
www.computer.org/security� 7

Trusting Trust: Humans in the
Software Supply Chain Loop

To what extent should one trust a state-
ment that a program is free of Trojan
horses? Perhaps it is more important
to trust the people who wrote the soft-
ware. . . . You can’t trust code that you
did not totally create yourself.

—Ken Thompson,
Turing Award Lecture, 19841

T he modern world relies on digital inno-
vation in almost every human endeavor

and for our critical infrastructure. Digital inno-
vation has accelerated substantially as software
is increasingly built on top of layers of reusable
abstractions, including libraries, frameworks,
and cloud infrastructure, which often lie out-
side an organization’s trust boundary. Where
previous teams of engineers invested months,
today, beginners can write intelligent smart-
phone apps with a few lines of code. Lever-
aging these reusable abstractions gives rise to
software supply
chains, where
software prod-
ucts include
“ u p s t r e a m ”
components as
well as depen-
dencies, created
and modified
by others, that,
again, often include their own transitive
dependencies. Most of these dependencies are
open source projects.

However, with all of the power that soft-
ware supply chains and open source infra-
structure provide also come risks. Software
developers did not anticipate how the soft-
ware supply chain would become a deliber-
ate attack vector. The software industry has
moved from passive adversaries finding and

exploiting vulnerabilities contributed by hon-
est, well-intentioned developers to a new
generation of software supply chain attacks
where attackers aggressively implant vulner-
abilities directly into infrastructure software
(e.g., libraries or tools) and infect build and
deployment pipelines.

Sonatype2 reports a 650% year-over-year
increase in detected supply chain attacks
(on top of a 430% increase in 2020) targeted
toward upstream open source repositories.
The U.S. government is so concerned about
software supply chain security deficien-
cies that a whole section of Executive Order
140283 (Improving the Nation’s Cybersecurity),
issued on 12 May 2021, is focused on new
compliance requirements for government
vendors to enhance supply chain security.

Historically, when people thought about
the software supply chain attack surface,
they thought about the many components
that make up a product. More recently, the

software sup-
ply chain at
tack surface
increasingly
encompasses
the build infra-
structure. In
this article, I
bring back the
p r o g r e s s i v e

thoughts of Ken Thompson and place humans
in the software supply chain—as both devel-
opers with and without malicious intent
and as part of the solution to software supply
chain security.

Components and the Software
Supply Chain
Attackers exploit vulnerabilities in components.
For example, in late 2021, an accidentally
injected vulnerability in the popular logging
library log4j, used by more than 35,000 Java
packages, allowed an attacker to perform

Digital Object Identifier 10.1109/MSEC.2022.3173123
Date of current version: 6 September 2022

Where previous teams of engineers

invested months, today, beginners

can write intelligent smartphone

apps with a few lines of code.

Laurie Williams
Associate Editor in Chief

http://orcid.org/0000-0003-3300-6540

8	 IEEE Security & Privacy� September/October 2022

FROM THE EDITORS

remote code execution by exploit-
ing an insecure Java Naming and
Directory Interface (JNDI) lookup
feature, which is enabled by default
in many versions of the library. In
2022, as an instance of protestware, a
developer maliciously injected code
into the node-ipc package, with more
than 700,000 weekly
downloads. The initial
version of the malicious
code attempted to geo-
locate where the code is
running, and, if it discov-
ers it is running within
Russia or Belarus, then
it attempts to replace the
contents of every file on
the system with a Uni-
code heart character.

To manage the component-based
supply chain risks, development teams
(those humans!) are challenged
to update their components when
vulnerabilities are found and choose
safe components.4,5 Software com-
position analysis (SCA) tools aid
in identifying vulnerable compo-
nents. SolarWinds was a wakeup
call that reminded security experts
that quickly updating to the latest
version of a dependency might
also introduce malicious code
or vulnerable code that may be
exploitable. Projects such as Open
Sou rce Sec u r i t y Fou ndat ion
(OpenSSF) Metrics and deps.dev
are emerging to provide metrics
on open source components to aid
teams in making informed choices
on components.

Build Infrastructure and
the Software Supply Chain
In an emerging attack vector, attack-
ers are infiltrating the build infra-
structure. In 2020, the build process
for the SolarWinds network man-
agement tool, Orion, which is used
to manage routers and switches
inside corporate networks, was
maliciously subverted to distribute
malware to create backdoors on
victims’ networks. This malware

enabled spying on at least 100 com-
panies and nine U.S. government
agencies, including the Centers
for Disease Control and Preven-
tion, U.S. Department of Home-
land Security, U.S. Department of
Justice, Pentagon, and U.S. Depart-
ment of State.

In 2021, attackers used a mistake
in how Codecov built docker images
to modify a script, which allowed
them to send the environment
variables from the continuous
integration (CI) environment of
Codecov customers to a remote
server. The attackers accessed
private Git repositories from the
Git credentials in the CI environ-
ment and exploited the secrets
and data within.

To manage the build infrastructure-
based supply chain risks, develop-
ment teams (those humans!) are
challenged to secure their build
infrastructure, considered to be a
huge open-ended challenge.4 The
Supply Chain Levels for Software
Ar ti facts [SLSA (pronounced
“salsa”)] framework provides a
checklist of standards for reason-
ing about the build process. SLSA is
based on Google’s internal processes
and defines four levels, beginning
with simply having a scripted build
and recording provenance infor-
mation and ending with using an
ephemeral, isolated, parameterless,
and hermetic build environment.
Bonus points are given if the build
is reproducible; i.e., two builds pro-
duce bit-for-bit identical output.

Additionally, the industry is
increasingly moving toward the

use of reproducible builds to ver-
ify that the source code was unal-
tered when the original build was
produced. There are a number of
efforts on this front. For exam-
ple, the Debian-initiated https://
reproducible-builds.org effort has
characterized and classified the

many types of nonde-
terminism that can be
introduced during the
build process.

Humans and the
Software Supply
Chain: Attackers
In the supply chain, we
can consider attackers
as developers who act

with malicious intent. Attack-
ers aggressively implant vulner-
abilities directly into components,
infrastructure, software (e.g. ,
libraries and tools) and infect
build and deployment pipelines.
Back to Ken Thompson’s quote
about trusting trust, “Perhaps it is
more important to trust the peo-
ple who wrote the software. . . . You
can’t trust code that you did not
totally create yourself ”.1 In reality,
innovation would grind to a halt
in an organization that decides it
can’t trust any open source code
due to the risk of malicious code
injection. That would be like Tesla
deciding it can’t trust its screw
manufacturer and manufacturing
its own screws.

As an industry, we need to
develop models for identif y ing
malicious actors and malicious
code injection. Because the attack-
ers act in ways that well-meaning
developers do, we are challenged
to identify their actions. Models
are beginning to emerge to iden-
tify weak leaks signals that arouse
suspicion, such as the identifica-
tion that a component maintain-
er’s domain is expired and does
not have two-factor authentica-
tion (2FA) authentication set up
on the account. An attacker can

To manage the component-based supply

chain risks, development teams (those

humans!) are challenged to update their

components when vulnerabilities are

found and choose safe components.

www.computer.org/security� 9

relatively easily hijack that com-
ponent or a component that has
an install script.6

More signals that indicate mali-
cious activity need to be devel-
oped and verified. We can’t stop the
attackers, but we can make it harder
for them. For example, typosquat-
ting was a very popular attack vector.
As ecosystems automated
the identification and
takedown of rogue typo-
squatted packages, attack-
ers have moved away
from this attack vector.
However, we play “cat
and mouse”—with the
plethora of weaknesses
in most applications and
infrastructures, moving
to a different spot on the
attack surface is not a big
deal for the attacker but can be a big
deal for the defender.

Humans and the
Software Supply Chain:
Software Developers

Some might argue that it’s
almost too easy to introduce
a new dependency into your
software systems. I’m defi-
nitely guilty of this in my
previous life as an engineer.
I remember pulling in ran-
dom Python packages when
building my own websites
and not putting any thought
into security. It should be
fine if so many other people
are using the same pack-
age, right?

—Kim Lewandowski,
Google Product Manager7

In the supply chain, we can con-
sider software developers as well-
intentioned actors in the sup-
ply chain who are just trying to
deliver functionality but sometimes
make mistakes that enable security
breaches. The quote from Lewan-
dowski epitomizes a common but

now naive belief held by develop-
ers. While developers may feel a
popular package must be secure,
attackers intentionally leverage
their efforts by injecting malicious
code in packages with many depen-
dents and a high download fre-
quency. A popular package may, in
fact, be more risky.

Predominantly measured by his
or her ability to deliver function-
ality, a developer can be over-
whelmed and overloaded by the
additional compliance restric-
tions and the notifications from
supply chain security tools. For
example, SCA tools, such as
Dependabot, send email and pull
requests for every dependency
and transitive dependency in a
package that has a discovered
vulnerability. The vulnerability
may be in a part of a component
not used by the package, and an
automatic acceptance of the pull
request may break functionality
and/or pose additional security
risk—increasing , not lowering ,
the overall risk.

Additionally, package maintain-
ers may be overloaded, which may
lead to hasty and possibly danger-
ous decisions around accepting
new maintainers and pull requests.
(They are humans, after all.) For
example, a study on the npm eco-
system revealed that the top 1% of
maintainers own an average number
of 180.3 packages, with an average
of 4,010 direct dependents.6 That’s
a lot!

The Humans as
First-Class Players in
the Secure Software
Supply Chain Solution
For humans to be the solution to
supply chain security, develop-
ers need education, guidance, and
risk-based tools. Part of this educa-
tion is just the awareness that not all

open source software can
be trusted. Major play-
ers in the industry are
already coming together
via a number of projects.
Both SLSA (mentioned
earlier) and the Open
Web Application Security
Project (OWASP) Soft-
ware Component Verifi-
cation Standard provide
frameworks for identify-
ing activities, controls, and

best practices that can help in identi-
fying and reducing risk in a software
supply chain. Additional projects
include OpenSSF (mentioned ear-
lier); sigstore; and in-toto,8 a joint
industry–academia project that
helps shed light on code-to-binary
provenance. Package managers and
researchers are exploring logic-based
and machine learning-based mecha-
nisms for identifying malicious code
and malicious contributors. Cur-
rently, this machine learning-based
sorting to identify bad hygiene
has a high signal-to-noise ratio
and presents technical challenges, so
more work is needed.

I s it possible to trust trust? Can we
develop mechanisms for software

developers to trust code that we did
not totally create ourselves in an
informed manner?

Acknowledgments
My thinking on the role of people in
the software supply chain was highly
influenced by conversations with 30
practitioners during three Software
Supply Chain Summits. These were
coheld by William Enck and me,4

While developers may feel a popular

package must be secure, attackers

intentionally leverage their efforts

by injecting malicious code in

packages with many dependents

and a high download frequency.

10	 IEEE Security & Privacy� September/October 2022

FROM THE EDITORS

with extensive collaboration with Yas-
emin Acar, Michel Cuckier, William
Enck, Alex Kapravelos, and Chris-
tian Kästner—especially Yasemin,
who is one of the few researchers at
the intersection of human factors and
secure software development.

References
1.	 K . Thompson, “Reflections on

trusting trust,” Commun. ACM, vol.
27, no. 8, pp. 761–763, Aug. 1984,
doi: 10.1145/358198.358210.

2.	 “2021 State of the software sup-
ply chain,” Sonatype, Fulton, MD,
USA, Jul. 2021. https://www.
sonatype.com/resources/state-of
-the-software-supply-chain-2021

3.	 “Executive order 14028: Improv-
ing the nation’s cybersecurity,”

Federal Register, May 12, 2021.
https://www.federalregister.gov/
documents/2021/05/17/2021
-10460/improving-the-nations
-cybersecurity

4.	 W. Enck and L. Williams, “Top five
challenges in software supply chain
security: Observations from 30
industry and government organiza-
tions,” IEEE Security Privacy, vol.
20, no. 2, pp. 96–100, 2022, doi:
10.1109/MSEC.2022.3142338.

5.	 D. Drusinsky and J. Michael, “Obtain-
ing trust in executable derivatives
using crowdsourced critiques with
blind signatures,” Computer, vol.
53, no. 4, pp. 51–56, Apr. 2020,
doi: 10.1109/MC.2020.2970819.

6.	 N. Zahan, L. A . Williams, T.
Zimmermann, P. Godefroid, B.

Murphy, and C. S. Maddila, “What
are weak links in the NPM supply
chain?” in Proc. Int. Conf. Softw.
Eng. Softw. Eng. Pract., 2022, to be
published.

7.	 K. Lewandowski, “Security score-
cards for open source projects,”
Open Source Security Foundation
Nov. 6, 2020. [Online]. Avai l-
able: https://openssf.lfprojects.
linuxfoundation.org/blog/2020/
11/06/security-scorecards-for-open
-source-projects/

8.	 S. Torres-Arias, H. Afzali , T.
K . Kuppusamy, R . Curtmola,
and J. Cappos, “in-toto: Provid-
ing farm-to-table guarantees for
bits and bytes,” in Proc. USENIX
Security Symp., Aug. 2019, pp.
1393–1410.

Write for the IEEE Computer
Society’s authoritative
computing publications
and conferences.

IEEE COMPUTER SOCIETY

Call for Papers

GET PUBLISHED
www.computer.org/cfp

Digital Object Identifier 10.1109/MSEC.2022.3199547

