
96	 November/December 2015	 Copublished by the IEEE Computer and Reliability Societies � 1540-7993/15/$31.00 © 2015 IEEE

LAST WORD

Steven M. Bellovin
Columbia University

The Key to the Key

We’re hearing a lot about encryption
these days. It might be the US Fed-

eral Bureau of Investigation complaining
about encrypted iPhones or privacy advo-
cates bemoaning the lack of encryption on
breached databases. These discussions fre-
quently miss a vital point: What about the
keys? Where do they come from, how are
they handled, and who has access to them?
Whenever someone says that something is
encrypted, the first question you should ask—
before you ask about algorithms, data formats,
or protocols—is, “What about the keys?”

Protecting keys has been a priority
throughout the history of cryptography.
When spies stole codebooks, they were actu-
ally stealing keys. Additive tables, a form of
superencipherment, are themselves a form of
key, intended to encrypt the codebook. Both,
of course, were targeted by cryptanalysts who
were really trying to recover the keys.

However, there’s a subtle point here: a
cryptosystem is a system. The surrounding
context is vital—how the system is used, what
other information is available to cryptana-
lysts, and how people actually use the system.
Thus, to crack the Enigma machine during
World War II, the British exploited standard
messages (“Nothing to report”); the same
message sent in other, weaker ciphers; and
cipher clerks’ propensity to pick bad session
keys (“cillies”). All of this matters—it’s not
just the combinatorics of the key space.

Cryptographers understand this as well
as cryptanalysts do, of course. In recent
decades, a major goal of encryption system
design has been to introduce more keys, so
that recovery or compromise of one doesn’t
expose an entire communications network.
That’s why the Enigma procedures required
use of session keys: to limit the damage if a
key was recovered.

In recent years, key freshness—ensuring
that no key is reused and that both parties can
verify this—has been a major cryptographic
protocol design goal. Sometimes, though, the
systems issue is neglected, especially by those
who don’t deal with cryptanalysis daily.

We see this in the current debate about the
challenges strong cryptography poses. Govern-
ments around the world are demanding that
developers provide ways around strong cryp-
tography. In the US, its proponents have called
this a “golden key.” They’re right to be thinking
about the keys—but they’re neglecting the sys-
tems aspect of the problem. Will these schemes
expose only the right information, and to only
the right parties? Many suggestions have been
made, such as encrypting the data encryption
key with law enforcement’s public key. There
are many reasons to be skeptical, starting with
the fact that we’re dealing with a system.

Consider the problem of buggy code. Code
is frequently buggy, including the program-
ming to export keys “only” to law enforcement.
I don’t have to speak hypothetically; it’s hap-
pened in the past. Look at it this way: exporting
keys to third parties is by definition a security
breach. The intent is to limit the scope of the
breach—but did the programmer get the lim-
its right? Even if he or she did, the basic export
code can still be abused if some other secu-
rity problem exists. According to published
reports, abusing a Greek cell phone switch to
tap calls took only 6,500 lines of code—but
that’s because the basic tapping software had
already been built in for law enforcement’s use.

There’s another issue: How does the soft-
ware get the proper law enforcement key?
If it’s compiled in, how are other countries’
needs handled? If it’s supplied at device acti-
vation time—assuming that the device needs
to be activated—where is the device when
activation takes place? How does the vendor’s
activation software know the device’s real
location? How does the vendor reliably and
securely get these public keys from the police?

T here are many more such issues, but my
fundamental point is simple: protecting

keys requires protecting the entire system.

Steven M. Bellovin is a computer science pro-
fessor at Columbia University. Contact him
via www.cs.columbia.edu/~smb.

