
MACHINE LEARNING SECURITY AND PRIVACY

60	 September/October 2022   Copublished by the IEEE Computer and Reliability Societies �

Tina Marjanov  | Vrije Universiteit Amsterdam and University of Cambridge
Ivan Pashchenko  | TomTom
Fabio Massacci  | University of Trento and Vrije Universiteit Amsterdam

We review machine learning approaches for detecting (and correcting) vulnerabilities in source code,
finding that the biggest challenges ahead involve agreeing to a benchmark, increasing language and error
type coverage, and using pipelines that do not flatten the code’s structure.

Traditionally, defects in source code have been discov-
ered by means of static and dynamic analysis tech-

niques. However, static analysis techniques are known to
generate a high number of false positive (FP) findings,1
while dynamic analysis tools are designed to underesti-
mate the number of defects in a program and therefore
are prone to false negatives (FNs). Moreover, static anal-
ysis techniques might require significant computation
resources, while dynamic analysis tools increase the size
and execution time of a program. Hence, such techniques
cannot always be seamlessly integrated into the continu-
ous delivery pipelines of today’s software projects.2,3

In this respect, machine learning (ML) techniques
seem to have become a very attractive alternative to
traditional software defect detection and correction
techniques. In this article, we discuss a representa-
tive snapshot of the state-of-the-art research on the

detection and correction of security defects through
ML techniques. Given the rapidly increasing interest
in ML applications in source code, several studies have
started to apply ML for bug prediction. Some earlier
reviews are presented in Table 1.

From Detection to Correction
To frame our work, we adopt the recent terminol-
ogy by Monperrus et al.4 For simplicity, we formulate
detection as classification, while repair is formulated as
generation. Realistically, not all approaches fit this pre-
cisely; for example, Hoppity [P15] uses the classifica-
tion of graph edit types to do repair.

Automated defect detection is “a process of build-
ing classifiers to predict code areas that potentially con-
tain defects, using information such as code complexity
and change history.”5 There have been several defect
detection tools available in recent years, two of the
bigger ones being Google’s Error Prone and SpotBugs

Machine Learning for Source Code
Vulnerability Detection:
What Works and What Isn’t There Yet

Digital Object Identifier 10.1109/MSEC.2022.3176058
Date of current version: 18 August 2022

This work is licensed under a Creative
Commons Attribution 4.0 License. For more information,

see https://creativecommons.org/licenses/by/4.0/

http://orcid.org/0000-0003-4225-9590
http://orcid.org/0000-0001-8202-576X
http://orcid.org/0000-0002-1091-8486

www.computer.org/security� 61

(formerly known as FindBugs). Such earlier works were
usually frameworks on which checkers, consisting of
manually defined heuristics, formal logical rules, and
test oracles containing ground truth, could be built.
They required a considerable amount of expert work
and generated many FPs.

A logical next step from detection is automated cor-
rection, which tries “to automatically identify patches
for a given bug that can then be applied with little, or
possibly even without human intervention.”6 Com-
pared to detection, correction is a more ambitious goal,
which has only recently emerged as a realistic research
topic through the use of techniques previously applied
to natural language. It often operates either by learning
to translate from pairs of incorrect and correct programs
(as one would translate between two languages, e.g.,

English and Dutch) or learning from correct examples
and translating programs that deviate from that.

If we consider autonomous vulnerability detection
and/or correction the end goal, we can see research in
syntactic (i.e., the grammar of code) and semantic (i.e.,
the meaning of code) error detection and correction as
stepping stones toward the end goal. Additionally, even
if a tool is not primarily aimed at traditional vulnerabili-
ties, syntactic and semantic errors can introduce vulner-
abilities to code, which is why we discuss the three error
types equally. Table 2 provides a concise dictionary of
the relevant terms.

Enter ML for Source Code
Recent years have seen the emergence of ML for find-
ing vulnerabilities. A typical ML pipeline consists of

Table 1. The surveys on ML, defect detection, and correction.

Authors Venue Survey type

Malhotra Applied Soft Computing (2014) ML techniques for software fault prediction, comparing the
performance of ML to statistical techniques

Ghaffarian and
Shahriari

ACM Computing Surveys (2018) Traditional ML and data mining techniques for vulnerability
detection

Allamanis et al. ACM Computing Surveys (2018) ML used for source code and natural language translations

Ji et al. IEEE Conference on Dependable and Secure
Computing (2018)

Autonomous cyberreasoning systems for detection, patching,
and exploiting software vulnerabilities

Monperrus ACM Computing Surveys (2019) Automatic program repair techniques

Singh and Chaturvedi International Conference on Soft Computing:
Theories and Applications (2020)

Deep learning techniques for vulnerability detection

Lin et al. Proceedings of the IEEE (2020) Vulnerability detection tools using deep neural networks

Shen et al. Security and Communication Networks
(2020)

Vulnerability detection, program repair, and defect prediction
methods that include binary code

Zeng et al. IEEE Access (2020) Deep learning software vulnerability discovery approaches

Table 2. The defect types.

Term Definition

Defect Also known as errors, bugs, and faults, defects are deviations between a program’s expected behavior and what
actually happens.

Syntactic defects These are mistakes in the syntax of a program, i.e., the grammar and rules of the language. They are usually detected
at compile time and runtime and prevent a program from running at all. Such problems, depending on the language,
include missing brackets and semicolons, typos, indentation problems, and so on.

Semantic defects These are mistakes in the semantics of a program, i.e., its meaning and intended behavior. They result in programs
that do not behave as intended but are not primarily a security concern. Such problems include inconsistent
method names, variable misuse bugs, typing errors, application programming interface misuse, swapped
arguments in functions, and so on.

Vulnerabilities Vulnerabilities form a particular set of semantic defects that can compromise the security of a system. Such
problems include buffer overflows, integer overflows, cross-site scripting, use-after-free, and so on.

62	 IEEE Security & Privacy� September/October 2022

MACHINE LEARNING SECURITY AND PRIVACY

several important stages: data collection and prepara-
tion, model training, and, finally, evaluation and deploy-
ment. (We assume that the reader is familiar with these
steps, but to make the article self-contained, we report
them in Table 3.) Typically, the tool is monitored, main-
tained, and improved after deployment, but this is out-
side the scope of this article.

ML models are generally not capable of ingesting
the source code in its original format, so the code is
processed and transformed into some low-level rep-
resentation appropriate for ML model input [e.g.,
vectors for neural networks (NNs)]. To preserve the
semantic and syntactic properties of the program, it
is useful to consider some intermediate interpreta-
tion that is capable of encoding such properties before
feeding the program into the model. The three pre-
dominant approaches treat the source code as follows
(roughly inspired by Chakraborty et al.7 and Shen and
Chen8):

■■ Sequence of tokens: The raw source code is split into
small units (e.g., “int,” “func,” “{,” and “}”) and pre-
sented to the model as such.

■■ Abstract syntax tree (AST): The syntactic structure of
the program is captured by a tree representation, with
each node of the tree denoting a construct occurring
in the source code.

■■ Graphs: These can capture various syntactic and
semantic relationships and properties of the source
code through the edges and nodes of the graphs (e.g.,
control flow graphs9 and code property graphs10).

The three classes are a simplification for the purpose
of synthesis. In practice, many of the tools use versions
that blend the lines between representations. Addition-
ally, the classes do not reflect the full picture but rather
the most widely used approaches.

ML comes with a distinct set of challenges that
need to be considered to produce reliable and use-
ful results. First, it is crucial to train the model on a
high-quality data set. In general, this means a large
enough, realistic data set with a representative distri-
bution of classes. For example, a model trained on a
data set that contains an equal number of buggy and
nonbuggy programs might not perform well when
used in a real setting where the occurrence of bugs is
significantly lower or different types of bugs occur.
Problems with a data set can be mitigated to some
extent in the later stages of the pipeline, but a strong
data set is preferred.

Additionally, a common problem that surfaces when
evaluating and replicating the results is overfitting,
meaning that the model too closely fits the training data
and does not show previous predictive power, often due
to noisy data and overcomplicated models. Finally, the
selection of relevant features is one of the most impor-
tant tasks of ML. It is important to consider the num-
ber of features—having more features is not necessarily
better—and what information about the code they
carry. The most recent deep learning-based approaches
do not require manual feature selection but rather take
advantage of the ability of the model to learn important
features directly from the training data themselves.

The prediction of an ML model has four possible
classification states, i.e., the confusion matrix: true
positives (TPs), true negatives (TNs), FPs, and FNs.
In our case, a TP could mean a buggy line of code
that is correctly classified as a bug, and an FP could
be a nonbuggy line of code that is wrongly classified
as a bug.

Methodology
Our goal is to examine and present a representative
snapshot of the state-of-the-art research and identify

Table 3. The ML pipeline.

Stage Description

Data collection A sufficiently large and representative data set for the task is constructed.

Data preparation Data preparation consists of cleaning and sometimes labeling, feature engineering, and, finally, splitting into
(nonoverlapping) subsets for training and testing. Ideally, the goal is to eliminate as much noise as possible to allow for
better training. Additionally, it is important to select the most relevant features, which is often a nontrivial task.

Model training The training portion of the data set is used to create a model that will be able to distinguish erroneous code from
correct code and optionally propose candidate corrections. Depending on the technique and type of model used, it
is often necessary to adapt the parameters and retrain several models before achieving satisfactory results. Training is
frequently the longest and computationally most expensive part.

Evaluation The model is evaluated on the test subset of data to determine if it exhibits the desired behaviors when presented
with unseen data. At this stage, the model should be able to detect and optionally correct programming defects and
can be deployed to be used.

www.computer.org/security� 63

the trends and gaps. Adopting an agnostic starting
point, we want to discover patterns without being
biased by our own dispositions and conjectures. For
this, we leverage the grounded theory approach widely
used in empirical studies; this method allows hypoth-
eses to emerge from the data.

An initial set of 343 works was drawn from an
online repository containing ML research on source
code; the collection was created in the scope of Alla-
manis et al.11 and is actively maintained (https://
ml4code.github.io). To reflect the state-of-the-art
techniques and considering that ML is rapidly evolv-
ing, we focus our review on papers from 2015 onward
(322 papers out of 343). Additionally, we keep only
the papers on defect detection and correction that
use static analysis of the source code. We therefore
exclude papers on topics such as synthesis, predic-
tion, recommendation, summarization, and so on
as well as those discussing supporting techniques
for defect detection, including testing, fuzzing, taint
analysis, symbolic execution, defects in binary code,
and so forth.

Finally, we exclude papers without a proof of con-
cept or full ML pipeline. Papers that share large parts
of the pipeline and adapt or discuss only one part
of it are treated as one with the most representative
paper included and discussed. After the removals,
a set of 31 relevant papers emerges. To avoid biases
and present a complete picture, we consider any
additional relevant works referenced in the original
set of papers and cross reference the works with top
hits from Google Scholar. The final list consists of 40
papers containing an end-to-end ML pipeline capa-
ble of either detecting or correcting defects in source
code (see Table 4).

To facilitate the discovery of emerging patterns from
data (i.e., the set of selected papers), we need to iden-
tify the defining characteristics of a defect correction/
detection tool. Our initial codes were heavily inspired
by the characteristics discussed by related literature
(see Table 1). The codes were first used to annotate a
small portion of the selected papers to test their suit-
ability and completeness. Then we synchronized the
resulting codebook among all the researchers involved
in the study to identify a set of codes that captured the
most important differences among the studies while
ensuring that no part of the ML pipeline was left out.
We performed this process iteratively until the code-
book became stable. Finally, after finalizing the full set
of codes, we expanded the coding to the remainder of
the papers. The coding and subsequent analysis were
performed using Atlas.ti.

Code groups related to the abilities of tools include
the following:

■■ Correction refers to the correction and detection abil-
ity of the tool.

■■ Defect type refers to the primary type of defect the tool
targets. If a more advanced tool can simultaneously
correct simpler mistakes (e.g., a semantic defect tool
fixing misplaced brackets, which is a syntax mistake),
we classify it according to the most advanced type of
defect it can target.

■■ Representation refers to the main representation of the
source code that is fed to the model as defined. This
does not include further transformations inside the
models but rather the initial information presented to
the model.

■■ Language refers to the language the tool targets. If a
tool can act in a language-agnostic way, we refer to the
language of the data set that is tested.

Code groups that capture information about the
data sets include the following:

■■ The type captures whether the data sets include buggy
examples and, if bugs are present, whether buggy and
nonbuggy examples are paired.

■■ The label captures whether the data set is labeled or
unlabeled.

■■ Realism captures whether the programs and errors in
the data set are taken from real applications or syn-
thetically produced.

■■ Availability captures whether the data set and/or tool
are publicly available.

It is important to note that the type, label, and avail-
ability of the data set refer to the training data. When
training is performed on data that do not have the same
structure as the test subset, we describe the training
data (e.g., correction tools that train only on nonbuggy
examples). Additionally, when training data are col-
lected from a public data set but then modified in some
way, we describe the modified version (e.g., a publicly
available data set is injected with bugs). Table 5 presents
the final codebook. It shows the identified code groups,
the possible values for each, and illustrative examples
taken from the source papers (an overview of the stud-
ies is also available on https://github.com/tmv200/
ml4code/blob/main/sota.yaml).

Analysis of Recent Works
Table 6 provides an overview of the studies included in
this review. Generally speaking, we can see (Figure 1)
an increase in publications since 2015, signaling grow-
ing interest in the field. This holds for both detection
and correction studies. Overall, the examined papers
exhibit wide variety in goals and priorities, leading to a
wealth of different approaches (Figure 2 and Table 7).

64	 IEEE Security & Privacy� September/October 2022

MACHINE LEARNING SECURITY AND PRIVACY

Table 4. The analyzed papers (correction).

[P1] P. Yewen, K. Narasimhan, A. Solar-Lezama, and R. Barzilay, “sk_p: A neural program corrector for MOOCs,” in Proc. Companion
2016 SIGPLAN Int. Conf. Syst., Program., Languages Appl., Softw. Humanity, ACM, 2016, pp. 39–40, doi: 10.1145/2984043.
2989222.

[P2] G. Rahul, S. Pal, A. Kanade, and S. Shevade, “DeepFix: Fixing common C language errors by deep learning,” in Proc. 31st Conf. Artif.
Intell., 2017, pp. 1345–1351, doi: 10.5555/3298239.3298436.

[P3] S. Bhatia, P. Kohli, and R. Singh, “Neuro-symbolic program corrector for introductory programming assignments,” in Proc. 40th Int.
Conf. Softw. Eng., 2018, pp. 60–70, doi: 10.1145/3180155.3180219.

[P4] J. Devlin, J. Uesato, R. Singh, and P. Kohli, “Semantic code repair using neuro-symbolic transformation networks,” in Proc. 6th Int.
Conf. Learn. Representations, 2018, pp. 1–11.

[P5] J. Harer et al., “Learning to repair software vulnerabilities with generative adversarial networks,” in Proc. 32nd Conf. Neural Inf.
Process. Syst., 2018, pp. 7944–7954, doi: 10.5555/3327757.3327890.

[P6] H. Hata, E. Shihab, and G. Neubig, “Learning to generate corrective patches using neural machine translation,” 2018,
arXiv:1812.07170.

[P7] E. A. Santos, J. C. Campbell, D. Patel, A. Hindle, and J. N. Amaral, “Syntax and sensibility: Using language models to detect
and correct syntax errors,” in Proc. 25th Int. Conf. Softw. Anal., Evol. Reeng., 2018, pp. 311–322, doi: 10.1109/SANER.
2018.8330219.

[P8] Z. Chen, S. J. Kommrusch, M. Tufano, L.-N. Pouchet, D. Poshyvanyk, and M. Monperrus, “Sequencer: Sequence-to-
sequence learning for end-to-end program repair,” IEEE Trans. Softw. Eng., vol. 47, no. 9, pp. 1943–1959, 2019, doi: 10.1109/
TSE.2019.2940179.

[P9] R. Gupta, A. Kanade, and S. Shevade, “Deep reinforcement learning for syntactic error repair in student programs,” in Proc. 33rd
Conf. Artif. Intell., 2019, pp. 930–937, doi: 10.1609/aaai.v33i01.3301930.

[P10] K. Liu et al., “Learning to spot and refactor inconsistent method names,” in Proc. 41st Int. Conf. Softw. Eng., 2019, pp. 1–12, doi:
10.1109/ICSE.2019.00019.

[P11] A. Mesbah, A. Rice, E. Johnston, N. Glorioso, and E. Aftandilian, “DeepDelta: Learning to repair compilation errors,”
presented at the 27th Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., 2019, pp. 925–936, doi: 10.1145/
3338906.3340455.

[P12] M. Tufano, C. Watson, G. Bavota, M. D. Penta, M. White, and D. Poshyvanyk, “An empirical study on learning bug-fixing
patches in the wild via neural machine translation,” ACM Trans. Softw. Eng. Methodol., vol. 28, no. 4, pp. 1–29, 2019, doi:
10.1145/3340544.

[P13] M. Vasic, A. Kanade, P. Maniatis, D. Bieber, and R. Singh, “Neural program repair by jointly learning to localize and repair,” in Proc.
7th Int. Conf. Learn. Representations, 2019, pp. 1–12.

[P14] M. White, M. Tufano, M. Martinez, M. Monperrus, and D. Poshyvanyk, “Sorting and transforming program repair ingredients
via deep learning code similarities,” in Proc. 26th Int. Conf. Softw. Anal., Evol. Reeng., 2019, pp. 479–490, doi: 10.1109/
SANER.2019.8668043.

[P15] E. Dinella, H. Dai, Z. Li, M. Naik, L. Song, and K. Wang, “Hoppity: Learning graph transformations to detect and fix bugs in
programs,” in Proc. 8th Int. Conf. Learn. Representations, 2020, pp. 1–17.

[P16] H. Hajipour, A. Bhattacharyya, and M. Fritz, “SampleFix: Learning to correct programs by efficient sampling of diverse fixes,” in
Proc. Workshop Comput.-Assisted Program., ACM, 2020, pp. 1–10.

[P17] Y. Li, S. Wang, and T. N. Nguyen, “DLFix: Context-based code transformation learning for automated program repair,” in Proc. 42nd
Int. Conf. Softw. Eng., ACM/IEEE, 2020, pp. 602–614, doi: 10.1145/3377811.3380345.

[P18] D. Tarlow et al., “Learning to fix build errors with graph2diff neural networks,” in Proc. 42nd Int. Conf. Softw. Eng. Workshops, IEEE/
ACM, 2020, pp. 19–20, doi: 10.1145/3387940.3392181.

[P19] M. Yasunaga and P. Liang, “Graph-based, self-supervised program repair from diagnostic feed-back,” in Proc. 37st Int. Conf. Mach.
Learn., 2020, pp. 10,799–10,808.

(Continued )

www.computer.org/security� 65

Table 4. The analyzed papers (detection). (Continued )

[P20] S. Wang, and T. Liu, and L. Tan, “Automatically learning semantic features for defect prediction,” in Proc. 38th Int. Conf. Softw. Eng.,
IEEE/ACM, 2016, pp. 297–308, doi: 10.1145/2884781.2884804.

[P21] J. Li, P. He, J. Zhu, and M. Lyu, “Software defect prediction via convolutional neural network,” in Proc. Int. Conf. Softw. Qual., Rel.
Secur., 2017, pp. 318–328, doi: 10.1109/QRS.2017.42.

[P22] G. Lin, J. Zhang, W. Luo, L. Pan, and Y. Xiang, “POSTER: Vulnerability discovery with function representation learning from
unlabeled projects,” in Proc. Conf. Comput. Commun. Secur., ACM, 2017, pp. 2539–2541, doi: 10.1145/3133956.3138840.

[P23] M. Pradel and K. Sen, “DeepBugs: A learning approach to name-based bug detection,” Proc. ACM Program. Languages, vol. 2, no.
OOPSLA, pp. 1–25, 2018, doi: 10.1145/3276517.

[P24] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to represent programs with graphs,” in Proc. 6th Int. Conf. Learn.
Representations, 2018, pp. 1–17.

[P25] Z. Li et al., “VulDeePecker: A deep learning-based system for vulnerability detection,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2018,
pp. 1–15.

[P26] R. Russell et al., “Automated vulnerability detection in source code using deep representation learning,” in Proc. 17th Int. Conf.
Mach. Learn. Appl., 2018, pp. 757–762, doi: 10.1109/ICMLA.2018.00120.

[P27] D. Zou, S. Wang, S. Xu, Z. Li, and H. Jin, “μ-VulDeePecker: A deep learning-based system for multi-class vulnerability detection,”
IEEE Trans. Dependable Secure Comput., vol. 18, no. 5, pp. 2224–2236, 2019, doi: 10.1109/TDSC.2019.2942930.

[P28] R. Gupta, A. Kanade, and S. Shevade, “Neural attribution for semantic bug-localization in student programs,” in Proc. 33rd Conf.
Neural Inf. Process. Syst., ACM, 2019, 11,884-11,894.

[P29] A. Habib and M. Pradel, “Neural bug finding: A study of opportunities and challenges,” 2019, arXiv:1906.00307.

[P30] Y. Li, S. Wang, T. N. Nguyen, and S. V. Nguyen, “Improving bug detection via context-based code representation learning and
attention-based neural networks,” Proc. ACM Program. Languages, vol. 3, no. OOPSLA, pp. 1–30, 2019, doi: 10.1145/3360588.

[P31] N. Saccente, J. Dehlinger, L. Deng, S. Chakraborty, and Y. Xiong, “Project achilles: A prototype tool for static method-level
vulnerability detection of java source code using a recurrent neural network,” in Proc. 34th Int. Conf. Autom. Softw. Eng. Workshop,
IEEE/ACM, 2019, pp. 114–121, doi: 10.1109/ASEW.2019.00040.

[P32] X. Li, L. Wang, Y. Xin, Y. Yang, and Y. Chen, “Automated vulnerability detection in source code using minimum intermediate
representation learning,” Appl. Sci., vol. 10, no. 5, p. 1692, 2020, doi: 10.3390/app10051692.

[P33] Z. Li, D. Zou, S. Xu, Z. Chen, Y. Zhu, and H. Jin, “VulDeeLocator: A deep learning-based fine-grained vulnerability detector,” IEEE
Trans. Dependable Secure Comput., early access, 2020, doi: 10.1109/TDSC.2021.3076142.

[P34] P. Bian, B. Liang, J. Huang, W. Shi, X. Wang, and J. Zhang, “SinkFinder: Harvesting hundreds of unknown interesting function pairs
with just one seed,” presented at the 28th Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., ACM, 2020, pp. 1101–
1113, doi: 10.1145/3368089.3409678.

[P35] J. A. Briem, J. Smit, H. Sellik, P. Rapoport, G. Gousios, and M. Aniche, “OffSide: Learning to identify mistakes in boundary
conditions,” in Proc. 42nd Int. Conf. Softw. Eng. Workshops, IEEE/ACM, 2020, pp. 203–208, doi: 10.1145/3387940.3391464.

[P36] S. Suneja, Y. Zheng, Y. Zhuang, J. Laredo, and A. Morari, “Learning to map source code to software vulnerability using
code-as-a-graph,” 2020, arXiv:2006.08614.

[P37] A. Tanwar, K. Sundaresan, P. Ashwath, P. Ganesan, S. K. Chandrasekaran, and S. Ravi, “Predicting vulnerability in large codebases
with deep code representation,” 2020, arXiv:2004.12783.

[P38] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vulnerability identification by learning comprehensive program
semantics via graph neural networks,” in Proc. 33rd Conf. Neural Inf. Process. Syst., ACM, 2020, pp. 10,197–10,207, doi:
10.5555/3454287.3455202.

[P39] H. K. Dam, T. Tran, T. Pham, S. W. Ng, J. Grundy, and A. Ghose, “Automatic feature learning for predicting vulnerable software
components,” IEEE Trans. Softw. Eng., vol. 47, no. 1, pp. 67–85, 2021, doi: 10.1109/TSE.2018.2881961.

[P40] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “SySeVR: A framework for using deep learning to detect software vulnerabilities,”
IEEE Trans. Dependable Secure Comput., early access, 2021, doi: 10.1109/TDSC.2021.3051525.

66	 IEEE Security & Privacy� September/October 2022

MACHINE LEARNING SECURITY AND PRIVACY

Table 5. The codebook.

Code group Code Description Example

Correction No Tool capable only of detecting defects Design and implementation of a
deep learning-based vulnerability
detection system [P25]

Yes Tool capable of correcting defects End-to-end solution ... that can fix
multiple such errors in a program [P2]

Defect type Syntactic Tool targets syntax defects Algorithm ... for finding repairs to
syntax errors [P3]

Semantic Tool targets semantic defects Addressing the issue of semantic
program repair [P4]

Vulnerability Tool targets vulnerabilities System for vulnerability detection [P25]

Representation Tokens Source code represented as a sequence of tokens Model treats a program statement as a
list of tokens [P1]

AST Source code represented as an abstract syntax tree Representations of ASTs [P22]

Graph Source code represented as a graph capturing
additional semantic information (control flow
graphs, data flow graphs, and so on)

Generates a system dependency graph
for each training program [P27]

Language Python Tool evaluated on source code written in
Python

From an introduction to programming
in python course [P3]

C Tool evaluated on source code written in C/C++ Fixing common C language errors [P2]

Java Tool evaluated on source code written in Java Targeting Java source code [P6]

JavaScript Tool evaluated on source code written in
JavaScript

Broad range of bugs in JavaScript
programs [P15]

C# Tool evaluated on source code written in C# Open source C# projects on GitHub [P24]

Type No bug Tool trained on only nonbuggy source code Using language models trained on
correct source code to find tokens
that seem out of place [P7]

Bug + fixed Tool trained on paired examples of buggy and
fixed code

A pair (p; p0), where p is an incorrect
program and p0 is its correct version [P9]

Bug + no
bug

Tool trained on unpaired examples of buggy
and nonbuggy code

Data set that contains 181,641 pieces of
code; 138,522 are nonvulnerable (i.e.,
not known to contain vulnerabilities)
and 43,119 are vulnerable [P27]

Label Yes Tool trained on labeled data A program is labeled as “good,”
...“bad,” ... or “mixed” [P27]

No Tool trained on unlabeled data Self-supervised learning with
unlabeled programs [P19]

Realism Real Data set consists of mostly real programs Javascript code change commits
collected from Github [P15]

Semireal Data set consists of semirealistic code: real
code injected with synthetic bugs, or simpler/
beginner code with real mistakes

Corpus of open source Python projects
with synthetically injected bugs [P4]
and C programs written by students
for 93 different programming tasks [P2]

Synthetic Data set consists of mainly synthetic/academic
code

Juliet Test Suite, with 81,000
synthetic C/C++ and Java programs with
known security vulnerabilities [P31]

Availability Yes Data set and/or tool are publicly available —

No Data set and/or tool are not publicly available —

www.computer.org/security� 67

For conciseness, we leave out detailed descriptions and
low-level comparisons among the approaches and focus
on more general directions.

Detection Versus Correction
Ability and Defect Types

Observation 1. We find an almost equal split among
the papers that focus only on detection and those
also correcting defects. Twenty-one papers focus on
detecting defects, while 19 can also correct them. In
terms of the defects’ evolution over time, research
into both types seems to be growing fast, as evident in
Figure 1. The slight drop in publications of defect cor-
rection studies could be the consequence of a small
sample size or an actual shift toward defect detection.

Observation 2. The papers mostly address seman-
tic defects and vulnerabilities; syntactic defects are
less popular. Among them, vulnerabilities are only
detected, whereas semantic and syntactic defects are
often also corrected. Seven papers target syntactic
defects, 15 focus on vulnerabilities, and 18 concentrate
on semantic defects. Correction studies target mostly
semantic (12) and syntactic (six) defects, while detec-
tion studies target mostly vulnerabilities (14) and
semantic defects (six). Only a single correction study
[P5] targets vulnerabilities, and one detection study
[P29] focuses on syntactic defects.

Since defect detection often targets more complex
problems, such as semantic bugs and vulnerabilities,
many detection papers focus on a narrower array of prob-
lems or try to narrow the granularity. As such, DeepBugs
[P23] targets only name-based semantic bugs, SinkFinder
[P34] examines security-sensitive function pairs, and
OffSide [P35] looks for boundary condition mistakes.

Among the correction papers, [P5] presented one of
the first studies requiring no paired labeled examples for
mapping from the buggy domain to the nonbuggy one.
Sensibility [P7] was one of the first studies focusing
on the correction of single token syntax defects across
domains. DeepRepair [P14] builds on the idea of redun-
dancy, exploiting the fact that many programs contain
seeds to their own repair. More advanced studies, such
as Hoppity, [P15] use NNs for source code embedding
and graph transformations to correct semantic mis-
takes. Graph2Diff [P18] and VarMisuseRepair [P13]
both use pointers to locate the defect and a potential fix.

Source Code Representation

Observation 3. The majority of the studies use either
ASTs or token representation, with graph represen-
tation being the least used. Despite the different

representations, the input is commonly flattened when
serving as input for an NN. AST representation is
used by 23 papers, token representation appears in 21
studies, and graph representation is employed by 11
studies. The approaches can coexist, which is evident
from studies that combine several representations: 12
defect detection and two defect correction studies use
some combination. The most common combination is
AST–graph (seven), followed by AST–token (three),
and graph–token (three). Zhou et al. [P38] use a com-
bination of all the three representations. With deep
learning rising compared to other ML techniques, the
need for manually defined “traditional” features is fall-
ing. Instead, NNs require input in the form of a vector.
To achieve that, the previously described source code
representations are commonly flattened into a vector
(vectorized) [P10], [P25].

Observation 4. Correction papers mostly use ASTs and
tokens, whereas detection studies use all three repre-
sentations. We can see a significant division in repre-
sentation approaches between detection and correction
studies. Among the defect correction papers, the most
common representation is tokens (12), followed by
ASTs (eight). Only one correction study uses graph rep-
resentation [P19]. The split in representations is a bit
more balanced among the detection-only papers: ASTs
appear 15 times, graphs 10 times, and tokens nine times.

Observation 5. Different representations seem preferred
by researchers for addressing varying types of defects,
depending on the defect type targeted by a study. Tools
targeting syntactic defects almost exclusively use token
representation (seven), with a single paper adding
graph representation [P19]. Papers aimed at semantic
defects primarily use ASTs (14), followed by tokens
(five) and graphs (four). The most variety in repre-
sentation comes from the vulnerability finding papers.
Those use ASTs and tokens equally often (nine), with
graphs employed slightly less frequently (six). Vulner-
ability finding studies also most commonly use a com-
bination of more than one representation.

Languages

Observation 6. The majority of the examined studies
target C and Java, with only a few papers aimed at other
languages. Within the examined works, five program-
ming languages are supported: C/C++ (17), Java (16),
Python (four), JavaScript (two) and C# (one). Several
of the featured studies aimed to be language and syn-
tax agnostic but were trained and tested only on a spe-
cific language. It is, however, commonly noted that such
studies could be used on different languages through

68	 IEEE Security & Privacy� September/October 2022

MACHINE LEARNING SECURITY AND PRIVACY

Ta
bl

e
6.

 T
he

 st
ud

ie
s a

nd
 th

ei
r c

od
es

.

G
en

er
al

D
at

a
Se

t
A

va
ila

bi
lit

y

To
ol

 n
am

e
D

ef
ec

t
Re

pr
es

en
ta

ti
on

M
et

ho
d

La
ng

ua
ge

Si
ze

Ty
pe

Re
al

is
m

La
be

l
D

at
a

To
ol

W
or

ks
 T

ha
t D

et
ec

t a
nd

 C
or

re
ct

 D
ef

ec
ts

sk
_p

 [P
1]

Se
m

an
tic

To
ke

n
RN

N
 (L

ST
M

) a
nd

 sk
ip

-g
ra

m
Py

th
on

7
×

31
5-

9,
00

0
pr

og
ra

m
s

N
B

se
m

ire
al

—

—

—

D
ee

pF
ix

 [P
2]

Sy
nt

ac
tic

To
ke

n
RN

N
C

7,
00

0
pr

og
ra

m
s

B
+

F
Se

m
ire

al

✓
✓

✓

Sy
nF

ix
 [P

3]
Sy

nt
ac

tic
To

ke
n

RN
N

 (L
ST

M
)

Py
th

on
75

,0
00

 p
ro

gr
am

s
N

B
Se

m
ire

al

—
—

—

SS
C

 [P
4]

Se
m

an
tic

A
ST

RN
N

 a
nd

 ru
le

 b
as

ed
Py

th
on

2,
90

0,
00

0
co

de

sn
ip

pe
ts

B

+
F

Se
m

ire
al

✓

✓

—

H
ar

er
 2

01
8

[P
5]

Vu
ln

er
ab

ili
ty

To
ke

n
G

A
N

C
11

7,
00

0
fu

nc
tio

ns

B
+

F
Sy

nt
he

tic
✓

—

—

Ra
tc

he
t [

P6
]

Se
m

an
tic

To
ke

n
RN

N
 (L

ST
M

)
Ja

va
35

,1
37

 p
ai

rs

B
+

F
Re

al

✓

✓

✓

Se
ns

ib
ili

ty
 [P

7]
Sy

nt
ac

tic
To

ke
n

n-
G

ra
m

 a
nd

 R
N

N
 (L

ST
M

)
Ja

va
2,

30
0,

00
0

fil
es

N

B
Se

m
ire

al

—
✓

✓

Se
qu

en
ce

R
[P

8]
Se

m
an

tic
To

ke
n

RN
N

 (L
ST

M
)

Ja
va

35
,0

00
 sa

m
pl

es

B
+

F
Re

al

✓

✓

✓

RL
A

ss
ist

 [P
9]

Sy
nt

ac
tic

To
ke

n
D

RL
 a

nd
 R

N
N

 (L
ST

M
)

C
7,

00
0

pr
og

ra
m

s
B

+
F

Se
m

ire
al

✓

✓

✓

Li
u

20
19

 [P
10

]
Se

m
an

tic
A

ST
, t

ok
en

CN
N

 a
nd

 p
ar

ag
ra

ph
 v

ec
to

r
Ja

va
2,

00
0,

00
0

m
et

ho
ds

B

+
F

Re
al

—

✓

✓

D
ee

pD
el

ta
 [P

11
]

Se
m

an
tic

A
ST

RN
N

 (L
ST

M
)

Ja
va

4,
80

0,
00

0
bu

ild
s

B
+

F
Re

al

✓

—
—

Tu
fa

no
 2

01
9

[P
12

]
Se

m
an

tic
A

ST
RN

N
Ja

va
2,

30
0,

00
0

fix
es

B

+
F

Re
al

✓

✓

✓

Va
rM

isu
se

Re
pa

ir
[P

13
]

Se
m

an
tic

To
ke

n
RN

N
 (L

ST
M

) a
nd

 p
oi

nt
er

ne

tw
or

k
Py

th
on

65
0,

00
0

fu
nc

tio
ns

B

+
F

Re
al

✓

✓

—

D
ee

pR
ep

ai
r [

P1
4]

Se
m

an
tic

A
ST

RN
N

Ja
va

37
4

pr
og

ra
m

s
B

+
F

Se
m

ire
al

✓

✓

✓

H
op

pi
ty

 [P
15

]
Se

m
an

tic
A

ST
G

N
N

 a
nd

 R
N

N
 (L

ST
M

)
Ja

va
Sc

rip
t

50
0,

00
0

pr
og

ra
m

 p
ai

rs

B
+

F
Re

al

✓

✓

✓

Sa
m

pl
eF

ix
 [P

16
]

Sy
nt

ac
tic

To
ke

n
G

A
N

, C
VA

E,
 a

nd
 R

N
N

(L

ST
M

)
C

7,
00

0
pr

og
ra

m
s

B
+

F
Se

m
ire

al

✓

✓

—

D
LF

ix
 [P

17
]

Se
m

an
tic

A
ST

RN
N

 (t
re

e
RN

N
)

Ja
va

4,
90

0,
00

0
m

et
ho

ds

B
+

F
Re

al

✓

✓

✓

G
ra

ph
2D

iff
 [P

18
]

Se
m

an
tic

A
ST

G
N

N
 (G

G
N

N
)

Ja
va

50
0,

00
0

fix
es

B

+
F

Re
al

✓

—

—

D
rR

ep
ai

r [
P1

9]
Sy

nt
ac

tic
To

ke
n,

 G
ra

ph
G

N
N

 a
nd

 R
N

N
 (L

ST
M

)
C

64
,0

00
 p

ro
gr

am
s

B
+

F
Se

m
ire

al

—
✓

✓

W
or

ks
 T

ha
t D

et
ec

t D
ef

ec
ts

W
an

g
20

16
 [P

20
]

Se
m

an
tic

A
ST

, g
ra

ph
D

BN
Ja

va
10

 ×
 1

50
–1

,0
46

 fi
le

s
B

+
F

Re
al

✓

—
—

D
P-

C
N

N
 [P

21
]

Se
m

an
tic

A
ST

CN
N

 a
nd

 lo
gi

st
ic

 re
gr

es
sio

n
Ja

va
7

×
33

0
fil

es
B

+
F

Re
al

✓

✓

—

PO
ST

ER
 [P

22
]

Vu
ln

er
ab

ili
ty

A
ST

RN
N

 (B
LS

TM
)

C
6,

00
0

fu
nc

tio
ns

B
+

F
Re

al
—

✓

✓

D
ee

pB
ug

s [
P2

3]
Se

m
an

tic
A

ST
, g

ra
ph

N
N

Ja
va

Sc
rip

t
15

0,
00

0
fil

es
B

+
F

Se
m

ire
al

✓

✓

✓

Va
rM

isu
se

 [P
24

]
Se

m
an

tic
A

ST
, g

ra
ph

G
G

N
N

 a
nd

 G
RU

C
#

2.
9

m
ill

io
n

Lo
C

B
+

N
B

Re
al

—
✓

✓

Vu
lD

ee
Pe

ck
er

 [P
25

]
Vu

ln
er

ab
ili

ty
To

ke
n

RN
N

 (B
LS

TM
)

C
61

,0
00

 c
od

e
ga

dg
et

s
B

+
F

Sy
nt

he
tic

✓

✓

—

Ru
ss

el
l 2

01
8

[P
26

]
Vu

ln
er

ab
ili

ty
To

ke
n

C
N

N
, B

oW
, R

N
N

, a
nd

ra

nd
om

 fo
re

st
C

1.
27

 m
ill

io
n

fu
nc

tio
ns

B
+

F
Re

al
 +

sy

nt
he

tic
✓

✓

—

μV
ul

D
ee

Pe
ck

er
 [P

27
]

Vu
ln

er
ab

ili
ty

A
ST

, g
ra

ph
RN

N
 (B

LS
TM

)
C

18
1,

00
0

co
de

 g
ad

ge
ts

B
+

N
F

Sy
nt

he
tic

✓

✓

—

G
up

ta
 2

01
9

[P
28

]
Se

m
an

tic
A

ST
Tr

ee
 C

N
N

C
29

 ×
 1

,3
00

 p
ro

gr
am

s
B

+
F

Se
m

ire
al

✓

✓

✓

H
ab

ib
 2

01
9

[P
29

]
Sy

nt
ac

tic
To

ke
n

RN
N

 (B
LS

TM
)

Ja
va

11
2

pr
oj

ec
ts

B
+

F
Sy

nt
he

tic

✓

—
—

Li
 2

01
9

[P
30

]
Se

m
an

tic
A

ST
, g

ra
ph

RN
N

 (G
RU

) a
nd

 C
N

N
Ja

va
4.

9
m

ill
io

n
m

et
ho

ds
B

+
F

Re
al

✓

✓

✓

Pr
oj

ec
t A

ch
ill

es
 [P

31
]

Vu
ln

er
ab

ili
ty

To
ke

n
RN

N
 (L

ST
M

)
Ja

va
44

,4
95

 p
ro

gr
am

s
B

+
F

Sy
nt

he
tic

✓

✓

✓

Li
 2

02
0

[P
32

]
Vu

ln
er

ab
ili

ty
G

ra
ph

, t
ok

en
Bo

W
 a

nd
 C

N
N

C
60

,0
00

 sa
m

pl
es

B
+

N
B

Sy
nt

he
tic

—
—

—

Vu
lD

ee
Lo

ca
to

r [
P3

3]
Vu

ln
er

ab
ili

ty
A

ST
, t

ok
en

RN
N

 (B
RN

N
)

C
12

0,
00

0
pr

og
ra

m
 sl

ic
es

B
+

N
B

Sy
nt

he
tic

✓

✓

✓

Si
nk

Fi
nd

er
 [P

34
]

Vu
ln

er
ab

ili
ty

G
ra

ph
, t

ok
en

SV
M

C
15

 m
ill

io
n

Lo
C

N
B

Re
al

—

✓

—

O
ffS

id
e

[P
35

]
Vu

ln
er

ab
ili

ty
A

ST
A

tt
en

tio
n

N
N

Ja
va

1.
5

m
ill

io
n

co
de

sn

ip
pe

ts
B

+
F

Se
m

ire
al

✓

✓

✓

A
I4

VA
 [P

36
]

Vu
ln

er
ab

ili
ty

A
ST

, g
ra

ph
G

ra
ph

 N
N

C
1.

95
 m

ill
io

n
fu

nc
tio

ns
B

+
F

Re
al

 +

sy
nt

he
tic

✓

✓

✓

Ta
nw

ar
 2

02
0

[P
37

]
Vu

ln
er

ab
ili

ty
A

ST
N

N
C

1.
27

 m
ill

io
n

fu
nc

tio
ns

B
+

F
Re

al

✓

—
—

D
ev

ig
n

[P
38

]
Vu

ln
er

ab
ili

ty
A

ll
G

ra
ph

 N
N

C
48

,0
00

 c
om

m
its

B
+

F
Re

al

✓

✓

✓

D
am

 2
02

1
[P

39
]

Vu
ln

er
ab

ili
ty

A
ST

, t
ok

en
RN

N
 (L

ST
M

)
Ja

va
18

 ×
 4

6–
3,

45
0

fil
es

B
+

N
B

Re
al

✓

—

—

Sy
Se

V
R

[P
40

]
Vu

ln
er

ab
ili

ty
A

ST
, g

ra
ph

RN
N

 (B
LS

TM
 a

nd
 B

G
RU

)
C

15
,0

00
 p

ro
gr

am
s

B
+

F
Sy

nt
he

tic

✓

✓

✓

RN
N

: r
ec

ur
re

nt
 N

N
; L

ST
M

: l
on

g
sh

or
t-t

er
m

 m
em

or
y;

 G
A

N
: g

en
er

at
iv

e
ad

ve
rs

ar
ia

l n
et

w
or

k;
 D

RL
: d

ee
p

re
in

fo
rc

em
en

t l
ea

rn
in

g;
CN

N
: c

on
vo

lu
tio

na
l N

N
; G

N
N

: g
ra

ph
 N

N
; C

VA
E:

 c
on

di
tio

na
l v

ar
ia

tio
na

l a
ut

oe
nc

od
er

;
G

G
N

N
: g

at
ed

 G
N

N
; D

BN
: d

ee
p

be
lie

f n
et

w
or

k;
 B

LS
TM

: b
id

ire
ct

io
na

l L
ST

M
; G

RU
: g

at
ed

 re
cu

rr
en

t u
ni

t;
Bo

W
: b

ag
 o

f w
or

ds
; B

RN
N

: b
id

ire
ct

io
na

l R
N

N
; S

VM
: s

up
po

rt
 v

ec
to

r m
ac

hi
ne

; B
G

RU
: b

id
ire

ct
io

na
l G

RU
; N

B:
 n

o
bu

g;
B:

 b
ug

gy
; F

: f
ix

ed
.

Th
e

st
ud

ie
s a

re
 fi

rs
t o

rd
er

ed
 c

hr
on

ol
og

ic
al

ly
 a

nd
 th

en
 a

lp
ha

be
tic

al
ly

 (b
y

au
th

or
 n

am
e)

 w
ith

in
 th

e
to

p
an

d
bo

tt
om

 h
al

ve
s o

f t
he

 ta
bl

e.
In

 th
e

“M
et

ho
d”

 c
ol

um
n,

 w
e

re
fe

r t
o

th
e

pr
im

ar
y

M
L

ap
pr

oa
ch

 u
se

d
in

 th
e

to
ol

. W
he

n
a

to
ol

 e
xp

er
im

en
ts

 w
ith

 se
ve

ra
l a

pp
ro

ac
he

s,
w

e
in

cl
ud

e
al

l o
f t

he
m

 if
 th

ey
 a

re
 p

re
se

nt
ed

 a
nd

 d
isc

us
se

d
eq

ua
lly

 a
nd

 sk
ip

 th
e

on
es

 m
en

tio
ne

d
on

ly
 in

 p
as

sin
g.

www.computer.org/security� 69

Ta
bl

e
6.

 T
he

 st
ud

ie
s a

nd
 th

ei
r c

od
es

.

G
en

er
al

D
at

a
Se

t
A

va
ila

bi
lit

y

To
ol

 n
am

e
D

ef
ec

t
Re

pr
es

en
ta

ti
on

M
et

ho
d

La
ng

ua
ge

Si
ze

Ty
pe

Re
al

is
m

La
be

l
D

at
a

To
ol

W
or

ks
 T

ha
t D

et
ec

t a
nd

 C
or

re
ct

 D
ef

ec
ts

sk
_p

 [P
1]

Se
m

an
tic

To
ke

n
RN

N
 (L

ST
M

) a
nd

 sk
ip

-g
ra

m
Py

th
on

7
×

31
5-

9,
00

0
pr

og
ra

m
s

N
B

se
m

ire
al

—

—

—

D
ee

pF
ix

 [P
2]

Sy
nt

ac
tic

To
ke

n
RN

N
C

7,
00

0
pr

og
ra

m
s

B
+

F
Se

m
ire

al

✓
✓

✓

Sy
nF

ix
 [P

3]
Sy

nt
ac

tic
To

ke
n

RN
N

 (L
ST

M
)

Py
th

on
75

,0
00

 p
ro

gr
am

s
N

B
Se

m
ire

al

—
—

—

SS
C

 [P
4]

Se
m

an
tic

A
ST

RN
N

 a
nd

 ru
le

 b
as

ed
Py

th
on

2,
90

0,
00

0
co

de

sn
ip

pe
ts

B

+
F

Se
m

ire
al

✓

✓

—

H
ar

er
 2

01
8

[P
5]

Vu
ln

er
ab

ili
ty

To
ke

n
G

A
N

C
11

7,
00

0
fu

nc
tio

ns

B
+

F
Sy

nt
he

tic
✓

—

—

Ra
tc

he
t [

P6
]

Se
m

an
tic

To
ke

n
RN

N
 (L

ST
M

)
Ja

va
35

,1
37

 p
ai

rs

B
+

F
Re

al

✓

✓

✓

Se
ns

ib
ili

ty
 [P

7]
Sy

nt
ac

tic
To

ke
n

n-
G

ra
m

 a
nd

 R
N

N
 (L

ST
M

)
Ja

va
2,

30
0,

00
0

fil
es

N

B
Se

m
ire

al

—
✓

✓

Se
qu

en
ce

R
[P

8]
Se

m
an

tic
To

ke
n

RN
N

 (L
ST

M
)

Ja
va

35
,0

00
 sa

m
pl

es

B
+

F
Re

al

✓

✓

✓

RL
A

ss
ist

 [P
9]

Sy
nt

ac
tic

To
ke

n
D

RL
 a

nd
 R

N
N

 (L
ST

M
)

C
7,

00
0

pr
og

ra
m

s
B

+
F

Se
m

ire
al

✓

✓

✓

Li
u

20
19

 [P
10

]
Se

m
an

tic
A

ST
, t

ok
en

CN
N

 a
nd

 p
ar

ag
ra

ph
 v

ec
to

r
Ja

va
2,

00
0,

00
0

m
et

ho
ds

B

+
F

Re
al

—

✓

✓

D
ee

pD
el

ta
 [P

11
]

Se
m

an
tic

A
ST

RN
N

 (L
ST

M
)

Ja
va

4,
80

0,
00

0
bu

ild
s

B
+

F
Re

al

✓

—
—

Tu
fa

no
 2

01
9

[P
12

]
Se

m
an

tic
A

ST
RN

N
Ja

va
2,

30
0,

00
0

fix
es

B

+
F

Re
al

✓

✓

✓

Va
rM

isu
se

Re
pa

ir
[P

13
]

Se
m

an
tic

To
ke

n
RN

N
 (L

ST
M

) a
nd

 p
oi

nt
er

ne

tw
or

k
Py

th
on

65
0,

00
0

fu
nc

tio
ns

B

+
F

Re
al

✓

✓

—

D
ee

pR
ep

ai
r [

P1
4]

Se
m

an
tic

A
ST

RN
N

Ja
va

37
4

pr
og

ra
m

s
B

+
F

Se
m

ire
al

✓

✓

✓

H
op

pi
ty

 [P
15

]
Se

m
an

tic
A

ST
G

N
N

 a
nd

 R
N

N
 (L

ST
M

)
Ja

va
Sc

rip
t

50
0,

00
0

pr
og

ra
m

 p
ai

rs

B
+

F
Re

al

✓

✓

✓

Sa
m

pl
eF

ix
 [P

16
]

Sy
nt

ac
tic

To
ke

n
G

A
N

, C
VA

E,
 a

nd
 R

N
N

(L

ST
M

)
C

7,
00

0
pr

og
ra

m
s

B
+

F
Se

m
ire

al

✓

✓

—

D
LF

ix
 [P

17
]

Se
m

an
tic

A
ST

RN
N

 (t
re

e
RN

N
)

Ja
va

4,
90

0,
00

0
m

et
ho

ds

B
+

F
Re

al

✓

✓

✓

G
ra

ph
2D

iff
 [P

18
]

Se
m

an
tic

A
ST

G
N

N
 (G

G
N

N
)

Ja
va

50
0,

00
0

fix
es

B

+
F

Re
al

✓

—

—

D
rR

ep
ai

r [
P1

9]
Sy

nt
ac

tic
To

ke
n,

 G
ra

ph
G

N
N

 a
nd

 R
N

N
 (L

ST
M

)
C

64
,0

00
 p

ro
gr

am
s

B
+

F
Se

m
ire

al

—
✓

✓

W
or

ks
 T

ha
t D

et
ec

t D
ef

ec
ts

W
an

g
20

16
 [P

20
]

Se
m

an
tic

A
ST

, g
ra

ph
D

BN
Ja

va
10

 ×
 1

50
–1

,0
46

 fi
le

s
B

+
F

Re
al

✓

—
—

D
P-

C
N

N
 [P

21
]

Se
m

an
tic

A
ST

CN
N

 a
nd

 lo
gi

st
ic

 re
gr

es
sio

n
Ja

va
7

×
33

0
fil

es
B

+
F

Re
al

✓

✓

—

PO
ST

ER
 [P

22
]

Vu
ln

er
ab

ili
ty

A
ST

RN
N

 (B
LS

TM
)

C
6,

00
0

fu
nc

tio
ns

B
+

F
Re

al
—

✓

✓

D
ee

pB
ug

s [
P2

3]
Se

m
an

tic
A

ST
, g

ra
ph

N
N

Ja
va

Sc
rip

t
15

0,
00

0
fil

es
B

+
F

Se
m

ire
al

✓

✓

✓

Va
rM

isu
se

 [P
24

]
Se

m
an

tic
A

ST
, g

ra
ph

G
G

N
N

 a
nd

 G
RU

C
#

2.
9

m
ill

io
n

Lo
C

B
+

N
B

Re
al

—
✓

✓

Vu
lD

ee
Pe

ck
er

 [P
25

]
Vu

ln
er

ab
ili

ty
To

ke
n

RN
N

 (B
LS

TM
)

C
61

,0
00

 c
od

e
ga

dg
et

s
B

+
F

Sy
nt

he
tic

✓

✓

—

Ru
ss

el
l 2

01
8

[P
26

]
Vu

ln
er

ab
ili

ty
To

ke
n

C
N

N
, B

oW
, R

N
N

, a
nd

ra

nd
om

 fo
re

st
C

1.
27

 m
ill

io
n

fu
nc

tio
ns

B
+

F
Re

al
 +

sy

nt
he

tic
✓

✓

—

μV
ul

D
ee

Pe
ck

er
 [P

27
]

Vu
ln

er
ab

ili
ty

A
ST

, g
ra

ph
RN

N
 (B

LS
TM

)
C

18
1,

00
0

co
de

 g
ad

ge
ts

B
+

N
F

Sy
nt

he
tic

✓

✓

—

G
up

ta
 2

01
9

[P
28

]
Se

m
an

tic
A

ST
Tr

ee
 C

N
N

C
29

 ×
 1

,3
00

 p
ro

gr
am

s
B

+
F

Se
m

ire
al

✓

✓

✓

H
ab

ib
 2

01
9

[P
29

]
Sy

nt
ac

tic
To

ke
n

RN
N

 (B
LS

TM
)

Ja
va

11
2

pr
oj

ec
ts

B
+

F
Sy

nt
he

tic

✓

—
—

Li
 2

01
9

[P
30

]
Se

m
an

tic
A

ST
, g

ra
ph

RN
N

 (G
RU

) a
nd

 C
N

N
Ja

va
4.

9
m

ill
io

n
m

et
ho

ds
B

+
F

Re
al

✓

✓

✓

Pr
oj

ec
t A

ch
ill

es
 [P

31
]

Vu
ln

er
ab

ili
ty

To
ke

n
RN

N
 (L

ST
M

)
Ja

va
44

,4
95

 p
ro

gr
am

s
B

+
F

Sy
nt

he
tic

✓

✓

✓

Li
 2

02
0

[P
32

]
Vu

ln
er

ab
ili

ty
G

ra
ph

, t
ok

en
Bo

W
 a

nd
 C

N
N

C
60

,0
00

 sa
m

pl
es

B
+

N
B

Sy
nt

he
tic

—
—

—

Vu
lD

ee
Lo

ca
to

r [
P3

3]
Vu

ln
er

ab
ili

ty
A

ST
, t

ok
en

RN
N

 (B
RN

N
)

C
12

0,
00

0
pr

og
ra

m
 sl

ic
es

B
+

N
B

Sy
nt

he
tic

✓

✓

✓

Si
nk

Fi
nd

er
 [P

34
]

Vu
ln

er
ab

ili
ty

G
ra

ph
, t

ok
en

SV
M

C
15

 m
ill

io
n

Lo
C

N
B

Re
al

—

✓

—

O
ffS

id
e

[P
35

]
Vu

ln
er

ab
ili

ty
A

ST
A

tt
en

tio
n

N
N

Ja
va

1.
5

m
ill

io
n

co
de

sn

ip
pe

ts
B

+
F

Se
m

ire
al

✓

✓

✓

A
I4

VA
 [P

36
]

Vu
ln

er
ab

ili
ty

A
ST

, g
ra

ph
G

ra
ph

 N
N

C
1.

95
 m

ill
io

n
fu

nc
tio

ns
B

+
F

Re
al

 +

sy
nt

he
tic

✓

✓

✓

Ta
nw

ar
 2

02
0

[P
37

]
Vu

ln
er

ab
ili

ty
A

ST
N

N
C

1.
27

 m
ill

io
n

fu
nc

tio
ns

B
+

F
Re

al

✓

—
—

D
ev

ig
n

[P
38

]
Vu

ln
er

ab
ili

ty
A

ll
G

ra
ph

 N
N

C
48

,0
00

 c
om

m
its

B
+

F
Re

al

✓

✓

✓

D
am

 2
02

1
[P

39
]

Vu
ln

er
ab

ili
ty

A
ST

, t
ok

en
RN

N
 (L

ST
M

)
Ja

va
18

 ×
 4

6–
3,

45
0

fil
es

B
+

N
B

Re
al

✓

—

—

Sy
Se

V
R

[P
40

]
Vu

ln
er

ab
ili

ty
A

ST
, g

ra
ph

RN
N

 (B
LS

TM
 a

nd
 B

G
RU

)
C

15
,0

00
 p

ro
gr

am
s

B
+

F
Sy

nt
he

tic

✓

✓

✓

RN
N

: r
ec

ur
re

nt
 N

N
; L

ST
M

: l
on

g
sh

or
t-t

er
m

 m
em

or
y;

 G
A

N
: g

en
er

at
iv

e
ad

ve
rs

ar
ia

l n
et

w
or

k;
 D

RL
: d

ee
p

re
in

fo
rc

em
en

t l
ea

rn
in

g;
CN

N
: c

on
vo

lu
tio

na
l N

N
; G

N
N

: g
ra

ph
 N

N
; C

VA
E:

 c
on

di
tio

na
l v

ar
ia

tio
na

l a
ut

oe
nc

od
er

;
G

G
N

N
: g

at
ed

 G
N

N
; D

BN
: d

ee
p

be
lie

f n
et

w
or

k;
 B

LS
TM

: b
id

ire
ct

io
na

l L
ST

M
; G

RU
: g

at
ed

 re
cu

rr
en

t u
ni

t;
Bo

W
: b

ag
 o

f w
or

ds
; B

RN
N

: b
id

ire
ct

io
na

l R
N

N
; S

VM
: s

up
po

rt
 v

ec
to

r m
ac

hi
ne

; B
G

RU
: b

id
ire

ct
io

na
l G

RU
; N

B:
 n

o
bu

g;
B:

 b
ug

gy
; F

: f
ix

ed
.

Th
e

st
ud

ie
s a

re
 fi

rs
t o

rd
er

ed
 c

hr
on

ol
og

ic
al

ly
 a

nd
 th

en
 a

lp
ha

be
tic

al
ly

 (b
y

au
th

or
 n

am
e)

 w
ith

in
 th

e
to

p
an

d
bo

tt
om

 h
al

ve
s o

f t
he

 ta
bl

e.
In

 th
e

“M
et

ho
d”

 c
ol

um
n,

 w
e

re
fe

r t
o

th
e

pr
im

ar
y

M
L

ap
pr

oa
ch

 u
se

d
in

 th
e

to
ol

. W
he

n
a

to
ol

 e
xp

er
im

en
ts

 w
ith

 se
ve

ra
l a

pp
ro

ac
he

s,
w

e
in

cl
ud

e
al

l o
f t

he
m

 if
 th

ey
 a

re
 p

re
se

nt
ed

 a
nd

 d
isc

us
se

d
eq

ua
lly

 a
nd

 sk
ip

 th
e

on
es

 m
en

tio
ne

d
on

ly
 in

 p
as

sin
g.

70	 IEEE Security & Privacy� September/October 2022

MACHINE LEARNING SECURITY AND PRIVACY

minimal changes to the models and by retraining on a
suitable data set.

Observation 7. We see a nonuniform distribution of
goals across the examined languages both in terms of
correction ability as well as targeted defect types. Look-
ing at correction ability, we notice that the majority of
C studies (12) only detect defects, while five can cor-
rect them. Java is more balanced, with seven detection

and nine correction studies. JavaScript has one paper
for correction [P15] and one for detection [P23]. All
four Python studies are capable of correction. Finally,
the one examined C# paper [P24] can detect defects.
Overall, the two most common are defect detecting
C studies (12) and defect correcting Java studies (nine).

In terms of defect types, most of the C language stud-
ies target vulnerabilities (12), while the majority of Java
papers target semantic defects (11). Python studies focus
primarily on semantic defects (three), with one paper
targeting syntactic defects. The two examined JavaS-
cript studies as well as the only C# study target semantic
defects. There are no Python, JavaScript, or C# papers
that focus on security vulnerabilities. Similarly, no JavaS-
cript or C# paper detects or corrects syntax defects.

ML Approaches/Models

Observation 8. Both defect detection and correction
studies increasingly rely on NNs. The most commonly
used model is the recurrent NN (RNN). Defect correc-
tion studies heavily borrow from natural language trans-
lation, often referred to as neural machine translation or
sequence-to-sequence translation. This means that the
majority of the models comes from the same domain,
more specifically, RNNs that appear 16 times out of
19 among defect correction papers. The most com-
mon method within the RNN family is long short-term
memory (LSTM)—11 studies—which specifically
targets the problem of long-term dependencies by
enabling learning from context.

The most recent papers highlight the usefulness of
NNs that are capable of understanding contexts since
the presence of a defect can highly depend on that
[P30]. Additionally, attention (focusing on the relevant
parts of the code, depending on the context) helps such
NNs learn long-distance relations to keep track of issues
outside a narrow code segment. It is worth mention-
ing that despite perceived uniformity, most studies add
their own spin to the method, leading to diverse final
implementations.

Among defect detection papers, nine use RNNs,
and four use convolutional NNs. Most of the remain-
ing papers still rely on some member of the NN fam-
ily [e.g., attention NNs, (gated) graph NNs, deep belief
networks, and so on]. Similar to defect correction stud-
ies, methods that can learn from context, such as bidi-
rectional LSTM—five papers—and the gated recurrent
unit—three papers—are popular due to their ability to
take into account both future and past contexts [P25].

There is only slightly more variety in the defect
detection world, where the task can (but does not need
to) be logically split in two: embedding/feature extrac-
tion and classification. While the former is mostly

10

5

0

P
ub

lic
at

io
ns

 p
er

 Y
ea

r

Error Correction Error Detection

20
16

20
17

20
18

20
19

20
20

+
20

16
20

17
20

18
20

19

20
20

+

Publication Year

Figure 1. A histogram of publications per year. Note that 2020 and 2021 are
merged as 2020+.

Figure 2. A co-occurrence graph of tool characteristics.

Graph

C#

JS

AST

C

Detection

Vulnerability

Java Token

Semantic

Correction

Python

Syntactic

www.computer.org/security� 71

handled by a form of NN, the latter invites
more experimentation. Some of the classifica-
tion methods include logistic regression, bags
of words, random forests, and support vector
machines. Despite some outliers, the task of
detection also seems to be heading in the NN
direction. The analyzed papers commonly
attribute this to the NN’s ability to operate
without explicit feature formation, capacity
to understand contexts and keep some form
of memory over time, and suitability for han-
dling texts and (a form of) language.

Data Sets

Observation 9. There is large disparity
among data sets in terms of data set size
and data unit size. The sizes of the data
sets range from hundreds to millions of
data units. Data units themselves (i.e., the
source code snippets fed into the model)
also range from full program files to meth-
ods, functions, code gadgets, and similar
paper-specific granularities. We notice that
the granularity of data points commonly
coincides with the output granularity at
which the tool is capable of spotting defects.

Observation 10. There are significant differ-
ences in source code complexity, realism, and
origin. On the one hand, we have real source
code (18 studies), often collected from Github
and open source projects. On the other hand,
we find eight papers that use primarily syn-
thetic data sets, which consist of shorter and
cleaner code samples with “textbook” exam-
ples of errors. The remaining data sets fall
somewhere in the middle, consisting of either
real source code with artificially injected errors
(four) or simple code segments and student
assignments with genuine mistakes (eight).
Two studies, Russell et al. [P26] and Suneja
et al., [P36] separately train and evaluate on
both real and synthetic data. Regardless of
the realism, the studies often source their data
from publicly available data sets and previous
studies. Such data sets include the Software
Assurance Reference Dataset, National Vulner-
ability Database, Juliet Test Suite, and Draper.

Observation 11. Correction tools mostly use
real and semireal data, while detection tools use
both real and synthetic data. Additionally, tools
targeting vulnerabilities mostly employ synthetic Ta

bl
e

7.
 T

he
 c

o-
oc

cu
rr

en
ce

 ta
bl

e. Co
rr

ec
ti

on
Er

ro
r

Re
pr

es
en

ta
ti

on
La

ng
ua

ge
Re

al

N
o

Ye
s

Se
m

ir
ea

l
Sy

nt
he

ti
c

V
ul

ne
ra

bi
lit

y
A

ST
G

ra
ph

To
ke

n
C

C
#

Ja
va

Ja
va

Sc
ri

pt
Py

th
on

Re
al

Se
m

ir
ea

l
Sy

nt
he

ti
c

Co
rr

ec
tio

n
N

o
(2

1)
6

1
14

15
10

9
12

1
7

1
0

9
3

7

Ye
s (

19
)

12
6

1
8

1
12

5
0

9
1

4
9

9
1

Er
ro

r
Se

m
ire

al
 (1

8)
6

12
14

4
5

1
1

11
2

3
13

5
0

Sy
nt

he
tic

 (7
)

1
6

0
1

7
4

0
2

0
1

0
6

1

Vu
ln

er
ab

ili
ty

 (1
5)

14
1

9
6

9
12

0
3

0
0

5
1

7

Re
pr

es
en

ta
tio

n
A

ST
 (2

3)
15

8
14

0
9

8
1

11
2

1
14

5
3

G
ra

ph
 (1

1)
10

1
4

1
6

7
1

2
1

0
5

2
3

To
ke

n
(2

1)
9

12
5

7
9

11
0

7
0

3
7

7
6

La
ng

ua
ge

C
 (1

7)
12

5
1

4
12

8
7

11
4

5
6

C

(1
)

1
0

1
0

0
1

1
0

1
0

0

Ja
va

 (1
6)

7
9

11
2

3
11

2
7

11
3

2

Ja
va

Sc
rip

t (
2)

1
1

2
0

0
2

1
0

1
1

0

Py
th

on
 (4

)
0

4
3

1
0

1
0

3
1

3
0

Re
al

Re
al

 (1
8)

9
9

13
0

5
14

5
7

4
1

11
1

1

Se
m

ire
al

 (1
2)

3
9

5
6

1
5

2
7

5
0

3
1

3

Sy
nt

he
tic

 (8
)

7
1

0
1

7
3

3
6

6
0

2
0

0

72	 IEEE Security & Privacy� September/October 2022

MACHINE LEARNING SECURITY AND PRIVACY

data sets; semireal data are common with syntactic errors and
real data with semantic errors. Among the correction tools,
real and semireal data sets are used equally often—nine
times—with only one study using synthetic data sets.
Detection-only tools primarily use realistic data (nine),
but synthetic data sets are also popular (seven). Semireal-
istic data are the least popular among the error detection
tools, with only three occurrences.

We also notice distinct patterns of data sets used for
different types of errors. Synthetic data are almost exclu-
sively used in tools targeting vulnerabilities (seven).
Semireal data are mostly harnessed in studies related to
syntactic errors (six) and semantic errors (five) and less
in studies related to vulnerabilities (one). Finally, real
data are employed in semantic error (13) and vulner-
ability (five) studies but not in syntactic error studies.

Observation 12. The majority of data sets consists of
bug fix pairs. We notice three distinct patterns in data
set structure: data sets with bug fix pairs (31), data sets
of unrelated buggy and nonbuggy examples (five), and
data sets with no bugs (four). The latter are mostly
used to teach a model the correct use of the language
so that it is capable of discrimination and potentially
translation when it encounters an unfamiliar code pat-
tern. The remaining two patterns help teach the model
examples of good and bad behavior. The difference is
that for defect correction, it is valuable to have examples
of concrete fixes for a buggy example. This is commonly
achieved by either collecting version histories (commits
with fixes) from public repositories or artificially inject-
ing bugs to correct code. In case of defect detection,
it is not crucial to have such pairs, so several data sets
include examples of bugs and correct code but not nec-
essarily on the same piece of code.

Output and Performance

Observation 13. There is little uniformity among studies’
outputs in terms of granularity and error types a tool can
target. We notice a significant variety of detection granu-
larity, ranging from simple binary classification (buggy
versus nonbuggy) to method, function, and specific lines
of code. For example, Dam et al. [P39] focus on file-level
detection, VulDeePecker [P25] works on code gadget
granularity, and Project Achilles [P31] concentrates on
methods. An interesting goal was set by Zou et al. [P27]
The authors attempted not only to recognize whether
there was a vulnerability with fine granularity but also
determine the vulnerability type. There are similar dif-
ferences among the correction studies that range from
single token correction all the way to full code sections,
sometimes as a single-step fix or as a collection of smaller
steps with some form of correction checking in between.

There are also differences in how many different
error types a tool can handle. Some tools are trained
and tested on a smaller set of vulnerability types, which
makes them narrow but comparatively high perform-
ing. Examples of such tools include SinkFinder, [P34]
which looks for vulnerabilities in function pairs, such
as lock/unlock; OffSide, [P35] which focuses on
b o u n d ar y conditions; and VulDeePecker, [P25]
which targets buffer and resource management error
vulnerabilities. On the other hand, some tools target a
wide range of errors, potentially at some performance
cost. SySeVR, [P40] for example, targets 126 vulner-
ability types, and Project Achilles [P31] focuses on 29.
It is worth mentioning that some tools train separate
models for each type of error and evaluate a piece of
code by passing it through each of the trained models
separately to determine the probability of each of the
vulnerabilities.

Observation 14. There are significant inconsistencies in
the reporting of performance metrics. Studies using real
data sets seems to perform worse than those using syn-
thetic data sets. We find that the studies differ greatly
in their reporting of performance. The most commonly
reported metrics include recall (reported in some form
by 22 studies), the F1 score (16), accuracy (15), and
precision (11). While detection-only tools tend to be
more diligent in their reporting, the correction tools
more commonly frame their results simply as “we could
fix x out of y errors” without providing more detail. We
find additional inconsistencies even among the studies
that report the same metrics: some relay only the best
performance, others provide average values, and others
convey the full range.

Taking all this into account, it is uninformative, if
not misleading, to directly compare performance across
the papers. However, setting aside all nuances, we can
cautiously draw some rough patterns from the metrics
reported. Specifically, we find that studies using syn-
thetic data sets generally report higher metrics regard-
less of the other study properties (around 80–90% for
all mentioned metrics), while studies using real and
semireal data perform significantly worse (their accu-
racy and recall rarely exceed 60–70%), have wider
ranges, and sometimes dip all the way down to 0–20%.
Given the previously identified relations among cor-
rection ability, error type, and representation, the per-
formance across those categories is also affected by the
realism of the data set.

An interesting insight into the effects of data set real-
ism is provided by Russell et al. [P26] and Suneja et al.,
[P36] who train and test their pipelines separately
on real and synthetic data sets. The two stud-
ies enable us to get a glimpse at the behavior of the

www.computer.org/security� 73

same tool when faced with different types of source
code. Both papers exhibit the same pattern we
obser ved : the F1 score is significantly lower when
realistic data are used. More specifically, the studies
report F1 scores of 50–60% on real data and 70–90%
for synthetic data.

Discussion
There are significant differences among the studies
when it comes to the error types that are targeted, lead-
ing to different defect patterns and, consequently, repre-
sentation choices. All these seem to determine whether
a tool will be able to
automatically correct
found bugs or only
detect them. Argu-
ably, the simplest de-
fect type to catch is
a syntactic one, with
vulnerabilities being
the most challenging.
Seeing that most of
the correction tools
address the former,
while detection tools
largely address the latter, we can assume that effective
correction is more difficult to achieve. With several de-
tection and correction tools targeting semantic defects,
we speculate that such defects lie in the middle in terms
of difficulty.

We can find additional support for such observa-
tions when looking at data set realism. Fully synthetic
data sets are used primarily by vulnerability detection
tools, suggesting that is not yet possible to detect real-
istic vulnerabilities “in the wild.” It is worth noting that
some of the vulnerability detection tools use real-world
projects and successfully catch vulnerabilities, but this
cannot be effectively done on a large scale and without
a high number of false classifications.

Tools targeting syntactic errors use semirealistic
data, in particular, simple code snippets written by stu-
dents for beginner programming courses and that have
genuine but simple mistakes. The use of such data sets
seems only natural, as syntax problems are common
with beginner programmers, who cannot yet catch and
correct their mistakes. Finally, we find the use of real and
semireal data with the tools aimed at semantic errors.
The semireal data sets that were used mostly consist of
realistic source code injected with artificial errors.

We see that the complexity of the used data set re-
flects common use cases as well as the complexity of
the targeted error type, which is to be expected. For
example, one does not expect to find many syntax
bugs in Linux kernel, nor does it make sense to look

for complex vulnerabilities in a student program that
does not even compile. It seems that the performance
goes hand-in-hand with the realism of the code. Gen-
erally, we find better performance with tools using
synthetic data, even when the goal is more challeng-
ing (e.g., dozens of different vulnerability types). A
similar pattern has been documented by Chakraborty
et al.7 More research is required to confirm such pat-
terns, but present evidence highlights how crucial the
use of appropriate, realistic, and well-labeled data is.
The field should be wary of high-performance reports,
especially when synthetic data sets are used, and work

instead toward more
realistic goals that
will make tools prac-
tical in the real world.

Similar to the data
sets, it is useful to
consider the full pic-
ture when discussing
tool output. It is not
crucial to be given
very specific output if
the program consists
of a dozen lines of

code, whereas classifying a big project as vulnerable
is next to useless if there is no way to determine where
the problem lies. This is especially important for practi-
cal applications where the tools are applied on a large
number of real-world projects. Overall, the importance
of lower granularity and higher precision is recognized
and often highlighted, with the trends moving toward
more precise tools.

Patterns in source code representation seem to fol-
low defect type patterns and, in turn, the detection and
correction goals. We see that the defect correcting tools
can achieve the intended goal through the use of sim-
pler representations, while defect detecting tools use
more advanced and combined representations. This
further shows that tackling vulnerabilities and semantic
defects is likely more challenging, so automatic correc-
tion on a large scale is not yet possible.

Sequence-of-tokens-based models are attractive
because of their simplicity. They are especially useful for
representing programs with syntactic defects in which
constructing ASTs and control flow graphs is limited or
not possible due to severe syntax problems. The simi-
larity to natural language makes it an attractive choice in
sequence-to-sequence models, where the goal is defect
correction by translating a problematic sequence into a
syntactically correct one.

Overall, token-level representation is the most pop-
ular choice for defect correction tools. The challenge
of this approach is the selection of the appropriate

Arguably, the simplest defect type to catch
is a syntactic one, with vulnerabilities being

the most challenging.

74	 IEEE Security & Privacy� September/October 2022

MACHINE LEARNING SECURITY AND PRIVACY

granularity and range of tokens. Depending on the type
of bug that is targeted, a model can benefit from simple,
stand-alone tokens and from grouped and more struc-
tured representation (code gadgets, functions, or some
other syntactic or semantic unit).

Syntactic representation considers the ASTs of the
source code, enabling a less flat view of the code. Such
representations are larger in size and more difficult to
construct but can capture lexical and syntactic code
properties. They are often combined with recursive
NNs and LSTM models. Their popularity lies mainly
with defect detection tools, especially semantic defect
and vulnerability detection. While ASTs are good at
capturing the structure of the code, they do not cap-
ture the semantics and large and complex pieces of
code very well.12 This is why ASTs are commonly sup-
ported by semantic representation capturing data and
control flow information. The ability of graph mod-
els to capture more advanced semantic properties of
code reflects itself in the use cases: they appear almost
exclusively in tools targeting semantic defects and
vulnerabilities.

Somewhat surprisingly, we observe a very unbal-
anced picture when it comes to the languages beyond
C/C++ and Java. For example, we found that C#, JavaS-
cript, and Python lack tools aimed at detecting and cor-
recting vulnerabilities. The possible reason for prevalence
of C/C++ and Java is that these languages are popular,
well studied, and have large, open databases of known
defects (both bugs and security vulnerabilities). How-
ever, considering the ever-growing popularity of C#,
JavaScript, and Python, it becomes very important to
develop the tools supporting them. This also extends
to other popular languages that did not appear in
the study.

A look at the ML methods highlights the fact that
traditional ML approaches are more of a stepping stone
toward a deep learning solution than solutions of their
own. The reason likely lies in the fact that it is difficult

to define the features that will sufficiently capture the
semantics of the program. The main benefit of deep
learning is its ability to ingest the source code itself (in
an appropriate format) and create its own “features” to
learn from.

Challenges and Future Directions
This article is motivated by the need to discover pat-
terns in the rapidly evolving field of ML for source
code. Some of the challenges toward effective solu-
tions (Table 8) include access to and use of high-quality
training data sets with realistic, representative, and cor-
rectly labeled data; effective source code representation
capable of semantic understanding; standardization in
terms of goals and reporting; detection and correction
across domains; and catching application-specific bugs
(in regard to semantic defects) and high FP rates. We
briefly elaborate on some of these challenges.

There is significant variety in terms of data sets, goals,
testing, and performance reporting. We believe the field
would benefit from some degree of standardization,
potentially in the form of a curated collection of open
source data sets, together with some uniform goals for
each defect type along with a test suite and benchmarks.
Since a tool’s performance can heavily rely on the training
data, stabilizing the data set would enable more precise
evaluation of the tool itself rather than the training data.
Such data sets would ideally consist of realistic source
code with representative errors and high-quality label-
ing to increase the usability of the tools in the real world.
The formalization, or at the very least, clear reporting,
of goals (e.g., in terms of granularity and defect types)
would also enable researchers in the field to get a clearer
and more complete picture of the available tools.

Finally, there is a need for clearer and more com-
plete reporting of performance. One step in the right
direction could be the reporting of the four basic met-
rics (TP, TN, FP, and FN), which facilitate the calcu-
lation of the remaining metrics. However, at the end

Table 8. The key takeaways.

Finding Observation Challenge

Missing detection or correction tools for some
language–defect combinations

2 and 7 Expand correction and detection tools for all defect types

Variety of representation techniques but
struggling to capture deeper properties of code;
oversimplistic embeddings

4, 3, and 5 Advanced (semantic) representations and embeddings

Java and C/C++ most studied languages 6 Expand to more languages

Tool outputs not comparable 13 and 14 Formalize goals and metrics for tools and simplify output for developers

Vast differences in data sets and performance 9, 10, and 11 Collect, standardize high-quality, realistic, and representative data
sets across all defect types and languages

www.computer.org/security� 75

of the day, such metrics tell us little about the usabil-
ity of a tool to its intended users—the developers—
who should be more closely involved in the testing
and evaluation. Future research in the domain should
also consider expansions to other commonly used
programming languages, improve defect localization
precision, and provide a wider coverage of different
defect types.

As mentioned, effective representation seems to be
an active area of research, with more comprehensive
approaches emerging, especially in the form of graph
representations. A common go-to method for tools that
do not invest into novel approaches seems to be the
word-to-vector technique,13 which is primarily a simple
token embedding technique. One then wonders: Why
bother with all the complex representations to flatten
everything at the end of the pipe? We are already seeing
(and expect to see) a further rise in similar but more spe-
cialized x-to-vector-like vectorization techniques capa-
ble of capturing deeper properties of code and, as is the
current trend, finding overfitting with the particular data
set that is used.

Closely related to source code representation is the
challenge of semantic understanding. A tool’s ability
to detect more complex semantic defects and vulner-
abilities depends on its understanding of the source
code. While syntax is finite, well defined, and therefore
easier to understand and capture, the semantics of pro-
grams are harder to capture. As more tools attempt to
tackle complex types of defects, the need for advanced
representation will further increase. In this respect,
graph-based representations capable of capturing com-
plex characteristics of the analyzed programs seem par-
ticularly promising.

Finally, the relatively small number of tools work-
ing with unlabeled data points shows that this is still a
largely unexplored direction. It comes with the chal-
lenge of unsupervised learning, but at the same time,
unlocks access to large data sets of unlabeled corpora,
eliminating the need for synthetic bug introduction and
manual self-labeling.

Acknowledgments
This work was partly supported by the European
Union, under the Horizon 2020 research and innova-
tion program (Assurance and Certification in Secure
Multi-Party Open Software and Services project grant
952647), and The Netherlands’ Sectorplan program.

References
	 1.	 H. Shen, J. Fang, and J. Zhao, “Efindbugs: Effective error

ranking for findbugs,” in Proc. 2011 4th IEEE Int. Conf.
Softw. Testing , Verification Validation, pp. 299–308, doi:
10.1109/ICST.2011.51.

	 2.	 I. Pashchenko, R. Scandariato, A. Sabetta, and F. Massacci,
“Secure software development in the era of fluid multi-party
open software and services,” in Proc. 2021 IEEE/ACM 43rd
Int. Conf. Softw. Eng., New Ideas Emerg. Results (ICSE-NIER),
pp. 91–95, doi: 10.1109/ICSE-NIER52604.2021.00027.

	 3.	 M. Christakis and C. Bird, “What developers want and
need from program analysis: An empirical study,” in Proc.
31st IEEE/ACM Int. Conf. Autom. Softw. Eng., 2016, pp.
332–343, doi: 10.1145/2970276.2970347.

	 4.	 M. Monperrus, “Automatic software repair: A bibliogra-
phy,” ACM Comput. Surv., vol. 51, no. 1, pp. 1–24, 2018,
doi: 10.1145/3105906.

	 5.	 J. Li, P. He, J. Zhu, and M. Lyu, “Software defect pre-
diction via convolutional neural network,” in Proc. Int.
Conf. Softw. Quality, Rel. Secur., 2017, pp. 318–328, doi:
10.1109/QRS.2017.42.

	 6.	 C. L. Goues, M. Pradel, and A. Roychoudhury, “Auto-
mated program repair,” Commun. ACM, vol. 62, no. 12,
pp. 56–65, 2019, doi: 10.1145/3318162.

	 7.	 S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep
learning based vulnerability detection: Are we there yet?”
IEEE Trans. Softw. Eng., vol. 1, no. 1, pp. 1–17, 2021, doi:
10.1109/TSE.2021.3087402.

	 8.	 Z. Shen and S. Chen, “A survey of automatic software vul-
nerability detection, program repair, and defect predic-
tion techniques,” Secur. Commun. Netw., vol. 2020, no. 1,
pp. 1–16, 2020, doi: 10.1155/2020/8858010.

	 9.	 F. E. Allen, “Control flow analysis,” ACM Sigplan Notices,
vol. 5, no. 7, pp. 1–19, 1970, doi: 10.1145/390013.808479.

	10.	 F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Model-
ing and discovering vulnerabilities with code property
graphs,” in Proc. 2014 IEEE Symp. Secur. Privacy, pp. 590–
604, doi: 10.1109/SP.2014.44.

	11.	 M. Allamanis, E. Barr, P. Devanbu, and C. Sutton, “A sur-
vey of machine learning for big code and naturalness,”
ACM Comput. Surv., vol. 51, no. 4, pp. 1–37, 2018, doi:
10.1145/3212695.

	12.	 J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X.
Liu, “A novel neural source code representation based on
abstract syntax tree,” in Proc. 2019 IEEE/ACM 41st Int.
Conf. Softw. Eng. (ICSE), pp. 783–794, doi: 10.1109/
ICSE.2019.00086.

	13.	 T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in Proc. 26th Int. Conf. Neural Inf. Process.
Syst., 2013, pp. 3111–3119, doi: 10.5555/2999792.2999959.

Tina Marjanov is a research assistant at the University
of Cambridge, Cambridge, CB3 0FD, The United
Kingdom. Her research interests include cyberse-
curity, privacy, and machine learning. Marjanov
received an M.S. in computer science from Vrije Uni-
versiteit Amsterdam and the University of Amster-
dam. Contact her at marjanov.tina@gmail.com.

76	 IEEE Security & Privacy� September/October 2022

MACHINE LEARNING SECURITY AND PRIVACY

Ivan Pashchenko is a security manager at TomTom,
Amsterdam, 1011 AC, The Netherlands. His re
search interests include threat intelligence, open
source software security, and machine learning
for security. Pashchenko received a Ph.D. from
the University of Trento. In 2017, he was awarded
a Second Place Silver Medal at the Association
for Computing Machinery/Microsoft Student
Research competition in the graduate category.
He was the UniTrento main contact in the Con-
tinuous Analysis and Correction of Secure Code
work package for the Horizon 2020 Assurance and
Certification in Secure Multi-Party Open Soft-
ware and Services project. Contact him at ivan.
pashchenko@tomtom.com.

Fabio Massacci is a professor at the University of Trento,
Trento, 38123, Italy, and Vrije Universiteit Amster-
dam, Amsterdam, 1081 HV, The Netherlands. His
current research interest is in empirical methods for
cybersecurity of sociotechnical systems. Massacci
received a Ph.D. in computing from the Sapienza Uni-
versity of Rome. He participates in the Cyber Security
for Europe pilot and leads the Horizon 2020 Assur-
ance and Certification in Secure Multi-Party Open
Software and Services project. For his work on secu-
rity and trust in sociotechnical systems, he received
the Ten Year Most Influential Paper Award at the
2015 IEEE International Requirements Engineering
Conference. He is a Member of IEEE. Contact him at
fabio.massacci@ieee.org.

IEEE Pervasive Computing

seeks accessible, useful papers on the latest

peer-reviewed developments in pervasive,

mobile, and ubiquitous computing. Topics

include hardware technology, software

infrastructure, real-world sensing and

interaction, human-computer interaction,

and systems considerations, including

deployment, scalability, security, and privacy.

 Call
 for Articles

Author guidelines:

www.computer.org/mc/

pervasive/author.htm

Further details:

pervasive@computer.org

www.com
puter.o

rg/perv
asive

Digital Object Identifier 10.1109/MSEC.2022.3199549

