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We review machine learning approaches for detecting (and correcting) vulnerabilities in source code, 
finding that the biggest challenges ahead involve agreeing to a benchmark, increasing language and error 
type coverage, and using pipelines that do not flatten the code’s structure. 

Traditionally, defects in source code have been discov-
ered by means of static and dynamic analysis tech-

niques. However, static analysis techniques are known to 
generate a high number of false positive (FP) findings,1 
while dynamic analysis tools are designed to underesti-
mate the number of defects in a program and therefore 
are prone to false negatives (FNs). Moreover, static anal-
ysis techniques might require significant computation 
resources, while dynamic analysis tools increase the size 
and execution time of a program. Hence, such techniques 
cannot always be seamlessly integrated into the continu-
ous delivery pipelines of today’s software projects.2,3

In this respect, machine learning (ML) techniques 
seem to have become a very attractive alternative to 
traditional software defect detection and correction 
techniques. In this article, we discuss a representa-
tive snapshot of the state-of-the-art research on the 

detection and correction of security defects through 
ML techniques. Given the rapidly increasing interest 
in ML applications in source code, several studies have 
started to apply ML for bug prediction. Some earlier 
reviews are presented in Table 1.

From Detection to Correction
To frame our work, we adopt the recent terminol-
ogy by Monperrus et al.4 For simplicity, we formulate 
detection as classification, while repair is formulated as 
generation. Realistically, not all approaches fit this pre-
cisely; for example, Hoppity [P15] uses the classifica-
tion of graph edit types to do repair. 

Automated defect detection is “a process of build-
ing classifiers to predict code areas that potentially con-
tain defects, using information such as code complexity 
and change history.”5 There have been several defect 
detection tools available in recent years, two of the 
bigger ones being Google’s Error Prone and SpotBugs 
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(formerly known as FindBugs). Such earlier works were 
usually frameworks on which checkers, consisting of 
manually defined heuristics, formal logical rules, and 
test oracles containing ground truth, could be built. 
They required a considerable amount of expert work 
and generated many FPs.

A logical next step from detection is automated cor-
rection, which tries “to automatically identify patches 
for a given bug that can then be applied with little, or 
possibly even without human intervention.”6 Com-
pared to detection, correction is a more ambitious goal, 
which has only recently emerged as a realistic research 
topic through the use of techniques previously applied 
to natural language. It often operates either by learning 
to translate from pairs of incorrect and correct programs 
(as one would translate between two languages, e.g., 

English and Dutch) or learning from correct examples 
and translating programs that deviate from that.

If we consider autonomous vulnerability detection 
and/or correction the end goal, we can see research in 
syntactic (i.e., the grammar of code) and semantic (i.e., 
the meaning of code) error detection and correction as 
stepping stones toward the end goal. Additionally, even 
if a tool is not primarily aimed at traditional vulnerabili-
ties, syntactic and semantic errors can introduce vulner-
abilities to code, which is why we discuss the three error 
types equally. Table 2 provides a concise dictionary of 
the relevant terms.

Enter ML for Source Code
Recent years have seen the emergence of ML for find-
ing vulnerabilities. A typical ML pipeline consists of 

Table 1. The surveys on ML, defect detection, and correction.

Authors Venue Survey type

Malhotra Applied Soft Computing (2014) ML techniques for software fault prediction, comparing the 
performance of ML to statistical techniques

Ghaffarian and 
Shahriari

ACM Computing Surveys (2018) Traditional ML and data mining techniques for vulnerability 
detection

Allamanis et al. ACM Computing Surveys (2018) ML used for source code and natural language translations

Ji et al. IEEE Conference on Dependable and Secure 
Computing (2018)

Autonomous cyberreasoning systems for detection, patching, 
and exploiting software vulnerabilities

Monperrus ACM Computing Surveys (2019) Automatic program repair techniques

Singh and Chaturvedi International Conference on Soft Computing: 
Theories and Applications (2020)

Deep learning techniques for vulnerability detection

Lin et al. Proceedings of the IEEE (2020) Vulnerability detection tools using deep neural networks

Shen et al. Security and Communication Networks 
(2020)

Vulnerability detection, program repair, and defect prediction 
methods that include binary code

Zeng et al. IEEE Access (2020) Deep learning software vulnerability discovery approaches

Table 2. The defect types.

Term Definition

Defect Also known as errors, bugs, and faults, defects are deviations between a program’s expected behavior and what 
actually happens.

Syntactic defects These are mistakes in the syntax of a program, i.e., the grammar and rules of the language. They are usually detected 
at compile time and runtime and prevent a program from running at all. Such problems, depending on the language, 
include missing brackets and semicolons, typos, indentation problems, and so on.

Semantic defects These are mistakes in the semantics of a program, i.e., its meaning and intended behavior. They result in programs 
that do not behave as intended but are not primarily a security concern. Such problems include inconsistent 
method names, variable misuse bugs, typing errors, application programming interface misuse, swapped 
arguments in functions, and so on.

Vulnerabilities Vulnerabilities form a particular set of semantic defects that can compromise the security of a system. Such 
problems include buffer overflows, integer overflows, cross-site scripting, use-after-free, and so on.
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several important stages: data collection and prepara-
tion, model training, and, finally, evaluation and deploy-
ment. (We assume that the reader is familiar with these 
steps, but to make the article self-contained, we report 
them in Table 3.) Typically, the tool is monitored, main-
tained, and improved after deployment, but this is out-
side the scope of this article.

ML models are generally not capable of ingesting 
the source code in its original format, so the code is 
processed and transformed into some low-level rep-
resentation appropriate for ML model input [e.g., 
vectors for neural networks (NNs)]. To preserve the 
semantic and syntactic properties of the program, it 
is useful to consider some intermediate interpreta-
tion that is capable of encoding such properties before 
feeding the program into the model. The three pre-
dominant approaches treat the source code as follows 
(roughly inspired by Chakraborty et al.7 and Shen and 
Chen8):

■■ Sequence of tokens: The raw source code is split into 
small units (e.g., “int,” “func,” “{,” and “}”) and pre-
sented to the model as such.

■■ Abstract syntax tree (AST): The syntactic structure of 
the program is captured by a tree representation, with 
each node of the tree denoting a construct occurring 
in the source code.

■■ Graphs: These can capture various syntactic and 
semantic relationships and properties of the source 
code through the edges and nodes of the graphs (e.g., 
control flow graphs9 and code property graphs10).

The three classes are a simplification for the purpose 
of synthesis. In practice, many of the tools use versions 
that blend the lines between representations. Addition-
ally, the classes do not reflect the full picture but rather 
the most widely used approaches. 

ML comes with a distinct set of challenges that 
need to be considered to produce reliable and use-
ful results. First, it is crucial to train the model on a 
high-quality data set. In general, this means a large 
enough, realistic data set with a representative distri-
bution of classes. For example, a model trained on a 
data set that contains an equal number of buggy and 
nonbuggy programs might not perform well when 
used in a real setting where the occurrence of bugs is 
significantly lower or different types of bugs occur. 
Problems with a data set can be mitigated to some 
extent in the later stages of the pipeline, but a strong 
data set is preferred.

Additionally, a common problem that surfaces when 
evaluating and replicating the results is overfitting, 
meaning that the model too closely fits the training data 
and does not show previous predictive power, often due 
to noisy data and overcomplicated models. Finally, the 
selection of relevant features is one of the most impor-
tant tasks of ML. It is important to consider the num-
ber of features—having more features is not necessarily  
better—and what information about the code they 
carry. The most recent deep learning-based approaches 
do not require manual feature selection but rather take 
advantage of the ability of the model to learn important 
features directly from the training data themselves.

The prediction of an ML model has four possible 
classification states, i.e., the confusion matrix: true 
positives (TPs), true negatives (TNs), FPs, and FNs. 
In our case, a TP could mean a buggy line of code 
that is correctly classified as a bug, and an FP could 
be a nonbuggy line of code that is wrongly classified 
as a bug.

Methodology
Our goal is to examine and present a representative 
snapshot of the state-of-the-art research and identify 

Table 3. The ML pipeline.

Stage Description

Data collection A sufficiently large and representative data set for the task is constructed.

Data preparation Data preparation consists of cleaning and sometimes labeling, feature engineering, and, finally, splitting into 
(nonoverlapping) subsets for training and testing. Ideally, the goal is to eliminate as much noise as possible to allow for 
better training. Additionally, it is important to select the most relevant features, which is often a nontrivial task.

Model training The training portion of the data set is used to create a model that will be able to distinguish erroneous code from 
correct code and optionally propose candidate corrections. Depending on the technique and type of model used, it 
is often necessary to adapt the parameters and retrain several models before achieving satisfactory results. Training is 
frequently the longest and computationally most expensive part.

Evaluation The model is evaluated on the test subset of data to determine if it exhibits the desired behaviors when presented 
with unseen data. At this stage, the model should be able to detect and optionally correct programming defects and 
can be deployed to be used.
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the trends and gaps. Adopting an agnostic starting 
point, we want to discover patterns without being 
biased by our own dispositions and conjectures. For 
this, we leverage the grounded theory approach widely 
used in empirical studies; this method allows hypoth-
eses to emerge from the data.

An initial set of 343 works was drawn from an 
online repository containing ML research on source 
code; the collection was created in the scope of Alla-
manis et al.11 and is actively maintained (https://
ml4code.github.io). To reflect the state-of-the-art 
techniques and considering that ML is rapidly evolv-
ing, we focus our review on papers from 2015 onward 
(322 papers out of 343). Additionally, we keep only 
the papers on defect detection and correction that 
use static analysis of the source code. We therefore 
exclude papers on topics such as synthesis, predic-
tion, recommendation, summarization, and so on 
as well as those discussing supporting techniques 
for defect detection, including testing, fuzzing, taint 
analysis, symbolic execution, defects in binary code, 
and so forth. 

Finally, we exclude papers without a proof of con-
cept or full ML pipeline. Papers that share large parts 
of the pipeline and adapt or discuss only one part 
of it are treated as one with the most representative 
paper included and discussed. After the removals, 
a set of 31 relevant papers emerges. To avoid biases 
and present a complete picture, we consider any 
additional relevant works referenced in the original 
set of papers and cross reference the works with top 
hits from Google Scholar. The final list consists of 40 
papers containing an end-to-end ML pipeline capa-
ble of either detecting or correcting defects in source 
code (see Table 4).

To facilitate the discovery of emerging patterns from 
data (i.e., the set of selected papers), we need to iden-
tify the defining characteristics of a defect correction/
detection tool. Our initial codes were heavily inspired 
by the characteristics discussed by related literature 
(see Table 1). The codes were first used to annotate a 
small portion of the selected papers to test their suit-
ability and completeness. Then we synchronized the 
resulting codebook among all the researchers involved 
in the study to identify a set of codes that captured the 
most important differences among the studies while 
ensuring that no part of the ML pipeline was left out. 
We performed this process iteratively until the code-
book became stable. Finally, after finalizing the full set 
of codes, we expanded the coding to the remainder of 
the papers. The coding and subsequent analysis were 
performed using Atlas.ti.

Code groups related to the abilities of tools include 
the following:

■■ Correction refers to the correction and detection abil-
ity of the tool.

■■ Defect type refers to the primary type of defect the tool 
targets. If a more advanced tool can simultaneously 
correct simpler mistakes (e.g., a semantic defect tool 
fixing misplaced brackets, which is a syntax mistake), 
we classify it according to the most advanced type of 
defect it can target.

■■ Representation refers to the main representation of the 
source code that is fed to the model as defined. This 
does not include further transformations inside the 
models but rather the initial information presented to 
the model.

■■ Language refers to the language the tool targets. If a 
tool can act in a language-agnostic way, we refer to the 
language of the data set that is tested.

Code groups that capture information about the 
data sets include the following:

■■ The type captures whether the data sets include buggy 
examples and, if bugs are present, whether buggy and 
nonbuggy examples are paired.

■■ The label captures whether the data set is labeled or 
unlabeled.

■■ Realism captures whether the programs and errors in 
the data set are taken from real applications or syn-
thetically produced.

■■ Availability captures whether the data set and/or tool 
are publicly available.

It is important to note that the type, label, and avail-
ability of the data set refer to the training data. When 
training is performed on data that do not have the same 
structure as the test subset, we describe the training 
data (e.g., correction tools that train only on nonbuggy 
examples). Additionally, when training data are col-
lected from a public data set but then modified in some 
way, we describe the modified version (e.g., a publicly 
available data set is injected with bugs). Table 5 presents 
the final codebook. It shows the identified code groups, 
the possible values for each, and illustrative examples 
taken from the source papers (an overview of the stud-
ies is also available on https://github.com/tmv200/
ml4code/blob/main/sota.yaml). 

Analysis of Recent Works
Table 6 provides an overview of the studies included in 
this review. Generally speaking, we can see (Figure 1) 
an increase in publications since 2015, signaling grow-
ing interest in the field. This holds for both detection 
and correction studies. Overall, the examined papers 
exhibit wide variety in goals and priorities, leading to a 
wealth of different approaches (Figure 2 and Table 7). 
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Table 4. The analyzed papers (correction).

[P1] P. Yewen, K. Narasimhan, A. Solar-Lezama, and R. Barzilay, “sk_p: A neural program corrector for MOOCs,” in Proc. Companion  
2016 SIGPLAN Int. Conf. Syst., Program., Languages Appl., Softw. Humanity, ACM, 2016, pp. 39–40, doi: 10.1145/2984043. 
2989222.

[P2] G. Rahul, S. Pal, A. Kanade, and S. Shevade, “DeepFix: Fixing common C language errors by deep learning,” in Proc. 31st Conf. Artif. 
Intell., 2017, pp. 1345–1351, doi: 10.5555/3298239.3298436.

[P3] S. Bhatia, P. Kohli, and R. Singh, “Neuro-symbolic program corrector for introductory programming assignments,” in Proc. 40th Int. 
Conf. Softw. Eng., 2018, pp. 60–70, doi: 10.1145/3180155.3180219.

[P4] J. Devlin, J. Uesato, R. Singh, and P. Kohli, “Semantic code repair using neuro-symbolic transformation networks,” in Proc. 6th Int. 
Conf. Learn. Representations, 2018, pp. 1–11.

[P5] J. Harer et al., “Learning to repair software vulnerabilities with generative adversarial networks,” in Proc. 32nd Conf. Neural Inf. 
Process. Syst., 2018, pp. 7944–7954, doi: 10.5555/3327757.3327890.

[P6] H. Hata, E. Shihab, and G. Neubig, “Learning to generate corrective patches using neural machine translation,” 2018, 
arXiv:1812.07170.

[P7] E. A. Santos, J. C. Campbell, D. Patel, A. Hindle, and J. N. Amaral, “Syntax and sensibility: Using language models to detect  
and correct syntax errors,” in Proc. 25th Int. Conf. Softw. Anal., Evol. Reeng., 2018, pp. 311–322, doi: 10.1109/SANER. 
2018.8330219.

[P8] Z. Chen, S. J. Kommrusch, M. Tufano, L.-N. Pouchet, D. Poshyvanyk, and M. Monperrus, “Sequencer: Sequence-to-
sequence learning for end-to-end program repair,” IEEE Trans. Softw. Eng., vol. 47, no. 9, pp. 1943–1959, 2019, doi: 10.1109/
TSE.2019.2940179.

[P9] R. Gupta, A. Kanade, and S. Shevade, “Deep reinforcement learning for syntactic error repair in student programs,” in Proc. 33rd 
Conf. Artif. Intell., 2019, pp. 930–937, doi: 10.1609/aaai.v33i01.3301930.

[P10] K. Liu et al., “Learning to spot and refactor inconsistent method names,” in Proc. 41st Int. Conf. Softw. Eng., 2019, pp. 1–12, doi: 
10.1109/ICSE.2019.00019.

[P11] A. Mesbah, A. Rice, E. Johnston, N. Glorioso, and E. Aftandilian, “DeepDelta: Learning to repair compilation errors,”  
presented at the 27th Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., 2019, pp. 925–936, doi: 10.1145/ 
3338906.3340455.

[P12] M. Tufano, C. Watson, G. Bavota, M. D. Penta, M. White, and D. Poshyvanyk, “An empirical study on learning bug-fixing 
patches in the wild via neural machine translation,” ACM Trans. Softw. Eng. Methodol., vol. 28, no. 4, pp. 1–29, 2019, doi: 
10.1145/3340544.

[P13] M. Vasic, A. Kanade, P. Maniatis, D. Bieber, and R. Singh, “Neural program repair by jointly learning to localize and repair,” in Proc. 
7th Int. Conf. Learn. Representations, 2019, pp. 1–12. 

[P14] M. White, M. Tufano, M. Martinez, M. Monperrus, and D. Poshyvanyk, “Sorting and transforming program repair ingredients 
via deep learning code similarities,” in Proc. 26th Int. Conf. Softw. Anal., Evol. Reeng., 2019, pp. 479–490, doi: 10.1109/
SANER.2019.8668043.

[P15] E. Dinella, H. Dai, Z. Li, M. Naik, L. Song, and K. Wang, “Hoppity: Learning graph transformations to detect and fix bugs in 
programs,” in Proc. 8th Int. Conf. Learn. Representations, 2020, pp. 1–17.

[P16] H. Hajipour, A. Bhattacharyya, and M. Fritz, “SampleFix: Learning to correct programs by efficient sampling of diverse fixes,” in 
Proc. Workshop Comput.-Assisted Program., ACM, 2020, pp. 1–10. 

[P17] Y. Li, S. Wang, and T. N. Nguyen, “DLFix: Context-based code transformation learning for automated program repair,” in Proc. 42nd 
Int. Conf. Softw. Eng., ACM/IEEE, 2020, pp. 602–614, doi: 10.1145/3377811.3380345.

[P18] D. Tarlow et al., “Learning to fix build errors with graph2diff neural networks,” in Proc. 42nd Int. Conf. Softw. Eng. Workshops, IEEE/
ACM, 2020, pp. 19–20, doi: 10.1145/3387940.3392181.

[P19] M. Yasunaga and P. Liang, “Graph-based, self-supervised program repair from diagnostic feed-back,” in Proc. 37st Int. Conf. Mach. 
Learn., 2020, pp. 10,799–10,808.

(Continued )
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Table 4. The analyzed papers (detection). (Continued )

[P20] S. Wang, and T. Liu, and L. Tan, “Automatically learning semantic features for defect prediction,” in Proc. 38th Int. Conf. Softw. Eng., 
IEEE/ACM, 2016, pp. 297–308, doi: 10.1145/2884781.2884804.

[P21] J. Li, P. He, J. Zhu, and M. Lyu, “Software defect prediction via convolutional neural network,” in Proc. Int. Conf. Softw. Qual., Rel. 
Secur., 2017, pp. 318–328, doi: 10.1109/QRS.2017.42. 

[P22] G. Lin, J. Zhang, W. Luo, L. Pan, and Y. Xiang, “POSTER: Vulnerability discovery with function representation learning from 
unlabeled projects,” in Proc. Conf. Comput. Commun. Secur., ACM, 2017, pp. 2539–2541, doi: 10.1145/3133956.3138840.

[P23] M. Pradel and K. Sen, “DeepBugs: A learning approach to name-based bug detection,” Proc. ACM Program. Languages, vol. 2, no. 
OOPSLA, pp. 1–25, 2018, doi: 10.1145/3276517.

[P24] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to represent programs with graphs,” in Proc. 6th Int. Conf. Learn. 
Representations, 2018, pp. 1–17. 

[P25] Z. Li et al., “VulDeePecker: A deep learning-based system for vulnerability detection,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2018, 
pp. 1–15.

[P26] R. Russell et al., “Automated vulnerability detection in source code using deep representation learning,” in Proc. 17th Int. Conf. 
Mach. Learn. Appl., 2018, pp. 757–762, doi: 10.1109/ICMLA.2018.00120.

[P27] D. Zou, S. Wang, S. Xu, Z. Li, and H. Jin, “μ-VulDeePecker: A deep learning-based system for multi-class vulnerability detection,” 
IEEE Trans. Dependable Secure Comput., vol. 18, no. 5, pp. 2224–2236, 2019, doi: 10.1109/TDSC.2019.2942930.

[P28] R. Gupta, A. Kanade, and S. Shevade, “Neural attribution for semantic bug-localization in student programs,” in Proc. 33rd Conf. 
Neural Inf. Process. Syst., ACM, 2019, 11,884-11,894. 

[P29] A. Habib and M. Pradel, “Neural bug finding: A study of opportunities and challenges,” 2019, arXiv:1906.00307.

[P30] Y. Li, S. Wang, T. N. Nguyen, and S. V. Nguyen, “Improving bug detection via context-based code representation learning and 
attention-based neural networks,” Proc. ACM Program. Languages, vol. 3, no. OOPSLA, pp. 1–30, 2019, doi: 10.1145/3360588.

[P31] N. Saccente, J. Dehlinger, L. Deng, S. Chakraborty, and Y. Xiong, “Project achilles: A prototype tool for static method-level 
vulnerability detection of java source code using a recurrent neural network,” in Proc. 34th Int. Conf. Autom. Softw. Eng. Workshop, 
IEEE/ACM, 2019, pp. 114–121, doi: 10.1109/ASEW.2019.00040.

[P32] X. Li, L. Wang, Y. Xin, Y. Yang, and Y. Chen, “Automated vulnerability detection in source code using minimum intermediate 
representation learning,” Appl. Sci., vol. 10, no. 5, p. 1692, 2020, doi: 10.3390/app10051692.

[P33] Z. Li, D. Zou, S. Xu, Z. Chen, Y. Zhu, and H. Jin, “VulDeeLocator: A deep learning-based fine-grained vulnerability detector,” IEEE 
Trans. Dependable Secure Comput., early access, 2020, doi: 10.1109/TDSC.2021.3076142.

[P34] P. Bian, B. Liang, J. Huang, W. Shi, X. Wang, and J. Zhang, “SinkFinder: Harvesting hundreds of unknown interesting function pairs 
with just one seed,” presented at the 28th Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., ACM, 2020, pp. 1101–
1113, doi: 10.1145/3368089.3409678.

[P35] J. A. Briem, J. Smit, H. Sellik, P. Rapoport, G. Gousios, and M. Aniche, “OffSide: Learning to identify mistakes in boundary 
conditions,” in Proc. 42nd Int. Conf. Softw. Eng. Workshops, IEEE/ACM, 2020, pp. 203–208, doi: 10.1145/3387940.3391464.

[P36] S. Suneja, Y. Zheng, Y. Zhuang, J. Laredo, and A. Morari, “Learning to map source code to software vulnerability using 
code-as-a-graph,” 2020, arXiv:2006.08614.

[P37] A. Tanwar, K. Sundaresan, P. Ashwath, P. Ganesan, S. K. Chandrasekaran, and S. Ravi, “Predicting vulnerability in large codebases 
with deep code representation,” 2020, arXiv:2004.12783.

[P38] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vulnerability identification by learning comprehensive program 
semantics via graph neural networks,” in Proc. 33rd Conf. Neural Inf. Process. Syst., ACM, 2020, pp. 10,197–10,207, doi: 
10.5555/3454287.3455202.

[P39] H. K. Dam, T. Tran, T. Pham, S. W. Ng, J. Grundy, and A. Ghose, “Automatic feature learning for predicting vulnerable software 
components,” IEEE Trans. Softw. Eng., vol. 47, no. 1, pp. 67–85, 2021, doi: 10.1109/TSE.2018.2881961.

[P40] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “SySeVR: A framework for using deep learning to detect software vulnerabilities,” 
IEEE Trans. Dependable Secure Comput., early access, 2021, doi: 10.1109/TDSC.2021.3051525.
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Table 5. The codebook.

Code group Code Description Example

Correction No Tool capable only of detecting defects Design and implementation of a 
deep learning-based vulnerability 
detection system [P25]

Yes Tool capable of correcting defects End-to-end solution ... that can fix 
multiple such errors in a program [P2]

Defect type Syntactic Tool targets syntax defects Algorithm ... for finding repairs to 
syntax errors [P3]

Semantic Tool targets semantic defects Addressing the issue of semantic 
program repair [P4]

Vulnerability Tool targets vulnerabilities System for vulnerability detection [P25]

Representation Tokens Source code represented as a sequence of tokens Model treats a program statement as a 
list of tokens [P1]

AST Source code represented as an abstract syntax tree Representations of ASTs [P22]

Graph Source code represented as a graph capturing 
additional semantic information (control flow 
graphs, data flow graphs, and so on)

Generates a system dependency graph 
for each training program [P27]

Language Python Tool evaluated on source code written in 
Python

From an introduction to programming 
in python course [P3]

C Tool evaluated on source code written in C/C++ Fixing common C language errors [P2]

Java Tool evaluated on source code written in Java Targeting Java source code [P6]

JavaScript Tool evaluated on source code written in 
JavaScript

Broad range of bugs in JavaScript 
programs [P15]

C# Tool evaluated on source code written in C# Open source C# projects on GitHub [P24]

Type No bug Tool trained on only nonbuggy source code Using language models trained on 
correct source code to find tokens 
that seem out of place [P7]

Bug + fixed Tool trained on paired examples of buggy and 
fixed code

A pair (p; p0), where p is an incorrect 
program and p0 is its correct version [P9]

Bug + no 
bug

Tool trained on unpaired examples of buggy 
and nonbuggy code 

Data set that contains 181,641 pieces of 
code; 138,522 are nonvulnerable (i.e., 
not known to contain vulnerabilities) 
and 43,119 are vulnerable [P27]

Label Yes Tool trained on labeled data A program is labeled as “good,” 
...“bad,” ... or “mixed” [P27]

No Tool trained on unlabeled data Self-supervised learning with 
unlabeled programs [P19]

Realism Real Data set consists of mostly real programs Javascript code change commits 
collected from Github [P15]

Semireal Data set consists of semirealistic code: real 
code injected with synthetic bugs, or simpler/
beginner code with real mistakes

Corpus of open source Python projects 
with synthetically injected bugs [P4] 
and C programs written by students 
for 93 different programming tasks [P2]

Synthetic Data set consists of mainly synthetic/academic 
code

Juliet Test Suite, with 81,000 
synthetic C/C++ and Java programs with 
known security vulnerabilities [P31]

Availability Yes Data set and/or tool are publicly available —

No Data set and/or tool are not publicly available —
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For conciseness, we leave out detailed descriptions and 
low-level comparisons among the approaches and focus 
on more general directions. 

Detection Versus Correction  
Ability and Defect Types

Observation 1. We find an almost equal split among 
the papers that focus only on detection and those 
also correcting defects. Twenty-one papers focus on 
detecting defects, while 19 can also correct them. In 
terms of the defects’ evolution over time, research 
into both types seems to be growing fast, as evident in 
Figure 1. The slight drop in publications of defect cor-
rection studies could be the consequence of a small 
sample size or an actual shift toward defect detection.

Observation 2. The papers mostly address seman-
tic defects and vulnerabilities; syntactic defects are 
less popular. Among them, vulnerabilities are only 
detected, whereas semantic and syntactic defects are 
often also corrected. Seven papers target syntactic 
defects, 15 focus on vulnerabilities, and 18 concentrate 
on semantic defects. Correction studies target mostly 
semantic (12) and syntactic (six) defects, while detec-
tion studies target mostly vulnerabilities (14) and 
semantic defects (six). Only a single correction study 
[P5] targets vulnerabilities, and one detection study 
[P29] focuses on syntactic defects.

Since defect detection often targets more complex 
problems, such as semantic bugs and vulnerabilities, 
many detection papers focus on a narrower array of prob-
lems or try to narrow the granularity. As such, DeepBugs 
[P23] targets only name-based semantic bugs, SinkFinder 
[P34] examines security-sensitive function pairs, and 
OffSide [P35] looks for boundary condition mistakes.

Among the correction papers, [P5] presented one of 
the first studies requiring no paired labeled examples for 
mapping from the buggy domain to the nonbuggy one. 
Sensibility [P7] was one of the first studies focusing 
on the correction of single token syntax defects across 
domains. DeepRepair [P14] builds on the idea of redun-
dancy, exploiting the fact that many programs contain 
seeds to their own repair. More advanced studies, such 
as Hoppity, [P15] use NNs for source code embedding 
and graph transformations to correct semantic mis-
takes. Graph2Diff [P18] and VarMisuseRepair [P13] 
both use pointers to locate the defect and a potential fix.

Source Code Representation

Observation 3. The majority of the studies use either 
ASTs or token representation, with graph represen-
tation being the least used. Despite the different 

representations, the input is commonly flattened when 
serving as input for an NN. AST representation is 
used by 23 papers, token representation appears in 21 
studies, and graph representation is employed by 11 
studies. The approaches can coexist, which is evident 
from studies that combine several representations: 12 
defect detection and two defect correction studies use 
some combination. The most common combination is 
AST–graph (seven), followed by AST–token (three), 
and graph–token (three). Zhou et al. [P38] use a com-
bination of all the three representations. With deep 
learning rising compared to other ML techniques, the 
need for manually defined “traditional” features is fall-
ing. Instead, NNs require input in the form of a vector. 
To achieve that, the previously described source code 
representations are commonly flattened into a vector 
(vectorized) [P10], [P25].

Observation 4. Correction papers mostly use ASTs and 
tokens, whereas detection studies use all three repre-
sentations. We can see a significant division in repre-
sentation approaches between detection and correction 
studies. Among the defect correction papers, the most 
common representation is tokens (12), followed by 
ASTs (eight). Only one correction study uses graph rep-
resentation [P19]. The split in representations is a bit 
more balanced among the detection-only papers: ASTs 
appear 15 times, graphs 10 times, and tokens nine times.

Observation 5. Different representations seem preferred 
by researchers for addressing varying types of defects, 
depending on the defect type targeted by a study. Tools 
targeting syntactic defects almost exclusively use token 
representation (seven), with a single paper adding 
graph representation [P19]. Papers aimed at semantic 
defects primarily use ASTs (14), followed by tokens 
(five) and graphs (four). The most variety in repre-
sentation comes from the vulnerability finding papers. 
Those use ASTs and tokens equally often (nine), with 
graphs employed slightly less frequently (six). Vulner-
ability finding studies also most commonly use a com-
bination of more than one representation.

Languages

Observation 6. The majority of the examined studies 
target C and Java, with only a few papers aimed at other 
languages. Within the examined works, five program-
ming languages are supported: C/C++ (17), Java (16), 
Python (four), JavaScript (two) and C# (one). Several 
of the featured studies aimed to be language and syn-
tax agnostic but were trained and tested only on a spe-
cific language. It is, however, commonly noted that such 
studies could be used on different languages through 
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minimal changes to the models and by retraining on a 
suitable data set.

Observation 7. We see a nonuniform distribution of 
goals across the examined languages both in terms of 
correction ability as well as targeted defect types. Look-
ing at correction ability, we notice that the majority of 
C studies (12) only detect defects, while five can cor-
rect them. Java is more balanced, with seven detection 

and nine correction studies. JavaScript has one paper 
for correction [P15] and one for detection [P23]. All 
four Python studies are capable of correction. Finally, 
the one examined C# paper [P24] can detect defects. 
Overall, the two most common are defect detecting  
C studies (12) and defect correcting Java studies (nine).

In terms of defect types, most of the C language stud-
ies target vulnerabilities (12), while the majority of Java 
papers target semantic defects (11). Python studies focus 
primarily on semantic defects (three), with one paper 
targeting syntactic defects. The two examined JavaS-
cript studies as well as the only C# study target semantic 
defects. There are no Python, JavaScript, or C# papers 
that focus on security vulnerabilities. Similarly, no JavaS-
cript or C# paper detects or corrects syntax defects.

ML Approaches/Models

Observation 8. Both defect detection and correction 
studies increasingly rely on NNs. The most commonly 
used model is the recurrent NN (RNN). Defect correc-
tion studies heavily borrow from natural language trans-
lation, often referred to as neural machine translation or 
sequence-to-sequence translation. This means that the 
majority of the models comes from the same domain, 
more specifically, RNNs that appear 16 times out of 
19 among defect correction papers. The most com-
mon method within the RNN family is long short-term 
memory (LSTM)—11 studies—which specifically 
targets the problem of long-term dependencies by 
enabling learning from context.

The most recent papers highlight the usefulness of 
NNs that are capable of understanding contexts since 
the presence of a defect can highly depend on that 
[P30]. Additionally, attention (focusing on the relevant 
parts of the code, depending on the context) helps such 
NNs learn long-distance relations to keep track of issues 
outside a narrow code segment. It is worth mention-
ing that despite perceived uniformity, most studies add 
their own spin to the method, leading to diverse final 
implementations.

Among defect detection papers, nine use RNNs, 
and four use convolutional NNs. Most of the remain-
ing papers still rely on some member of the NN fam-
ily [e.g., attention NNs, (gated) graph NNs, deep belief 
networks, and so on]. Similar to defect correction stud-
ies, methods that can learn from context, such as bidi-
rectional LSTM—five papers—and the gated recurrent 
unit—three papers—are popular due to their ability to 
take into account both future and past contexts [P25].

There is only slightly more variety in the defect 
detection world, where the task can (but does not need 
to) be logically split in two: embedding/feature extrac-
tion and classification. While the former is mostly 
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handled by a form of NN, the latter invites 
more experimentation. Some of the classifica-
tion methods include logistic regression, bags 
of words, random forests, and support vector 
machines. Despite some outliers, the task of 
detection also seems to be heading in the NN 
direction. The analyzed papers commonly 
attribute this to the NN’s ability to operate 
without explicit feature formation, capacity 
to understand contexts and keep some form 
of memory over time, and suitability for han-
dling texts and (a form of) language.

Data Sets

Observation 9. There is large disparity 
among data sets in terms of data set size 
and data unit size. The sizes of the data 
sets range from hundreds to millions of 
data units. Data units themselves (i.e., the 
source code snippets fed into the model) 
also range from full program files to meth-
ods, functions, code gadgets, and similar 
paper-specific granularities. We notice that 
the granularity of data points commonly 
coincides with the output granularity at 
which the tool is capable of spotting defects.

Observation 10. There are significant differ-
ences in source code complexity, realism, and 
origin. On the one hand, we have real source 
code (18 studies), often collected from Github 
and open source projects. On the other hand, 
we find eight papers that use primarily syn-
thetic data sets, which consist of shorter and 
cleaner code samples with “textbook” exam-
ples of errors. The remaining data sets fall 
somewhere in the middle, consisting of either 
real source code with artificially injected errors 
(four) or simple code segments and student 
assignments with genuine mistakes (eight). 
Two studies, Russell et al. [P26] and Suneja 
et al., [P36] separately train and evaluate on 
both real and synthetic data. Regardless of 
the realism, the studies often source their data 
from publicly available data sets and previous 
studies. Such data sets include the Software 
Assurance Reference Dataset, National Vulner-
ability Database, Juliet Test Suite, and Draper.

Observation 11. Correction tools mostly use 
real and semireal data, while detection tools use 
both real and synthetic data. Additionally, tools 
targeting vulnerabilities mostly employ synthetic Ta
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data sets; semireal data are common with syntactic errors and 
real data with semantic errors. Among the correction tools, 
real and semireal data sets are used equally often—nine 
times—with only one study using synthetic data sets. 
Detection-only tools primarily use realistic data (nine), 
but synthetic data sets are also popular (seven). Semireal-
istic data are the least popular among the error detection 
tools, with only three occurrences.

We also notice distinct patterns of data sets used for 
different types of errors. Synthetic data are almost exclu-
sively used in tools targeting vulnerabilities (seven). 
Semireal data are mostly harnessed in studies related to 
syntactic errors (six) and semantic errors (five) and less 
in studies related to vulnerabilities (one). Finally, real 
data are employed in semantic error (13) and vulner-
ability (five) studies but not in syntactic error studies.

Observation 12. The majority of data sets consists of 
bug fix pairs. We notice three distinct patterns in data 
set structure: data sets with bug fix pairs (31), data sets 
of unrelated buggy and nonbuggy examples (five), and 
data sets with no bugs (four). The latter are mostly 
used to teach a model the correct use of the language 
so that it is capable of discrimination and potentially 
translation when it encounters an unfamiliar code pat-
tern. The remaining two patterns help teach the model 
examples of good and bad behavior. The difference is 
that for defect correction, it is valuable to have examples 
of concrete fixes for a buggy example. This is commonly 
achieved by either collecting version histories (commits 
with fixes) from public repositories or artificially inject-
ing bugs to correct code. In case of defect detection, 
it is not crucial to have such pairs, so several data sets 
include examples of bugs and correct code but not nec-
essarily on the same piece of code.

Output and Performance

Observation 13. There is little uniformity among studies’ 
outputs in terms of granularity and error types a tool can 
target. We notice a significant variety of detection granu-
larity, ranging from simple binary classification (buggy 
versus nonbuggy) to method, function, and specific lines 
of code. For example, Dam et al. [P39] focus on file-level 
detection, VulDeePecker [P25] works on code gadget 
granularity, and Project Achilles [P31] concentrates on 
methods. An interesting goal was set by Zou et al. [P27] 
The authors attempted not only to recognize whether 
there was a vulnerability with fine granularity but also 
determine the vulnerability type. There are similar dif-
ferences among the correction studies that range from 
single token correction all the way to full code sections, 
sometimes as a single-step fix or as a collection of smaller 
steps with some form of correction checking in between.

There are also differences in how many different 
error types a tool can handle. Some tools are trained 
and tested on a smaller set of vulnerability types, which 
makes them narrow but comparatively high perform-
ing. Examples of such tools include SinkFinder, [P34] 
which looks for vulnerabilities in function pairs, such 
as lock/unlock; OffSide, [P35] which focuses on 
b o u n d ar y conditions; and VulDeePecker, [P25] 
which targets buffer and resource management error 
vulnerabilities. On the other hand, some tools target a 
wide range of errors, potentially at some performance 
cost. SySeVR, [P40] for example, targets 126 vulner-
ability types, and Project Achilles [P31] focuses on 29. 
It is worth mentioning that some tools train separate 
models for each type of error and evaluate a piece of 
code by passing it through each of the trained models 
separately to determine the probability of each of the 
vulnerabilities.

Observation 14. There are significant inconsistencies in 
the reporting of performance metrics. Studies using real 
data sets seems to perform worse than those using syn-
thetic data sets. We find that the studies differ greatly 
in their reporting of performance. The most commonly 
reported metrics include recall (reported in some form 
by 22 studies), the F1 score (16), accuracy (15), and 
precision (11). While detection-only tools tend to be 
more diligent in their reporting, the correction tools 
more commonly frame their results simply as “we could 
fix x out of y errors” without providing more detail. We 
find additional inconsistencies even among the studies 
that report the same metrics: some relay only the best 
performance, others provide average values, and others 
convey the full range.

Taking all this into account, it is uninformative, if 
not misleading, to directly compare performance across 
the papers. However, setting aside all nuances, we can 
cautiously draw some rough patterns from the metrics 
reported. Specifically, we find that studies using syn-
thetic data sets generally report higher metrics regard-
less of the other study properties (around 80–90% for 
all mentioned metrics), while studies using real and 
semireal data perform significantly worse (their accu-
racy and recall rarely exceed 60–70%), have wider 
ranges, and sometimes dip all the way down to 0–20%. 
Given the previously identified relations among cor-
rection ability, error type, and representation, the per-
formance across those categories is also affected by the 
realism of the data set.

An interesting insight into the effects of data set real-
ism is provided by Russell et al. [P26] and Suneja et al., 
[P36] who train and test their pipelines separately 
on real  and synthetic data sets. The two stud-
ies enable us to get a glimpse at the behavior of the 
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same tool when faced with different types of source 
code. Both papers exhibit the same pattern we 
obser ved :  the F1 score is significantly lower when 
realistic data are used. More specifically, the studies 
report F1 scores of 50–60% on real data and 70–90% 
for synthetic data.

Discussion
There are significant differences among the studies 
when it comes to the error types that are targeted, lead-
ing to different defect patterns and, consequently, repre-
sentation choices. All these seem to determine whether 
a tool will be able to 
automatically correct 
found bugs or only 
detect them. Argu-
ably, the simplest de-
fect type to catch is 
a syntactic one, with 
vulnerabilities being 
the most challenging. 
Seeing that most of 
the correction tools 
address the former, 
while detection tools 
largely address the latter, we can assume that effective 
correction is more difficult to achieve. With several de-
tection and correction tools targeting semantic defects, 
we speculate that such defects lie in the middle in terms 
of difficulty.

We can find additional support for such observa-
tions when looking at data set realism. Fully synthetic 
data sets are used primarily by vulnerability detection 
tools, suggesting that is not yet possible to detect real-
istic vulnerabilities “in the wild.” It is worth noting that 
some of the vulnerability detection tools use real-world 
projects and successfully catch vulnerabilities, but this 
cannot be effectively done on a large scale and without 
a high number of false classifications.

Tools targeting syntactic errors use semirealistic 
data, in particular, simple code snippets written by stu-
dents for beginner programming courses and that have 
genuine but simple mistakes. The use of such data sets 
seems only natural, as syntax problems are common 
with beginner programmers, who cannot yet catch and 
correct their mistakes. Finally, we find the use of real and 
semireal data with the tools aimed at semantic errors. 
The semireal data sets that were used mostly consist of 
realistic source code injected with artificial errors.

We see that the complexity of the used data set re-
flects common use cases as well as the complexity of 
the targeted error type, which is to be expected. For 
example, one does not expect to find many syntax 
bugs in Linux kernel, nor does it make sense to look 

for complex vulnerabilities in a student program that 
does not even compile. It seems that the performance 
goes hand-in-hand with the realism of the code. Gen-
erally, we find better performance with tools using 
synthetic data, even when the goal is more challeng-
ing (e.g., dozens of different vulnerability types). A 
similar pattern has been documented by Chakraborty 
et al.7 More research is required to confirm such pat-
terns, but present evidence highlights how crucial the 
use of appropriate, realistic, and well-labeled data is. 
The field should be wary of high-performance reports, 
especially when synthetic data sets are used, and work 

instead toward more 
realistic goals that 
will make tools prac-
tical in the real world.

Similar to the data 
sets, it is useful to 
consider the full pic-
ture when discussing 
tool output. It is not 
crucial to be given 
very specific output if 
the program consists 
of a dozen lines of 

code, whereas classifying a big project as vulnerable 
is next to useless if there is no way to determine where 
the problem lies. This is especially important for practi-
cal applications where the tools are applied on a large 
number of real-world projects. Overall, the importance 
of lower granularity and higher precision is recognized 
and often highlighted, with the trends moving toward 
more precise tools.

Patterns in source code representation seem to fol-
low defect type patterns and, in turn, the detection and 
correction goals. We see that the defect correcting tools 
can achieve the intended goal through the use of sim-
pler representations, while defect detecting tools use 
more advanced and combined representations. This 
further shows that tackling vulnerabilities and semantic 
defects is likely more challenging, so automatic correc-
tion on a large scale is not yet possible.

Sequence-of-tokens-based models are attractive 
because of their simplicity. They are especially useful for 
representing programs with syntactic defects in which 
constructing ASTs and control flow graphs is limited or 
not possible due to severe syntax problems. The simi-
larity to natural language makes it an attractive choice in 
sequence-to-sequence models, where the goal is defect 
correction by translating a problematic sequence into a 
syntactically correct one.

Overall, token-level representation is the most pop-
ular choice for defect correction tools. The challenge 
of this approach is the selection of the appropriate 

Arguably, the simplest defect type to catch 
is a syntactic one, with vulnerabilities being 

the most challenging.
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granularity and range of tokens. Depending on the type 
of bug that is targeted, a model can benefit from simple, 
stand-alone tokens and from grouped and more struc-
tured representation (code gadgets, functions, or some 
other syntactic or semantic unit).

Syntactic representation considers the ASTs of the 
source code, enabling a less flat view of the code. Such 
representations are larger in size and more difficult to 
construct but can capture lexical and syntactic code 
properties. They are often combined with recursive 
NNs and LSTM models. Their popularity lies mainly 
with defect detection tools, especially semantic defect 
and vulnerability detection. While ASTs are good at 
capturing the structure of the code, they do not cap-
ture the semantics and large and complex pieces of 
code very well.12 This is why ASTs are commonly sup-
ported by semantic representation capturing data and 
control flow information. The ability of graph mod-
els to capture more advanced semantic properties of 
code reflects itself in the use cases: they appear almost 
exclusively in tools targeting semantic defects and 
vulnerabilities.

Somewhat surprisingly, we observe a very unbal-
anced picture when it comes to the languages beyond 
C/C++ and Java. For example, we found that C#, JavaS-
cript, and Python lack tools aimed at detecting and cor-
recting vulnerabilities. The possible reason for prevalence 
of C/C++ and Java is that these languages are popular, 
well studied, and have large, open databases of known 
defects (both bugs and security vulnerabilities). How-
ever, considering the ever-growing popularity of C#, 
JavaScript, and Python, it becomes very important to 
develop the tools supporting them. This also extends 
to other popular languages that did not appear in  
the study.

A look at the ML methods highlights the fact that 
traditional ML approaches are more of a stepping stone 
toward a deep learning solution than solutions of their 
own. The reason likely lies in the fact that it is difficult 

to define the features that will sufficiently capture the 
semantics of the program. The main benefit of deep 
learning is its ability to ingest the source code itself (in 
an appropriate format) and create its own “features” to 
learn from.

Challenges and Future Directions
This article is motivated by the need to discover pat-
terns in the rapidly evolving field of ML for source 
code. Some of the challenges toward effective solu-
tions (Table 8) include access to and use of high-quality 
training data sets with realistic, representative, and cor-
rectly labeled data; effective source code representation 
capable of semantic understanding; standardization in 
terms of goals and reporting; detection and correction 
across domains; and catching application-specific bugs 
(in regard to semantic defects) and high FP rates. We 
briefly elaborate on some of these challenges.

There is significant variety in terms of data sets, goals, 
testing, and performance reporting. We believe the field 
would benefit from some degree of standardization, 
potentially in the form of a curated collection of open 
source data sets, together with some uniform goals for 
each defect type along with a test suite and benchmarks. 
Since a tool’s performance can heavily rely on the training 
data, stabilizing the data set would enable more precise 
evaluation of the tool itself rather than the training data. 
Such data sets would ideally consist of realistic source 
code with representative errors and high-quality label-
ing to increase the usability of the tools in the real world. 
The formalization, or at the very least, clear reporting, 
of goals (e.g., in terms of granularity and defect types) 
would also enable researchers in the field to get a clearer 
and more complete picture of the available tools.

Finally, there is a need for clearer and more com-
plete reporting of performance. One step in the right 
direction could be the reporting of the four basic met-
rics (TP, TN, FP, and FN), which facilitate the calcu-
lation of the remaining metrics. However, at the end 

Table 8. The key takeaways.

Finding Observation Challenge

Missing detection or correction tools for some 
language–defect combinations 

2 and 7 Expand correction and detection tools for all defect types

Variety of representation techniques but 
struggling to capture deeper properties of code; 
oversimplistic embeddings

4, 3, and 5 Advanced (semantic) representations and embeddings

Java and C/C++ most studied languages 6 Expand to more languages

Tool outputs not comparable 13 and 14 Formalize goals and metrics for tools and simplify output for developers

Vast differences in data sets and performance 9, 10, and 11 Collect, standardize high-quality, realistic, and representative data 
sets across all defect types and languages
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of the day, such metrics tell us little about the usabil-
ity of a tool to its intended users—the developers—
who should be more closely involved in the testing 
and evaluation. Future research in the domain should 
also consider expansions to other commonly used 
programming languages, improve defect localization 
precision, and provide a wider coverage of different 
defect types.

As mentioned, effective representation seems to be 
an active area of research, with more comprehensive 
approaches emerging, especially in the form of graph 
representations. A common go-to method for tools that 
do not invest into novel approaches seems to be the 
word-to-vector technique,13 which is primarily a simple 
token embedding technique. One then wonders: Why 
bother with all the complex representations to flatten 
everything at the end of the pipe? We are already seeing 
(and expect to see) a further rise in similar but more spe-
cialized x-to-vector-like vectorization techniques capa-
ble of capturing deeper properties of code and, as is the 
current trend, finding overfitting with the particular data 
set that is used.

Closely related to source code representation is the 
challenge of semantic understanding. A tool’s ability 
to detect more complex semantic defects and vulner-
abilities depends on its understanding of the source 
code. While syntax is finite, well defined, and therefore 
easier to understand and capture, the semantics of pro-
grams are harder to capture. As more tools attempt to 
tackle complex types of defects, the need for advanced 
representation will further increase. In this respect, 
graph-based representations capable of capturing com-
plex characteristics of the analyzed programs seem par-
ticularly promising.

Finally, the relatively small number of tools work-
ing with unlabeled data points shows that this is still a 
largely unexplored direction. It comes with the chal-
lenge of unsupervised learning, but at the same time, 
unlocks access to large data sets of unlabeled corpora, 
eliminating the need for synthetic bug introduction and 
manual self-labeling.  
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