
108	 March/April 2022	 Copublished by the IEEE Computer and Reliability Societies � 1540-7993/22©2022IEEE

LAST WORD 

Open Source and Trust

O f late, two major incidents involving 
open source software have been in 

the news. The more serious involved a Java 
logging package called “log4j”; the other 
involved a pair of JavaScript packages, “colors.
js” and “faker.js”. The incidents were very dif-
ferent, but there are some commonalities and 
some important distinctions in the lessons we 
should learn.

Log4j had a serious security hole, inserted 
intentionally by the developer who was unaware 
of the security implications. There was no 
malice involved, merely carelessness. But the 
error—effectively, trusting attacker-supplied 
input—would almost certainly have been 
spotted by any competent security person 
who looked carefully at its capabilities. The 
obvious corollaries to this are that neither the 
developers nor the many users of this package had 
the necessary 
security back-
ground. This 
kind of problem 
is not new; way 
back in 1994, 
Bill Cheswick 
and I wrote this 
about an Inter-
net log analyzer: “Simple versions could easily fall 
victim to a sophisticated attacker who uses file 
names containing embedded shell commands.”

The second issue was more curious. Accord-
ing to press reports, in apparent response to 
how the log4j developers handled the security 
reports—they worked hard, for free, through 
a holiday weekend to patch their code—the 
developer of colors.js and faker.js replaced 
the modules with intentionally broken ver-
sions. He had said, “Respectfully, I am no 
longer going to support Fortune 500s (and 
other smaller sized companies) with my free 
work… Take this as an opportunity to send me 
a six figure yearly contract or fork the project 
and have someone else work on it.” Sites that 
pulled in the latest version fell victim to what is 

in essence a supply chain attack, much like the 
SolarWinds incident of a few months ago.

The wrong lesson to be drawn from these 
incidents is “don’t trust open source software.” 
Very reputable companies have had secu-
rity holes about as egregious as log4j’s; the 
SolarWinds attack showed that supply chain 
attacks can come from anywhere.

A better lesson is one we all learned in 
childhood: “know what you’re putting in your 
mouth.” That is, before you install a package 
such as log4j, know what you’re getting. Actu-
ally examining the source code isn’t easy—if it 
spotting security holes were that simple, they 
wouldn’t exist at all: the developer would have 
found them. But understanding the capabilities 
of a package, e.g., the potential invocation of 
Java Naming and Directory Interface ( JNDI) 
on untrusted input, should have been a 

red flag.
The lesson 

applies to the 
newest versions 
of the colors.
js and faker.
js  packages. 
“Install updates 
promptly” is a 

reasonable policy, but if you’re running a pro-
duction service you should always test new 
code before deploying it, even if you aren’t 
worried about malice. I learned the lesson 
“Never install .0 of anything” about 50 years 
ago; the lesson still holds: new code is often 
buggy code, and you don’t want to rely on it 
on your mission-critical servers. 

And that brings up the real lesson here: 
whom do you trust, and when do you make 
that decision? If something is downloaded 
from an external source at run-time, you make 
the trust decision every time that program is 
run. More precisely, you have explicitly made 
the trust decision once, when you decided to 
invoke some external resource, but you make 
it again implicitly at each invocation. By con-
trast, with a resource that is downloaded once 

Digital Object Identifier 10.1109/MSEC.2022.3142464
Date of current version: 21 March 2022

Steven M. Bellovin
Columbia University

continued on p. 107

And that brings up the real lesson 

here: whom do you trust, and when 

do you make that decision?



www.computer.org/security� 107

and bundled with your code, you 
know when you’ve decided to rely 
on its correctness. You can (and 
often should) update to a newer ver-
sion, but that gives you a chance to 
look at the changes and test them.

Open source from single devel-
opers can make this worse. If a major 
project or code base—MacOS, Win-
dows, the Linux kernel, the Apache 
web server—contained deliberately 

sabotaged code, they may as well 
close down immediately; no one 
would ever trust them again. With 
small developers, you may not see 
that. More commonly, you may not 
see when economic or time pres-
sures have made them stop working 
on a project, meaning that problems 
will never be fixed. What is needed 
is a larger framework in which these 
projects can be embedded, one that 

solves the economic, time pressure, 
and code testing issues. This will 
make it reasonable to extend trust 
implicitly, with confidence that noth-
ing horrible will happen. 

Steven M. Bellovin is a professor of 
computer science and affiliate law 
faculty at Columbia University. 
Contact him via https:// www.
cs.columbia.edu/~smb.

continued from p. 108Last Word

Write for the IEEE Computer 
Society’s authoritative 
computing publications 
and conferences.

IEEE COMPUTER SOCIETY

Call for Papers

GET PUBLISHED
www.computer.org/cfp

Digital Object Identifier 10.1109/MSEC.2022.3152892


