-queries). This

models the misuse of the session key, rather than the terminal

compromise. Even if security models for PAKE allow the

attacker to learn the long-term secrets [2] (with corrupt-

queries), or the internal states (in the UC framework [3]),

this is only to model forward secrecy, and so the security

of past sessions, but nothing is guaranteed anymore for future

sessions.

In our model, we let the adversary compromise terminals and

learn all their inputs and the internal state. Moreover, we

consider an even more powerful adversary, who takes full

control of the terminal’s browser and can display outputs of its

choice to be shown to the human user. Hence, the adversary

can interact with the human user, but is never given the long-

term secret key memorized by the human user (or stored on

her secondary device).

The security goals are, to the most part, the standard privacy

and authentication for key exchange protocols: we want to

make sure that an attacker cannot learn any information about

the session key nor make a party agree on a session key

without the other party completing the protocol. Of course, if a

terminal is compromised, it is unreasonable to expect security

of the current session. But this should not compromise security

of other sessions (past or future), even involving the same user.

HAKE PROTOCOL: GENERIC CONSTRUCTIONS AND IN-

STANTIATIONS. Let us assume we have a human-compatible

function family F (we will discuss it in more detail shortly).

Let the server pick a random challenge x (or increment a

counter) and display it to the human user via the user’s

terminal. The user can compute (in her head or using a device)

and enter the response r = FK(x), where K is the long-term

secret shared between the user and the server. The server can

compute r on its end the same way. Then, the terminal and the

server execute a PAKE protocol on r (i.e., the response r plays

the role of the password in PAKE), and thus agree on a session

key. Even though human-computable responses may have low

entropy, PAKE ensures security against off-line dictionary

attacks, which guarantees no information leakage about the

ephemeral secret r in passive sessions, and even in active

sessions, excepted possibly the exclusion of one candidate per

session. If the attacker compromises the terminal, a suitable

“unforgeability” property of F would prevent the adversary

from breaking security of other sessions.

But still, this protocol is not secure under our definition. An

attacker, who learns an ephemeral secret r = FK(x) for a

given challenge x can later use it to successfully impersonate

the server, by forcing the same challenge. To prevent such

replay attacks, we let the terminal and the server to jointly pick

a challenge using a coin-flipping protocol, that we implement

using a commitment scheme with specific properties. This is

our first proposal, which we call the Basic HAKE: using a

coin-flipping, we avoid replay attacks, and with a suitable

unforgeability’ property on the function family F we can

guarantee the security of the global process.

However, a malicious terminal can still ask specific (not

necessarily random) challenges to the human user, while

impersonating the server, and the user has no way to detect

such a malicious behavior. Therefore security of the Basic

HAKE requires that the HC function unforgeability holds even

in presence of multiple adaptive challenges. This may be too

strong of a requirement in practice. We thereafter enhance

Basic HAKE and propose the Confirmed HAKE protocol,

which allows parties to detect potential bad behaviors, in

order to react appropriately, and thus the construction tolerates

weaker HC function families. Requirements on HC function

families then become more compatible with functions that

can be evaluated by human being without external help. The

Confirmed HAKE also provides explicit authentication of the

parties.

Finally, we consider the case of a device-assisted protocol:

with such an additional device, one can implement more

complex computations, and thus use stronger HC function

families. This leads to less critical ephemeral secrets: leaking

information about several (x, FK(x)) pairs might not endanger

the long-term secret K. This allows us to rely on a weaker

variant of PAKE, and hence get a device-assisted HAKE that
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is more efficient.

HUMAN-COMPATIBLE FUNCTION FAMILY. We now turn

our attention to the inner part of the construction, the

human-compatible function family. Security-wise, the adver-

sary should be able to see multiple challenge-response pairs,

among which some of the challenges could be chosen by

the attacker (adaptive queries vs. non-adaptive queries). This

is because the attacker, who compromises a terminal, can

eavesdrop on the communication with the human user. And

an active attacker who took control of the terminal can

impersonate the server and ask the user to answer maliciously

chosen challenges. But still, the adversary should not be able

to forge a valid response for a new random challenge, so that

future sessions remain safe.

Finding such a function family would be easy if we did not

have the human-computability restrictions. We survey some

works on secure human-based computation later, but they are

not directly suitable for us. Luckily, a recent paper “Towards

human computable passwords” by Blocki, Blum, Datta, and

Vempala [4] (almost) provides a solution. The paper proposes

a way for a human user to authenticate to a computer that does

not offer privacy (honest-but-curious). Such a computer stores

a set of challenges and the user authenticates by providing a

response to a random challenge. In their concrete construction,

a challenge is a set of images, the secret user memorizes

is a correspondence between images and numbers and the

response is some basic function using addition of the digits

(modulo 10). The authors provide experimental evidence that

their scheme can be used by a human user. Namely, the secret

can be memorized and the response can be computed within

reasonable time by an average human user. The authors also

propose a tool to help secret memorization. While the usability

of their solution is not perfect, it is definitely a start and further

research will hopefully yield protocols with better usability.

Security-wise, the authors prove that recovering the user’s

long-term secret from a number (below a certain bound)

of random challenge-response pairs (non-adaptive queries) is

equivalent to solving the random planted constraint satisfiabil-

ity problem, and they state a conjecture about security of the

latter. To support the conjecture, the authors prove the hardness

of the problem for any statistical attacker, extending the results

of [5]. Finally, it is proven that forging a response for a random

challenge is equivalent to recovering the secret. The bound on

the number of revealed challenge-response pairs corresponds

to the maximum number of logins a user can execute, without

endangering future sessions.

The construction and security results from [4] are very useful

for our work, but we cannot use them as is. The problem is

that it is not known whether security of their scheme holds

when the attacker can see responses to maliciously chosen

challenges (adaptive queries). We extend their analysis and

prove a second conjecture that the unforgeability of their HC

function family still holds if the adversary can make very

few adaptive queries. Our Confirmed HAKE is designed to

rely on such HC functions (whose security can tolerate very

few adaptive queries): after the PAKE completion using the

first response, the human user selects a random challenge and

enters it into the terminal, who encrypts the challenge under

the recently established session key and forwards the result

to the server. The server decrypts, computes the response,

and sends it, also encrypted to the terminal. The terminal

decrypts and displays the response and the human user verifies

it. If verification fails, the user needs to take measures against

suspected terminal infection and possibly abort the long-term

secret. Encrypting the terminal-server communication here is

needed for authenticity in case of an honest terminal, to

prevent a network adversary to ask the server maliciously

chosen challenges. We show that this extended protocol limits

the number of responses the attacker infecting the terminal

can obtain for malicious challenges of its choice (in that case,

the adversary will not be able to make the user pass the

connection confirmation step). We argue that this addition,

while adds a little bit more work for the human user, does not

violate human computability for our instantiation, i.e., that the

user can select a random challenge and verify the response.

Furthermore, we show that the Confirmed HAKE provides

explicit authentication assuming that the encryption scheme is

secure authenticated encryption.

Our formal analysis on the HC function [4] demands a stronger

conjecture stating one-more unforgeability. This is similar to

the analysis of blind signatures that relies on the one-more

unforgeability of RSA [6], but we consider a sequential version

of the one-more security definition, that is weaker than the

original one.

We want to note that, unlike [4], in our analysis, the bound on

the number of challenge-response pairs the attacker can see

does not correspond to the total number of logins, but only

to the number of logins via compromised terminals, which

is much more practical. This is because PAKE guarantees

security against network attackers when end-points are secure:

responses remain completely hidden to external players.

Unfortunately, it is not clear how to extend the results of [4] to

expect resistance to many adaptive queries (so that we could

have a simpler protocol without the confirmation step). The

only possibility is the use of a pseudo-random function: after

many adaptive queries, the response to a new challenge is still

random-looking to any adversary. But for such functions, one

needs additional help, hence our device-assisted scenario. One

important advantage of such a stronger HC function family

(tolerating many adaptive challenges, and thus also many non-

adaptive challenges) is that responses are ephemeral secrets

used once for authentication, but that can be revealed after use:

as a consequence, a weaker variant of PAKE is enough, since

resistance to off-line dictionary attacks is not required any

more. We can expect more efficient constructions. Hence is our

first construction in the device-assisted context. But to limit

interactions with the device and avoid collisions on the inputs,

we thereafter adopt a time-based challenge: r = FK(t), with

an increasing counter t, based on an internal clock. While one

cannot guarantee perfect synchronization between the device

and the server, we can tolerate a slight time-shift since we
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anyway use timeframes that are long enough for the human

to enter the response read on the device (e.g., 30 seconds or

1 minute).

RELATED WORK. As we mentioned, there are numerous

results about PAKE, from the seminal paper of Bellovin and

Merritt [1], [2], but they offer no practical solutions for strong

corruptions, in order to protect future sessions. There are

various cryptographic schemes involving human participants,

using graphical identification [7]–[14], some of them offer

security against shoulder surfing. But they offer no security

if the terminal is fully compromised.

Matsumoto and Imai [15] proposed the first scheme to deal

with human identification through insecure channels (and via

untrusted machines). The scheme has been improved by the

follow up works [16]–[18]. However, the schemes are only

secure given very few login sessions or require the human to

memorize a long bitstring. We view the aforementioned paper

by Blocki et al. [4] as an improvement over the results of this

line of work.

Dziembowski [19] also considers the problem of human-based

key-exchange, but in a setting where both parties are human

and his scheme is only secure against a machine adversary

assumed to be unable to solve CAPTCHAs.

There is a long sequence of papers [20]–[26] following the

work by Hopper and Blum [27] offering protocols for the same

problem of secure human identification over insecure channels,

whose security is based on the Learning Parity with Noise

problem. With error-correcting codes, such protocols could be

adapted to generate deterministic responses (which is required

by our HC function definition), but usability will not be good

for the same reason as most HB-type protocols are not really

suitable for humans. Personal devices generating one-time

passwords have been commercially available for years [28],

motivating IETF to standardize their constructions and use in

many protocols [29]–[33]. The work [33] is particularly rele-

vant as it defined a time-based one-time password algorithm

based on HMAC [32]. Interestingly, while dedicated token

generators are the most secure, software applications running

on mobile phones are now commonly used [34].

Some papers also explore PAKE schemes with one-time

passwords. Paterson and Stebila [35] define a security model

for one-time PAKE, explicitly considering the compromise

of past (and future) one-time passwords, but still recovering

the security after a compromise, thanks to the ephemeral

property of the one-time password and its change over the

time. Unfortunately, their construction is a generic one, using

a PAKE as a black-box. It thus cannot be more efficient than

a PAKE, whereas preventing off-line dictionary attacks is not

required in this setting. Our goal is to get a more efficient

construction than any PAKE protocol, which we achieve with

our device-assisted HAKE in Section VI. The authors of [35]

mention the possibility of using a secure token to generate

the one-time passwords and then running one-time-PAKE on

it, but they did not provide an explicit protocol or security

analysis.

OPEN PROBLEMS. We hope that our work will stimulate

further results about secure human-compatible cryptographic

function families. We leave to future works to formally prove

the unforgeability property (against several adaptive queries)

of the HC function from [4], and possibly finding other HC

function families with such security. Those would allow to

avoid additional devices and still have a completely proven ef-

ficient HAKE protocol. Improving the usability of the scheme

from [4] will indeed imply improved HAKE protocols, and

may have other applications. Another interesting question is to

design a coin-flipping protocol with a human participant. Such

protocol could be used within HAKE to prevent the attacker

to ask malicious challenges. Eventually, after this first step of

modeling HAKE protocols with symmetric long-term secrets

shared between the user and the server, asymmetric secrets

would be important to consider. This would be similar to the

so-called verifier-based PAKE that helps moderate the impact

of corruption of the server.

II. HUMAN AUTHENTICATED KEY EXCHANGE (HAKE)

A. HAKE Definitions

In this section, we define a human authenticated key exchange

(HAKE) protocol, as an extension of [2].

PROTOCOL PARTICIPANTS. We fix the set of participants to

be ID = {U�}� ∪ {T} ∪ {S}, which contains finite number of

human users U�, one terminal T and one server S. And we

assume that each member is uniquely described by a bitstring.

In the real life, each user U� can communicate with multiple

servers via multiple terminals. But we justify below why

considering a single terminal and a single server is sufficient.

HUMAN-COMPATIBLE COMMUNICATION. Here we present

several notions that our protocol definition will use. Since

it is hard to formalize human computational abilities, our

definitions are not mathematically precise.

We say a message is human-readable if this is a short sequence

of ASCII symbols, or images; human-writable if this is a short

sequence of ASCII symbols1; human-memorizable if this is

simple enough to be memorized by an average human, e.g., a

simple arithmetic rule like “plus 3 modulo 10”. A function

is human-computable if an average human can evaluate it

without help of additional resources other than his head, e.g.,

simple additions modulo 10. A set is human-sampleable if

an average human can choose a message from the set at

random according to the appropriate distribution without help

of additional resources other than his head.

HAKE SYNTAX. We now formally describe a HAKE proto-

col.

Definition 1 (HAKE Protocol): A human authenticated key
exchange protocol is an interactive protocol between a human

user denoted U ∈ {U�}� and the server S, via the terminal T .

It consists of two algorithms:

1It is also possible to incorporate mouse clicks into that, but we do not
deal with it for simplicity.
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• A long-term key generation algorithm LKG which takes

as input the security parameter and outputs a long-term

key.

• An interactive key-exchange algorithm KE which is ran

between U , T , and S. At the beginning, only U and S
take as input the same long-term secret key and, at the

end, T and S each outputs a session key skT and skS
respectively. In case of additional explicit authentication,

U and/or S may either accept or reject the connection.

The above algorithms must satisfy the following constraints:

• S can only communicate with T ;

• U can only communicate with T , and

– the message sent by T to U must be human-readable,
and

– the message sent by U to T must be human-writable;
• The long term secret and the state of U , if any, must be

human-memorizable for the duration necessary.

The correctness condition requires that for every security

parameter and for every long-term key output by LKG, in

any execution of KE , U and S both accept the connection (in

case of explicit authentication), T and S complete the protocol

with the same session key (skT = skS).

B. Formal Security Model

In this section, we formally define the security model for

a HAKE protocol, which is part of our main contributions.

As already mentioned, the goal of a HAKE protocol is to

ensure that a human user sharing the long-term secret with a

server can help a terminal to establish a secure channel with

the server, in presence of a very powerful attacker, including

strong corruptions of terminals.

As usual, to model multiple and possibly concurrent (ex-

cept for the human users) sessions we consider oracles πj
P ,

where j ∈ N and P ∈ ID. For human oracles, sessions

can only be sequential, and not concurrent, meaning that

humans are not allowed to run several sessions concurrently

(a new session starts after the previous one ends). This is a

reasonable assumption for human users. We note that since

terminals do not store long-term secrets and do not preserve

state between sessions, multiple terminal oracles model both

multiple sessions ran from the same or different terminals.

Hence, in the following, we will consider several human users

U� with different long-term secret keys, one terminal T , and

one server S, with all the users’ long-term secret keys. For all

of them, multiple instances will model the multiple sessions

(either sequential for U�, or possibly concurrent for T and

S). However, while the server can concurrently run several

sessions, we will also limit it to one session at a time with

each user: the server will not start a new session with a user

until it finishes the previous session with the same user.

Because of our specific context with a human user, there is a

direct communication link between the user and the terminal,

and so we can assume that the channels between instances

πi
U�

and πj
T are authenticated and even private (unless the

terminal oracle is compromised, as defined below), whereas

the communication between the terminal and the server is over

the internet, and so the channels between instances πj
T and πk

S

are neither authenticated nor private.

SECURITY EXPERIMENTS. We consider the following security

experiments associated with a given HAKE protocol and an

adversary A, to define the two classical security notions for

authenticated key exchange: privacy (or semantic security of

the session key) and authentication. In these experiments, the

adversary A can make the following queries:

• Compromise(j, �), where j, � ∈ N – As the result of

this query, the terminal-oracle πj
T is considered to be

compromised, and the adversary gets its internal state, i.e.

the random tape, temporary variables, etc. If the terminal-

oracle πj
T is not linked yet to a user, it is linked to user

U� with the user oracle πi
U�

for a new index i, otherwise

� is ignored;

• Infect(j), where j ∈ N – As the result of this

query, the terminal-oracle πj
T is considered to be infected.

WLOG, we limit this query to compromised terminals

only;

• SendTerm(j,M), where j ∈ N and M ∈ {0, 1}∗ ∪
{Start(�)} – This sends message M to πj

T . A specific

Start(�) message asks the terminal to initiate a session,

to be done with a user oracle πi
U�

for a new index i. But

only if the terminal-oracle πj
T is not linked yet to a user,

otherwise � is ignored. To compute its response to A, πj
T

may internally talk to its linked human oracle according

to the protocol. In addition, if πj
T is compromised, it will

additionally give to A the messages exchanged with its

linked human oracle2.

• SendServ(k,M), where k ∈ N and M ∈ {0, 1}∗ – This

sends message M to oracle πk
S . The oracle computes the

response according to the corresponding algorithm and

sends the reply to A.

• SendHum(j,M) where j ∈ N and M ∈ {0, 1}∗ (and

human-readable) – This sends a message to the πj
T -linked

human oracle πi
U�

on behalf of πj
T . This is allowed only

if the terminal πj
T is infected (and thus compromised,

which implies the existence of a partenered human ora-

cle). The oracle computes the response according to the

corresponding algorithm and sends the reply to A.

• Test(j, P ), where j ∈ N and P ∈ {T} ∪ {S} –

If skP has been output by πj
P , then one looks at the

internal bit b (flipped once for all at the beginning of

the privacy experiment, while b = 1 in the authentication

experiment). If b = 1, then A gets the real session key

skP , otherwise it gets a uniformly random session key.

This query is only allowed if πj
P is fresh (defined below).

In the privacy experiment, after having adaptively asked

several of these oracle queries, the adversary A outputs a bit

b′ (a guess on the bit b involved in the Test-queries). The

intuition is that the adversary should not be able to distinguish

2The messages to the human oracle can be already known to the adversary
as they are a function of the oracle’s random tape. But we give the adversary
the whole communication for convenience.
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the real session keys from independent random strings. While

in the authentication experiment, the goal of the adversary is

to make an honest party to successfully complete the protocol

execution thinking it “built a secure session” with the right

party, whereas that is not the case. In order to formally define

the goals and the advantages of the adversary, we present the

notions of partnering and freshness, as well as the flags accept
and terminate.

FLAGS. In order to model authentication, we follow BPR [2],

who defined two flags: accept essentially means that a party

has all the material to compute the session key while terminate
means that a party thinks that it completes the protocol

execution thinking it communicates with the expected other

party (a human user in our case). These two flags are initially

set to False, and they are explicitly set to True in the

description of the protocol. Note that in Definition 1 U and/or

S accept if and only if in the end the terminate flag is set to

True, otherwise, U and/or S reject.

PARTNERING. Whereas πi
U�

and πj
T are declared as linked

at the initialization of the communication because of the

authenticated channels between users and the terminal, part-

nering between πi
U�

and πk
S is a posteriori: they are indeed

declared partners in the end of the protocol execution if

they use the same long-term key and both accept. Then we

define partnering between πj
T and πk

S , by saying that they are

declared partners if πk
S and U i

� are partners and U i
� is linked

to πj
T .

FRESHNESS. Informally, the freshness denotes oracles that

hold sessions keys that are not trivially known to the adversary.

For P ∈ {T}∪{S}, the oracle πj
P is fresh, if no Test-query

has been asked to πj
P nor its partner, and none of πj

P or its

partner have been compromised (πj
T is fresh if it has not been

compromised, and πk
S is fresh if the terminal linked to the

partner human user has not been compromised.)

SECURITY NOTIONS. In the privacy security game, the goal

of the adversary is to guess the bit b involved in the Test-
queries. Then we measure the success of an adversary A, that

outputs a bit b′, by AdvprivHAKE(A) = 2 · Pr[b′ = b] − 1. This
notion implies implicit authentication, which essentially means

that no one else than the expected partners share the session

key material.

For explicit authentication, we define the authentication se-

curity game: the goal of the adversary is essentially to make

a player terminate (flag terminate set to true) without an

accepting partner (flag accept set to true). But in our case

with compromised or even infected terminals, this is a bit more

complex than usual. We thus split the authentication security

in two parts:

• Server-authentication: a user oracle should not success-

fully terminate a session if there is not exactly one

partner server oracle that has accepted. Then, we denote

Advs-authHAKE(A) the probability the adversary A makes such

a bad event happens;

• User-authentication: a server oracle should not success-

fully terminate a session if there is not exactly one

partner user oracle that has accepted. Then, we denote

Advu-authHAKE(A) the probability the adversary A makes such

a bad event happens.

Eventually, for any adversaries A,B there exists an adversary

C against the authentication security for which we define

AdvauthHAKE(C) = max{Advs-authHAKE(A),Advu-authHAKE(B)}.
PASSIVE SESSIONS. We now define a new notion of passive
session, which extends the Execute-queries in the standard

BPR model [2]. Recall that Execute-queries allow the

adversary to get full transcripts of communication between

honest parties. Even though the same can be achieved via

Send-queries, in the security analyses it is useful to count

the number of observed honest sessions and the number of

maliciously altered sessions separately. In addition, we will

not limit to full sessions: the adversary can stop forwarding

honest flows, making the session abort. Then, there can be

passive full/partial-sessions:
Definition 2 (Passive Session): A (full or partial) session

between oracles πj
T and πk

S is called passive, if the messages

of all queries SendTerm(j, ·) or SendServ(k, ·) are either

Start(·) or themselves an output of one of these two queries

type. If flows are numbered, this also implies that the actual

order of flows between T and S has not been modified. If all

the outputs have been forwarded as inputs, this is a passive
full-session, otherwise this is a passive partial-session.
Sessions that are not passive are called active, since the

adversary altered something in the honest execution.

We believe this notion is stronger than the Execute-queries
defined in the BPR security model, since the adversary does

not need to decide from the beginning if all the exchanges

will be passive or not. A can start with a passive sequence

and decide at some point to stop (passive partial-session) or

behave differently in an adaptive way (active session).

RESOURCES OF THE ADVERSARY. When doing security anal-

yses, for every adversary and its privacy and authentication

advantages, one also has to specify the adversarial resources

such as the running time t, the number of oracle queries, the

number of player instances, and the numbers npassive/nactive

of (fully) passive and active sessions the adversary needs.

DISCUSSION. We discuss a bit more about our security defini-

tions to explain why they capture the practical threats. First, a

passive network adversary is able to observe legitimate com-

munications via SendServ and SendTerm-queries (these

will satisfy the passive sessions definition). An active network

adversary can modify legitimate messages or impersonate a

terminal or a server by injecting some messages of its choice,

again, via SendServ and SendTerm-queries. This models,

in the standard way, possible insecurity (in terms of privacy

or authentication) of the network channel between terminals

and servers.

Passive-insider attacks (such as keylogger and screen cap-

ture malware compromising computers or their browsers) are
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modeled by Compromise-queries followed by SendTerm-
queries. The former gives the adversary full information about

the terminal’s internal state, including its random coins and

registers’ contents, and the latter reveals to the adversary the

inputs from the human.

We consider even more powerful attackers who can take full

control of the computers or some of their crucial applications

such as browsers. In this case, in addition to learning the inter-

nal state and all the inputs, the adversary can impersonate the

honest terminal while sending adaptively selected messages to

the human. We model this by Infect and SendHum-queries.
Our model captures all the above scenarios and moreover,

it takes into account the possibility of multiple simultaneous

attacks, such as colluding network and malware adversaries.

One can notice that attacks involving Infect-queries are

stronger than those with Compromise-queries: when an

adversary infects a terminal, it takes full control on it, with

knowledge of its internal state, and thus plays on its behalf,

using SendServ and SendHum-queries.
Note that in any case, we are concerned with the security

of a new session, in terms of privacy and authentication,

over an honest terminal, that is neither compromised nor

infected. Such security should be guaranteed even though the

other sessions involving the same human with the same long-

term secret were carried over compromised terminals, and if

possible even over infected terminals. We model privacy via

the Test-query and with the appropriate privacy advantage

definition. We model authentication via the corresponding

advantage definition.

We also stress that we do not consider corruption of the

long-term secrets, since they are known by the users and the

server only, and we do not allow to corrupt them. Would

the long-term secret be leaked, we cannot guarantee any

security for future sessions. The interesting open problem

of dealing with such corruptions could be addressed using

an asymmetric long-term secret: a verifier-based variant that

would just provide an encoded version of the user’s secret to

the server.

III. BUILDING BLOCKS

For the sake of completeness, the building blocks that will be

used in our constructions are detailed in the full version [36].

Since most of the details are useful for the proofs only, we

just recall or present here the most important descriptions.

A. Human-Compatible Function Family

The protocols we propose in the next sections use special

function families, which we call human-compatible (HC).

HUMAN-COMPATIBLE FUNCTION FAMILY: SYNTAX. A

human-compatible (HC) function family is specified by the

challenge space C, the key generation algorithm KG, which

takes input the security parameter and outputs a key K , and

the challenge-response function F that takes a key K and a

challenge x ∈ C and returns the response r = FK (x). We

require that (see Section II-A for the definitions):

1) for every K output by KG and every x ∈ C, both x and

FK (x) are human-writable and human-readable;

2) C is human-sampleable.

We also define the Only-Human HC Function Family (where

an additional device is excluded), which is the human-

compatible function family that also has:

1) for every K output by KG, FK (·) is human-computable;

2) every K output by KG is human-memorizable;

HUMAN-COMPATIBLE FUNCTION FAMILY: SECURITY. In an

authentication protocol with challenge-response pairs, intu-

itively, we would like that any successful authentication to

a server should involve an evaluation of the function by the

human user. So we expect no compromised/infected terminal

to successfully authenticate to the server one more time than

it interacted with the human. The security notion from the

function is thus a kind of one-more unforgeability [6]. But

here, any query to an FK (·)-oracle should help to immediately

answer FK (x) to the current challenge x, since a second

challenge will come from a new session that has closed the

previous one, and so the previous challenge is obsolete: the

adversary cannot store the n+1 challenges, ask n queries, and

answer the n + 1 initial challenges. In our protocols, the ad-

versary gets a random challenge (GetRandChal-query), can
ask any FK (·)-query (GetResp-query), but should answer

that challenge (TestResp-query), otherwise the failure is

detected. After too many failures (recorded in the unvalidated-

query counter ctr) one may restrict oracle queries. Hence our

following security notion which formalizes these restrictions

to the adversary.

GetRandChal()

GetResp()

TestResp()

if ctr < η

Fig. 1. Graph of the sequential oracle calls in the η-unforgeability experiment

η-UNFORGEABILITY. As said above, we thus define a kind of

sequential one-more unforgeability experiment, with a limit

η on the unvalidated-query counter ctr, where the queries

follow the graph presented on Figure 1. Given an HC function

family F , an adversary A, and a public parameter η, one

first generates K with KG and initializes ctr ← 0. Then the

adversary can ask the following queries, with possible short

loops on the GetRandChal-query and direct TestResp-
attempt right after getting the challenge:
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1) GetRandChal() – It picks a new x
$← C, marks it fresh

and outputs it;

2) GetResp(x∗) – If ctr < η and x∗ ∈ C, it returns FK (x∗)
and increments ctr. It also marks the fresh x as unfresh.
Otherwise, it outputs ⊥;

3) TestResp(r) –

• If FK (x) = r and x is fresh, the adversary wins;
• If FK (x) = r and x is unfresh, it decrements ctr, marks

x as used, and outputs 1;
• Otherwise, it outputs 0.

Because of the sequential iterations, any TestResp-query
relates to the previous GetRandChal-query. One can thus

consider one memory-slot to store the challenges, but one

only at a time: any new challenge replaces the previous one.

The dashed line from GetRandChal to GetResp emphases

the restriction on the number of unvalidated queries. When

ctr ≥ η, the adversary has no more choice than immediately

trying an answer for the random challenges. The bound η
represents the maximum gap that is allowed at any time

between the number of GetResp-queries and the number of

correct TestResp-queries. Note that a random challenge x
can only be either fresh, unfresh, or used, and that marking it as

one of those erases the other flags. Intuitively, a fresh challenge

has not been compromised in any way, and succeeding at a

TestResp on it would indicate the unforgeability has been

breached, hence the winning status for the adversary, and the

experiment stops. A challenge can switch to the unfresh state if

the adversary asks the GetResp-oracle for an answer. There

are only two ways for the experiment to stop: if the adversary

wins with a correct TestResp-query on a fresh challenge; or

if the adversary aborts, it then looses the game. We stress that

the adversary can query the GetResp-oracle on any x∗ of its

choice, and so possibly different from the current challenge

x obtained with the previous GetRandChal-query. But we

give it a chance to still answer correctly to the challenge

x with the correct TestResp-query that, on an unfresh
challenge, cancels the increment of the counter ctr. This

counter represents the gap between the number of GetResp-
queries and the number of correct TestResp-queries on

random challenges. When one limits ctr to be at most 1, any

GetResp-query should be immediately followed by a correct

TestResp-query (one-more unforgeability).

This definition is a weaker notion than the one-more un-

forgeability [6], but still allows the adversary to exploit mal-

leability: For example, with the RSA function, for a random

challenge y, the adversary can ask a GetResp-query on any

y′ = y · re mod n, for an r of its choice, so that it can then

extract an e-th root of y. But this would not help it to answer

a next fresh challenge.

2-PARTY η-UNFORGEABILITY. Unfortunately, the above

clean security notion is not enough for our applications, as

client-server situations and man-in-the-middle attacks allow

more complex ordering of the queries by the adversary. We

therefore present a variant of this experiment below, that is

suitable for a protocol involving two parties (hence in the

following b ∈ {0, 1}).
Given an HC function family F , an adversary A, and a public

parameter η, one first generates K with KG and initializes

ctr← 0. Then the adversary can ask the following queries:

1) GetRandChal(b) – It picks a new xb
$← C, marks it

fresh and outputs it;

2) GetResp(x∗) – If ctr < η and x∗ ∈ C, it returns FK (x∗)
and increments ctr. It also marks all fresh xb as unfresh.
Otherwise, it outputs ⊥;

3) TestResp(r, b) – If xb exists:

• If FK (xb) = r and xb is fresh, the adversary wins;
• If FK (xb) = r and xb is unfresh, it decrements ctr,

marks xb as used and outputs 1;
• Otherwise, it outputs 0.

The main difference with the previous experiment are the

two memory-slots for challenges x0 and x1. But still, any

GetResp-query must be followed by a correct TestResp-
query to limit ctr from increasing too much.

The advantage of any adversary A against the unforgeability,

Advη-ufF (A) is the probability of winning in the above experi-

ment (with a correct TestResp-query on a fresh challenge).

Such a success indeed means that the adversary found the

response for a new random challenge, without having asked

for any GetResp-query.
The resources of the adversary are the polynomial running

time and the numbers qc, qr, qt of queries to GetRandChal,
GetResp and TestResp oracles, respectively. Of course

it is crucial whether there are secure instantiations of HC

function families. We propose some in Section V.

INDISTINGUISHABILITY. For some constructions, we will

expect the sequence of answers {FK (xi), i = 0, . . . , T} for

challenges xi (either adversarially chosen or not) to look

random, or at least any new element in the sequence is not

easy to predict from the previous ones.

For the sake of simplicity, we assume that there exists a global

distribution D with large enough entropy D such that any such

sequence is computationally indistinguishable from DT+1: We

denote Advdist-cF (D,A) the advantage the adversary A can get

in distinguishing the sequence {y0 = FK (x0), . . . , yc−1 =
FK (xc−1)} for a random K , from (y0, . . . , yc−1)

$← D ×
. . . × D. For the latter distribution, the probability to guess

yc−1 from the view of (y0, . . . , yc−2) is 1/2D.

(Weakly) pseudo-random functions definitely satisfy this prop-

erty. But from a more practical point of view, the function

implemented in the RSA SecurID device [28] is believed to

satisfy it too, with the xi being a time-based counter.

B. Commitment Scheme

We will also use a commitment scheme, a primitive allowing

a user to commit on a value x so that the receiver does not

learn any information about x, but with the guarantee that the

user will not be able to change his mind later.

COMMITMENT SCHEME: SYNTAX AND SECURITY. A (non-

interactive) commitment scheme CS is defined by Setup that

defines the global public parameters, and two other algorithms:
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• Com(x): on input a message x, and some internal random

coins, it outputs a commitment c together with an opening

value s;
• Open(c, s): on input a commitment c and then opening

value s, it outputs either the committed value x or ⊥ in

case of invalid opening value.

The correctness condition requires that for every x, if (c, s) =
Com(x), then Open(c, s) outputs x. The usual security no-
tions for commitment schemes are the hiding property, which

says that x is hidden from c, and the binding property, which

says that once c has been sent, no adversary can open it in

more than one way.

For the security of our protocols we will need additional

properties, such as extractability (a simulator can extract the

value x to which c will be later opened) and equivocality (a

simulator can generate some fake commitments c it can later

open to any x). These features are provided from trapdoors,

generated by an alternative setup algorithm and privately

given to the simulator. More details can be found in the full

version [36]. But in the following, we will denote AdvCS(A)
the advantage an adversary can get against any of these

security notions.

COMMITMENT SCHEME: INSTANTIATION. An efficient in-

stantiation, with all our expected security properties, in the

random oracle model [37], can be described as follows:

Given a hash function H onto {0, 1}λ,
• Com(x): Generate r

$← {0, 1}2λ and output (c ←
H(x, r), s← (x, r));

• Open(c, s = (x, r)): if H(s) = c, return x, otherwise,

return ⊥.

In the random oracle model, this simple scheme is trivially

computationally binding (H is collision-resistant) and statis-

tically hiding (for a large r ∈ {0, 1}2λ, there are almost the

same number of possible r —actually, 2λ— for any x, that

would lead to the commitment c) in the ROM.

C. Password-Authenticated Key Exchange

We will also make (black-box) use of a password-authenticated

key exchange (PAKE) protocol. A PAKE protocol is an

interactive protocol between two parties who share a common

low entropy secret (a password) for an execution with session

id PAKEsid. At the end of the protocol, the parties output a

session key. The correctness requires that any honest PAKE

execution with matching passwords results in the parties

outputting the same session key.

The security model can be defined in the UC frame-

work [38], with an ideal functionality Fpake. We will denote

AdvpakePAKE(S,A,Z) the advantage the distinguisher Z can get

in distinguishing the ideal world with the simulator S and

the real world with the adversary A. Again, more details

can be found in the full version [36], but an efficient in-

stantiation, satisfying all our expected security requirements is

the classical EKE [1] protocol that encrypts a Diffie-Hellman

key exchange, using the password as encryption key. It has

been proven UC-secure [39], under the Computational Diffie-

Hellman assumption in the ideal-cipher model.

D. Authenticated Encryption

Eventually, for explicit authentication of the players, we will

make use of an authenticated encryption scheme [40] ES =
(Enc,Dec), where decryption should fail when the ciphertext

has not been properly generated under the appropriate key.

This will thus provide a kind of key confirmation, as usually

done to achieve explicit authentication. However, some critical

data will have to be sent, hence a simple MAC would not be

enough, privacy of the content is important too.

For an authenticated encryption scheme, there are two main

security notions: The semantic security, a.k.a IND-CPA,
prevents any information being leaked about the plaintexts,

while the integrity of ciphertexts, a.k.a. INT-CTXT, essen-

tially says that no valid ciphertext can be produced without

the key. The definitions of the corresponding advantages

Advint-ctxtES (A) and Advind-cpaES (B), for any adversaries A,B
can be found in [40]. In addition, for adversaries A,B there

exists an adversary C for which we define AdvauthencES (C) =
max{Advint-ctxtES (A),Advind-cpaES (B)}.
One simple way to achieve secure authenticated encryption is

by using a generic Encrypt-then-MAC approach [40] or by

using a dedicated scheme such as OCB [41].

IV. GENERIC HAKE PROTOCOLS

In this section, we propose two generic HAKE protocols. They

build on a simple idea of composing a human-compatible (HC)

function family with a password authenticated key exchange

(PAKE) protocol. More precisely, a server chooses a random

challenge x, the user U�’s response is r = FK�
(x), where F is

an HC function family and K� is the long-term secret shared

between the user and the server. And finally the terminal and

the server execute the PAKE on the one-time password r, as
in [35]. As already mentioned, whereas the server supports

concurrent sessions, since the human does not, there is no

sense in maintaining multiple session states for one human

user.

However, a straightforward replay attack is possible. The

adversary can first just eavesdrop a session by compromising

a terminal, and then play on behalf of the server with the

observed challenge-response pair (x, r), even when the user

uses an honest terminal. The main issue is that there is

no reason for the challenge to be distinct in the various

sessions if we do not add a mechanism to enforce it. In [35]’s

constructions, they assume the server is stateful to prevent it.

However, we can do better.

This is the goal of our first protocol: it adds a coin-flipping

protocol between the terminal and the server to avoid either

party to influence the challenge x, and thus to avoid the

aforementioned replay attacks. We prove it secure (in terms

of privacy, which implies implicit authentication) assuming

security of commitments (underlying the coin-flipping), HC

function family, and PAKE. However, the concrete security
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Human U�(K�) Terminal T Server S(K�)

�−−−−−−−→ xT
$← Z|C|

(c, s)← Com(xT )
�, c−−−−−−−→

x←−−−−−−− x← g(xS + xT )
xS←−−−−−−− xS

$← Z|C|
r ← FK�(x)

r−−−−−−−→ s−−−−−−−→ xT ← Open(c, s)
x← g(xS + xT )

r ← FK�(x)PAKE(r)
↼−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−⇁
PAKEsid = (�, c, xS , s)

Outputs skT Outputs skS

Fig. 2. Basic Generic HAKE Construction

depends on the bound η, which is large enough for our device-

based HC function family, but the Only-Human HC function

family construction we will propose in Section V (and its

underlying hardness problem) does not tolerate a high η.

Hence, the goal of our second HAKE protocol is to add

explicit authentication, which will help limiting the number of

malicious challenge-response pairs the adversary can see, or at

least to detect them: the user can then suspect the terminal to

be infected. We still need the concrete HC function to tolerate

at least one malicious challenge, but this remains a reasonable

assumption.

A. The Basic Generic HAKE

Our first construction makes use of a commitment scheme, an

HC function family, and a PAKE.

DESCRIPTION. Let (KG, F ) be a human-compatible function

family with challenge space C, let CS = (Setup,Com,Open)
be a commitment scheme, let PAKE be a password authen-

ticated key exchange protocol and let g : Z|C| → C be a

bijection. We construct the Basic HAKE (LKG = KG,KE).
Its interactive KE protocol is described on Fig. 2, here are the

descriptions.

• KE execution:

1) When the user invokes a terminal to establish a con-

nection with the server, the terminal chooses its part

of the challenge xT , and commits it for the server. It

also sends the user’s identifier �;
2) Upon receiving the commitment, the server waits until

any previous session for U� finishes, then it chooses its

part of the challenge xS , and sends it in clear to the

terminal;

3) The terminal then combines both parts xT and xS to

generate the challenge x = g(xS + xT ), and asks x to

the user;

4) Upon reading the challenge x, the user computes and

writes down the response r for the terminal;

5) When the terminal receives the response r from the

human user, it opens its commitment to the server, and

can already starts with the PAKE protocol execution;

6) Upon receiving the opening value of the commitment,

the server opens the latter to get xT . It can then com-

bine both parts xT and xS to generate the challenge

x = g(xS + xT ), and compute the response r. It can
then proceed with the PAKE protocol too.

The terminal and the server both run the PAKE protocol

with their (expected) common input r and session id

PAKEsid that is the concatenation of the transcript. At

the end of the PAKE execution, they come up with two

session keys, skT and skS , respectively, that will be equal

if both parties used the same r in the PAKE. Since we do

not consider explicit authentication, accept and terminate
flags are not set.

Correctness of the HAKE construction follows from correct-

ness of the building blocks.

SECURITY ANALYSIS. For Basic HAKE, we only assess

privacy of the session key, since this protocol does not provide

explicit authentication.

Theorem 1: Consider the Basic HAKE protocol defined in

Fig. 2. Let A be an adversary against the privacy security

game with static compromises, running within a time bound

t and using less than ncomp compromised terminal sessions,

nuncomp uncompromised terminal sessions, nserv server ses-

sions and nactive ≤ ncomp + nuncomp + nserv active sessions.

Then there exist an adversary B1 attacking the 2-party ncomp-

unforgeability of the HC function family with qr, qc, qt queries
of the corresponding type, an adversary B2 and a distinguisher

B3 attacking UC-security of the PAKE with a simulator Spake
as well as an adversary B4 against the commitment scheme,

all running in time t, such that

AdvprivHAKE(A) ≤ Adv
ncomp-uf
F (B1)

+ 2 · AdvpakePAKE(Spake,B2,B3) + 6 · AdvCS(B4) ,

where qr ≤ ncomp, qt ≤ nactive, and qc ≤ nuncomp + ncomp +
nserv.

The proof is in the full version [36].

DISCUSSION. Concrete security of the HC function family is

definitely the most crucial compared to that of other building

blocks, since it is hard to balance strong security and usability.

This is why we emphasize this in the above theorem.

We note that the sessions which lead to TestResp-queries
have non-oracle-generated flows and therefore correspond

to classical on-line dictionary attacks: the adversary simply

tries to impersonate the user/terminal to the server (or vice-

versa), with a guess for the answer r (unless the query has
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Human U�(K�) Terminal T Server S(K�)

accept← False accept← False
terminate← False terminate← False

�−−−−−−−→ xT
$← Z|C|

(c, s)← Com(xT )
�, c−−−−−−−→

x←−−−−−−− x← g(xS + xT )
xS←−−−−−−− xS

$← Z|C|
r ← FK�(x)

r−−−−−−−→ s−−−−−−−→ xT ← Open(c, s)
accept← True x← g(xS + xT )

r ← FK�(x)PAKE(r)
↼−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−⇁
PAKEsid = (�, c, xS , s)

Parses key: (kT ||skT ) Parses key: (kS ||skS)
accept← True

xU
$← C xU−−−−−−−→ XU ← EnckT (xU )

XU−−−−−−−→ xU ← DeckS (XU )
Verifies rU

rU←−−−−−−− rU ← DeckT (RU )
RU←−−−−−−− RU ← EnckS (FK�(xU ))

Outputs skT Outputs skS
terminate← True

0/1−−−−−−−→ terminate← True

Fig. 3. Confirmed HAKE Construction

been asked to the GetResp-oracle). Indeed, sessions with

GetResp-queries on the exact challenges have compromised
terminals and correspond to a spyware keylogger that records

random challenge-response pairs. If using such a compromised

terminal can be considered rare, this remains reasonable.

Eventually, the sessions which lead to GetResp-queries on

different challenges are the most critical, but they should

likely fail. And we expect them to be quite exceptional. As

remarked above, such sessions likely conclude to a failure: no

concrete session is established with the server the user wanted

to connect to (if the HC function family is still secure after

such adaptive queries). If the user can detect such a failure,

he can run away from this terminal. We now propose a way

for the user to detect such a dangerous terminal, and thereafter

take appropriate measures. At the same time, our next proposal

will achieve explicit authentication.

B. The Confirmed HAKE

We now enhance the Basic Generic HAKE by adding two

confirmation flows (see Fig. 3) that allow the user to detect a

bad behavior of the adversary, who compromised the device,

and take appropriate measures. This can happen in two dif-

ferent scenarios: the adversary just compromised a terminal

and additionally plays on behalf of the server, which allows

it to ask any query to the user through the terminal, or the

adversary infected a terminal that allows it to directly ask any

query to the user.

As said above, such dangerous cases lead to no connection

with the expected server. The user will thus check whether he

built a secure session with the expected server, who should be

able to answer to a fresh random challenge. This is performed

under the fresh key, established with the PAKE, using a secure

authenticated encryption. As shown below, the two additional

flows will not only provide explicit authentication, but also

allow the user to detect such bad events and take measures. For

this, it is important that the user does not start multiple sessions

concurrently, which is anyway not realistic for a human (as

already noticed above).

DESCRIPTION. The protocol is similar to Basic HAKE, but it

uses an additional building block, an authenticated encryption

scheme ES = (Enc,Dec), that is used in the new last stage

of the protocol. The description is in Fig. 3.

Since we now consider the authentication of the players, we

additionally include accept and terminate flags in the protocol:

The user U� accepts after sending the first response while the

server S accepts after the PAKE. Then both terminate when

they have the confirmation of the other partner. More precisely,

the user terminates after sending the last bit (1 for acceptance

and 0 for rejection) to the terminal (thus having verified the

server’s response in the last stage), and the server terminates

after sending the encrypted response (thus having checked the

terminal can generate a valid ciphertext).

Note that if the protocol terminates, skT and skS must be

equal, since our additional flows act as confirmation flows for

the PAKE.

SECURITY ANALYSIS. We now present Theorem 2 regarding

the security of our Confirmed HAKE in the HAKE privacy

and authenticity experiment.

While it relies on the same security properties of PAKE, au-

thenticated encryption, commitment scheme and HC function,

a critical parameter is added, the number of human sessions

that reject in the end.

Indeed, the explicit authentication property we achieve means

that any attempt at issuing an adaptive query unrelated to the

challenge will likely lead to a failure of the PAKE protocol,

that can in turn be detected by the human, as he doesn’t get

the answer to xU he looked for. This allows to use a much

stricted η in the HC unforgeability game (even η = 1 for a

very strict human user), which is a much more reasonable goal

for an HC function family such as the one derived from [4],

that we will present in Section V-B

Theorem 2: Consider the Confirmed HAKE protocol defined

in Fig. 3. Let A,A′ be adversaries against the privacy and

authenticity security game of HAKE within a time bound
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t and using less than ncomp compromised terminal sessions,

nuncomp uncompromised terminal sessions, nserv server ses-

sions, nactive ≤ ncomp + nuncomp + nserv active sessions

and nhr human session that reject in the end. Then there

exist two adversaries B1,B′1 attacking the 2-party (nhr + 1)-
unforgeability of HC function family with qr, qc, qt queries

of the corresponding type, two adversaries B2,B′2 and two

distinguishers B3,B′3 attacking UC-security of the PAKE with

the simulator Spake, two adversaries B4,B′4 against the authen-

ticated encryption, as well as two adversaries B5,B′5 against

the commitment scheme, all running in time t, such that

AdvprivHAKE(A) ≤ Adv
(nhr+1)-uf
F (B1) + 2 · AdvauthencES (B4)

+ 6 · AdvCS(B5) + 2 · AdvpakePAKE(Spake,B2,B3),

AdvauthHAKE(A′) ≤ Adv
(nhr+1)-uf
F (B′1) + 2 · AdvauthencES (B′4)

+ 6 · AdvCS(B′5) + 2 · AdvpakePAKE(Spake,B′2,B′3),
where qr ≤ 2ncomp, qt ≤ nactive, qc ≤ ncomp+nuncomp+nserv.

The proof is provided in the full version [36].

Remark 1: We also note that given the confirmation phase,

and assuming the strong policy of resetting all credentials if

the confirmation phase fails, the coin-flipping part is no longer

necessary for the security proof: we could let the server choose

the challenge during the first phase and the human in the

second one (to avoid one player being to make replay attacks).

We chose to keep it as part of the protocol because, first,

this would not reduce the number of flows since the terminal

always initiates such a connection, and second, without coin-

flipping a network attacker could test adaptive challenges. The

confirmation phase would fail, but there is no real need for the

user to take severe measures and change the long-term secret

in such a weak attack. Hence we prevent adaptive tests (from

network attacks) with coin-flipping, which may be useful if a

policy a little weaker is in use, such as resetting only if there

is suspicion of terminal infection.

V. HUMAN-COMPATIBLE FUNCTION FAMILY

INSTANTIATION

In Section III, we proposed instantiations for the HAKE

building blocks, except for the HC function family. We now

focus on the latter in this section.

A. Token-Based HC Function Family Instantiation

First, we introduce a simple token-based HC function family.

This assumes that the human is in possession of a simple

device on which it can input challenge x and get the response

r ← FK(x). The device will store K and perform the compu-

tation, but the human is still responsible for the communication

with the terminal.

This allows us to use strong cryptographic primitives. For in-

stance, we could set K
$← {0, 1}λ and FK : �0, 9�t

′ → �0, 9�t

a pseudorandom function. In the random oracle model (for

modeling H in FK(x) = H(K‖x)), we have Advη-ufF (A) ≤
10−t for any adversary and any η, since an adversary can just

guess by chance the answer to a fresh challenge. Note that

this function is obviously human-readable, human-writable

and human-sampleable as its input/output are numbers in basis

10 so it is an HC function family.

Hence this function family is a good candidate to use in

our Basic generic HAKE protocol from Section IV-A or its

simplified version from Section VI-A.

B. Only-Human HC Function Family Instantiation

However, avoiding such devices would be much better in

practice. We are thus interested in the Only-Human HC

function family that would not require anything beyond simple

human memory and brain computation power. Since such a

function is necessarily weaker, we will use it in our confirmed

HAKE protocol from Section IV-B, that has a much tighter

control over adaptive queries and therefore requires weaker

security properties from the HC function family.

1) Construction: We present a candidate based on the con-

struction of Blocki et al [4], which security is based on [5]:

Consider a challenge space C = X t
l ⊆ [n]lt, where [n] =

{1, . . . , n} is the set of n integers each representing one of

the n variables and Xl denotes the space of ordered clauses

of l variables without repetition. The parameter t indicates

that each challenge consists of t independent clauses, i.e.,

“small” challenges. The key generation algorithm KG of our

HC function family takes as input a parameter n, then outputs

a random mapping σ : [n] → Zd as the key K, where

the integer d is a constant. Usually we set d = 10 because

most humans are familiar with computations on digits. Let

σl : [n]l → Z
l
d = (σ, · · · , σ) denote the mapping that

applies σ to each element of an l-tuple. Using a public

human-computable function f : Zl
d → Zd that is instantiated

later, the challenge-response function F takes a key K = σ
and a challenge x ∈ C as inputs, and returns a response

r = FK(x). Here FK : C → Z
t
d is defined as a t-tuple (t ≥ 1)

(f◦σl, · · · , f◦σl), where ◦ indicates the function composition.

For instance, if n = 100, l = 3, d = 10, t = 2,
x = ((1, 4, 20), (3, 36, 41)), σ(i) = (i + 3) mod 10 and

f = (x1 − x2 + x3) mod 10, then σ((1, 4, 20)) = (4, 7, 3),
σ((3, 36, 41)) = (6, 9, 4) and FK(x) = (0, 1).

Given integers k1, k2 > 0, the function f is instantiated as

fk1,k2
: Z10+k1+k2

10 → Z10, which is defined as follows:

fk1,k2
(x0, . . . , x9+k1+k2

) =

x(∑9+k1
i=10 xi mod 10

) +

9+k1+k2∑

i=10+k1

xi mod 10.

Note that when f is instantiated as fk1,k2
, we have l = 10 +

k1 + k2 and d = 10.

It is easy to see that such a function family is an Only-Human

HC function family apart from the human memorization

property. However, we can allow for images to represent the

variables. As illustrated in [4], by using mnemonic helpers,

humans are able to remember such mappings from images to

digits. As an evidence, the primary author of [4] was able

to memorize a mapping from n = 100 images to digits in 2

hours.
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2) Security: In [4], the authors proved the intractability to

answer to a new random challenge for the above HC function

family instantiation based on the conjecture about the hardness

of random planted constraint satisfiability problems (RP-CSP).
We briefly recall a special case of the RP-CSP conjecture,

which we call the RP-CSP* conjecture, and its implied secu-

rity theorem, both with our notations. For an in-depth review

of those notions, the reader should refer to [4].

THE RP-CSP* CONJECTURE. Before stating this conjecture,

we introduce some notations as in [4]. Denote H(α1, α2) =
|{i ∈ [n] | α1[i] �= α2[i]}| as the Hamming distance between

two strings α1, α2 ∈ Z
n
d . Use H(α) = H(α,�0) to denote the

Hamming weight of α. Then we say two mappings σ1, σ2 ∈
Z
n
d are ε-correlated if H(σ1, σ2)/n ≤ (d− 1)/d− ε.

Conjecture 1 (RP-CSP*): Consider the function fk1,k2 de-

scribed above, for any ε, ε′ > 0 and any probabilistic polyno-

mial time (in n) adversary A, there exists an interger N ∈ N,

such that for all n > N , m ≤ nmin{(k2+1)/2,k1+1−ε′}, we

have Advrandfk1,k2
(A, ε) = negl(n), where Advrandfk1,k2

(A, ε) is the

probability that A outputs a mapping σ′ that is ε-correlated
with the secret mapping σ given m random “small” challenge-

response pairs {(Ci, fk1,k2(σ
l(Ci)))}1≤i≤m.

Remark 2: The RP-CSP conjecture in [4] is a general version

of the RP-CSP* Conjecture 1, where f can be instantiated as

other functions. Here, for simplicity, we only state the conjec-

ture where f = fk1,k2 . In [4], the authors also prove strong

evidence in support of the RP-CSP conjecture: it holds for any

statistical adversary and any Gaussian Elimination adversary.

As observed in [42], most natural algorithmic techniques have

statistical analogues except the Gaussian Elimination.

BASIC η-UNFORGEABILITY. To state the security theorem

in [4], we need the following “basic” HC security notion that

is a “non-malleable” version of the η-unforgeability. It indeed
assumes that asking a GetResp-query with an input different

from the current random challenge should not help to answer

this challenge correctly to the TestResp-query. Given an HC

function family F , an adversary A, and a public parameter η,
one first generates K with KG and initializes ctr ← 0. Then
the adversary can ask the following queries:

1) GetRandChal() – It picks a new x
$← C, marks it fresh

and outputs it;

2) GetResp(x∗) – It increments ctr if x∗ �= x;

• If ctr ≤ η and x∗ ∈ C, it outputs FK (x∗) and marks

x as unfresh;
• Otherwise, it outputs ⊥;

3) TestResp(r) –

• If FK (x) = r and x is fresh, the adversary wins;
• If FK (x) = r and x is unfresh, it outputs 1;
• Otherwise, it outputs 0.

Just like the η-unforgeability experiment, the above oracle

calls are sequential (similar to Figure 1), starting with a

GetRandChal-query. But since non-malleability is assumed,

only GetResp-queries with inputs different from the current

random challenges make the counter increase, and it is never

decreased.

The advantage of any adversary A against the above un-

forgeability, Advη-uf-basicF (A) is the probability of winning in

the above experiment. Such a success indeed means that the

adversary found the response for a new random challenge,

without having asked for a GetResp-query. The parameter η
restricts the number of “adaptive” GetResp queries that A
can make, where adaptive means “different from the current

random challenge”.

The resources of the adversary are the polynomial run-

ning time and the numbers q′c, q
′
r, q
′
t of queries to the

above GetRandChal, GetResp and TestResp oracles,

respectively. For convenience, denote by q′′t the number of

TestResp-queries such that the current random challenge

x is fresh. By definition, we have q′r ≤ q′c, q′t ≤ q′c and

q′′t ≤ q′c − q′r.

HC FUNCTION FAMILY SECURITY RESULTS. Under Conjec-

ture 1, one can prove the following unforgeability result about

the HC function family.

Theorem 3 (From [4]): Given ε, ε′ > 0, t ∈ N+ and δ >
( 1
10 +ε)t, for any probabilistic polynomial time (in n, q′c, 1/ε)

adversary A against the basic 0-unforgeability security of the

HC function family F constructed above using f = fk1,k2

with

q′′t = 1, q′c ≤
1

t
· nmin{(k2+1)/2,k1+1−ε′} − 1,

under Conjecture 1, we have Adv0-uf-basicF (A) < δ.
Note that in the basic 0-unforgeability security game, the

adversary learns nothing from GetResp(x∗) if x∗ is not the

current random challenge x. So if η = 0, the adversary A is

only given random challenge-response pairs.

This result is actually not strictly good-enough, even for our

confirmed HAKE. Indeed, if the function does not allow for

at least one adaptive query, an attacker could make it in the

first exchange (using an infected terminal), then break the

unforgeability of the function before the confirmation flow and

make the protocol succeed, hence avoiding detection. Thus, we

extend the RP-CSP conjecture to allow log n adaptive “small”

challenge-response pairs.

Conjecture 2: Consider the function fk1,k2
described above,

for any ε, ε′ > 0, t ∈ N+ and any probabilistic polynomial

time (in n) adversary A, there exists an interger N ∈ N,

such that for all n > N , mr ≤ nmin{(k2+1)/2,k1+1−ε′}

and ma ≤ t log n, we have Advadaptfk1,k2
(A, ε) = negl(n),

where Advadaptfk1,k2
(A, ε) is the probability that A outputs a

mapping σ′ that is ε-correlated with the secret mapping σ
given mr random “small” challenge-response pairs and the

correct responses to ma “small” challenges adaptively chosen

by A.

Proof: For any adversary A we can construct an adversary B
such that Advadaptfk1,k2

(A, ε) ≤ 10t logn × Advrandfk1,k2
(B, ε).

B simulates A’s view by providing A with the given mr

random “small” challenge-response pairs and randomly guess-

ing the responses to the ma (≤ t log n) adaptive “small”
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challenges. The probability of correctly guessing all adaptive

ones is 10−t logn (refer to the construction of fk1,k2 ), hence

the above advantage reduction. One should note that 10t logn×
negl(n) = negl(n) and B’s running time is polynomial in n.

Under this extended conjecture, one can prove the following

stronger unforgeability result about the HC function family,

which “almost” suits our confirmed HAKE (see Fig. 3):

Theorem 4: Given ε, ε′ > 0, t ∈ N+ and δ > ( 1
10 + ε)t, for

any probabilistic polynomial time (in n, q′c, 1/ε) adversary A
against the basic η-unforgeability security of the HC function

family F constructed above using f = fk1,k2
with

η ≤ log n, q′c ≤
1

t
· nmin{(k2+1)/2,k1+1−ε′} − 1,

under Conjecture 2, we have Advη-uf-basicF (A) < q′′t · δ.
Proof: The proof is almost the same as that of Theorem 3.

Informally, we need to show that any adversary A that breaks

the basic η-unforgeability security of the HC function family

can also “recover” the secret mapping σ in Conjecture 2. The

reader can refer to the proof of Theorem 5 in [4], which we

call the “HCP” proof below, for the details.

Nevertheless, here the theorem differs from Theorem 3 in

several aspects. First, A can adaptively select t log n “small”

challenges to get the correct responses, while in Theorem 3

only random ones are allowed. But having adaptive queries

does not affect the HCP proof because it only uses A as a

blackbox to predict the responses to any t “small” challenges.

Second, we apply an union bound of q′′t queries to the final

advantage.

Remark 3: In the above theorem ε, ε′ are almost 0. We can

set n = 100, k1 = 1, k2 = 3 and t = 5, then η ≤ 6, q′c ≤
n2/t− 1 ≈ 2000 and Advη-uf-basicF (A) < q′′t · 10−t ≤ 1/50.

We believe a similar theorem holds for Advη-ufF (by replacing

the oracles with those in the 2-party η-unforgeability experi-

ment), which our HAKE security can rely on. The intuition is

as follows. With the HC function family instantiation described

in this section, a GetResp(x∗) query in the η-unforgeability
experiment should not have x∗ too “far” from the random chal-

lenge x output by the latest GetRandChal query. Otherwise,

it is very unlikely for the adversary to guess correctly in the

TestResp query. But the adversary can modify x a little bit

to guess the correct response with a smaller failure probability.

This is the difference between the two unforgeability notions:

the basic one does not tolerate any malleability, whereas the

other can exploit malleability. Because of the size of the

challenge space, that has to be quite large (it is essentially

nt(10+k1+k2), and thus 2465, with the above parameters), the

number of challenges that are “close” to any random challenge

accounts for a tiny proportion. Thus, the adversary should not

get much help from such “nearly random” challenges. Besides,

such queries risk increasing the counter in the GetResp
oracle without extracting much useful information. In addition,

the two memory slots will not increase much the advantage

of an adversary, and so Advη-uf-basicF and Advη-ufF should be

quite close for this specific HC function family instantiation.

We leave further studies of security of the HC function family

from [4] to future works.

VI. DEVICE-ASSISTED HAKE PROTOCOLS

In this section, we take a step back from Only-Human HC

function family to allow the use of an additional device that

will perform the computations in place of the human. In

this setting, the HC function family can be quite powerful

and thus resist to many adaptive queries. We consider it in

two scenarios: first in a similar context as the Basic Generic

HAKE, where one can enter a challenge onto the device to

get the response; and second, a time-based token, that outputs

the response every timeframe, with the time as the challenge

(without having the user to enter it).

A. Simplified Basic HAKE

According to the security proof of the Basic Generic HAKE,

the PAKE has to be instantiated with a UC-Secure protocol,

which turns out to be quite costly. Indeed, the only efficient

scheme that achieves this security level is the encrypted key

exchange protocol (EKE) [1]. However, the proof holds in

the Ideal-Cipher model, for a symmetric blockcipher that

should only output elements in the Diffie-Hellman group. In

practice, the best way to do it is to iterate a large blockcipher

until one falls in the group. First, a large blockcipher from

a hash function (modeled as a random oracle) has fueled a

whole line of works [43]–[45], and is nevertheless already

quite costly: at the time of writing, at least 8-round Feistel

network is required [45], with an impossibility result below

6 [43]. Thereafter, additional iterations are required to build a

permutation onto the group. This thus eventually corresponds

to dozens of hash function evaluations.

Looking back at the construction, using a full PAKE seems

anyway as a bit of an overkill since the ephemeral secrets are

only used once, and need not to be kept secret afterwards. We

present in the full version [36] a protocol that uses commit-

ments instead of a full PAKE to achieve better efficiency.

B. Time-Based HAKE

SCENARIO. In this section, we focus on the particular (but

quite usual) case where the physical device does not have a

dedicated input but uses time instead to compute its output.

More precisely, our protocol considers a device, such as the

RSA-SecurId [28] token, that, based on an internal seed (the

long-term key K�), generates a one-time password (the value

FK�
(t), based on the time period t), and displays it on an LCD-

Screen. The password is tied to an internal clock, and changes

every τ (e.g. 30s). Note that such a password is already human
readable and human writable, hence it satisfies our human-

compatible communications.

Building on the security model presented in Section II-B, we

now consider time as a variable, that is to be segmented into

timeframes (each spanning τ seconds). We then number those

timeframes and associate to each message sent between T
and S this number, representing the fact that each party can
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Time Human U� Terminal T Server S

≤ t accept← False accept← False
terminate← False

t
�−−−→ xT

$← Zp, XT ← gxT xS
$← Zp, XS ← gxS

t
pwt−−−→ (cT , sT )← ComT (XT , pwt)

�,XT , cT−−−−−−→
t accept← True

XS , cS←−−−−−− (cS , sS)← ComS(XS , pwt)

.

.

. Wait for timeframe > t Wait for timeframe > t
> t

sT−−−−−−→ If OpenT (cT , sT ) = (XT , pwt) and
(�, t) �∈ Λ, store (�, t) in Λ

> t Otherwise reject
> t accept← True
> t Reject if OpenS(cS , sS) �= (XS , pwt)

sS←−−−−−− Outputs (XT )xS

> t Outputs (XS)xT terminate← True

Fig. 4. Time-Based Device-Assisted HAKE Construction

measure time and identify the timeframe in which the message

was sent.

Since the one-time passwords are generated by a secure device

implementing FK�
, we can make the assumption that, for each

timeframe, the output is indistinguishable from an element

sampled from the distribution D with entropy greater than D
(which increases the advantage of an adversary A by at most

Advdist-TF (A) after T timeframes).

We rely on the requirement that any user U� can only make

use of one terminal during a timeframe. That is, he may not

attempt to authenticate using more than one terminal in a

single time period.

PROTOCOL. We now propose a protocol for time-based

device-assisted HAKE. It is presented on Fig. 4. As in the

previous Simplified Basic HAKE, it makes use of a commit-

ment scheme on top of the unauthenticated Diffie-Hellman

scheme to perform authentication.

The commitment scheme CS is initialized twice, with two in-

dependent setup, leading to ComT /OpenT and ComS/OpenS ,
each of them being used for the commitments generated by

the terminal and the server, respectively. We also setup a group

G of prime order p in which the discrete logarithm problem

is believed to be hard. Let g be a generator of G.

The protocol itself is split into two parts: the commitment
phase which must happen during a timeframe t (that we will

call the session timeframe) and the verification phase, that must

happen later than the session timeframe.

This delay is a clear limitation on the total speed of the

protocol, which on average will take τ/2. It will however

prove necessary, as it allows FK�
(t) to be revealed without

compromising the security of the scheme, therefore building

on the one-time specificity of the password. To enforce a

unique session in a timeframe, the server will not accept

to run several sessions within the same timeframe, with the

same user, as the latter should not do it anyway (see above).

This would thus come from an adversary, and then allowing

multiple sessions in a timeframe t can compromise other

sessions in the same timeframe when FK�
(t) is revealed.

It is interesting to note that this protocol uses the time period

t as the HAKE challenge (the challenge is a counter) and

the one-time password (FK�
(t)) read from the device as the

human’s response. Therefore, partnering between U and S is

entirely determined at the end of the session timeframe t.

SECURITY ANALYSIS. In the security analysis, as in Sec-

tion IV, we only consider static compromises. Hence

Compromise(j) can only be the first oracle query of a

session, and Infect(j) can only affect compromised ses-

sions. Since compromises are known before the first flow and

partnering between Human and Server is determined at the

end of timeframe t, this means that freshness itself can be

perfectly ascertained in any timeframe > t.

The security of our protocol heavily relies on the strong-

security of the commitment scheme (see Section III and the

full version [36]).

Theorem 5: Consider the Time-Based Device-Assisted HAKE

protocol defined in Fig. 4. Let A,A′ be an adversaries against

the privacy and user authenticity security games with static

compromises, running within time t and using less than nserv

non-passive sessions against the server oracle, nterm non-

passive sessions against the terminal oracle, ntotal > nterm +
nserv total sessions and T < ntotal unique timeframes. Then

there exist an adversary B1 against the indistinguishability of

the password-distribution D running in time t, an adversary

B3 against the DDH experiment running in time t+8ntotalτexp,
and adversary B2 against the commitment scheme running in

time t:

AdvprivHAKE(A) ≤ (nserv + nterm) · 2−D + Advdist-TF (B1)

AdvindDDH(B3) + (ntotal + 3) · AdvCS(B2),

Advu-authHAKE(A′) ≤ (nserv + nterm) · 2−D + Advdist-TF (B1)

(ntotal + 2) · AdvCS(B2),

with τexp the time necessary to exponentiate one group ele-

ment, and ntotal the global number of sessions.

The proof is in the full version [36].

Remark 4: Note that the Time-Based Device-Assisted HAKE

only achieves user authentication in our setting, since server
authentication requires the server identity to be approved by

the human in our setting (the terminal could be infected so

it cannot be relied on). A similar approach to the one of

the Confirmed HAKE could be used to achieve a full mutual

authentication.
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Scheme Flows Terminal Server Communication
expon. H eval. expon. H eval. complexity

1(SPAKE1) [35], [46] 4 3 1 3 1 4λ
This work 4 2 2 2 2 10λ

TABLE I
PERFORMANCE OF THE TIME-BASED DEVICE-ASSISTED HAKE

PERFOMANCES. We offer in Table I a comparison (in terms of

numbers of flows, exponentiations, H evaluations and overall

communication complexity) of the performances of our HAKE

protocol with the one-time PAKE 1(P) construction of [35],

instantiated with SPAKE1 from [46] as a reference.

Since SPAKE1 is also proven in the random oracle model, it

is fair to use the efficient commitment scheme described in

Section III. We do not include the redundant XP in sP (it is

transmitted at the commitment stage) for the communication

complexity, and for a security parameter λ, we assume the

group elements to be encoded into 2λ-long bit-strings.

While our communication complexity is higher, the compu-

tational load is reduced by 30% from [35] with the most

efficient PAKE. Relaxing the PAKE security properties allows

a significant gain from the complexity point of view.

VII. CONCLUSION

We proposed the first user authenticated key exchange proto-

cols which can tolerate corrupted terminals: if a user happens

to log in to a server from a terminal that has been fully

compromised, then the other past and future user’s sessions

initiated from honest terminals stay secure. We formalized

security for Human Authenticated Key Exchange (HAKE)

protocols and proposed generic constructions based on human-

compatible (HC) function families or small auxiliary devices

such as RSA SecurID, password-authenticated key exchange

(PAKE), commitment, and authenticated encryption. We an-

alyzed security of our HAKE protocols and discussed their

instantiations. We left several interesting open problems and

believe that our work will promote further developments in

the area of human-oriented cryptography.
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