

2 Copublished by the IEEE Computer and Reliability Societies

This work is licensed under a Creative
Commons Attribution 4.0 License. For more information,

see https://creativecommons.org/licenses/by/4.0/

Trusted execution environments provide strong security guarantees, like isolation and confidentiality,
but are not immune from memory-safety violations. Our investigation of public trusted execution envi-
ronment code based on symbolic execution and fuzzing reveals subtle memory safety issues.

T rusted execution environments (TEEs) strongly
isolate sensitive code and data from an untrusted

computing environment, e.g., the operating system (OS),
hypervisor, and other applications. TEEs are designed to
allow developers to protect small parts of their applica-
tion within secure containers, often called enclaves, to
securely handle sensitive data, such as cryptographic
keys. An enclave is a strongly isolated execution environ-
ment that can be dynamically created, while the main
application, known as a host, is running. These enclaves
run inside a host application and should even remain
secure after the host is compromised. In general, enclaves
are as susceptible to memory corruption attacks as any
other system software. In fact, many enclaves that we col-
lected and analyzed are developed in the memory-unsafe
languages C and C++. However, given that the main pur-
pose of enclaves is the protection of security-critical code
and data, as well as their small code size, we would expect
that the code has been thoroughly tested and validated.
In addition, memory-safe languages, such as Rust, are
supported to program enclaves.

In this article we provide a deep dive into analyz-
ing public enclaves to validate whether they are suffi-
ciently protected against memory corruption attacks.
In particular, we examine the host-to-enclave boundary

as this interface is used to send untrusted (i.e., poten-
tially malicious) input to a trusted code zone. To per-
form this analysis, we reverse-engineer public enclave
code and develop automated analysis techniques based
on symbolic execution and fuzzing to assess the secu-
rity of enclaves. Our findings demonstrate that an
erroneous implementation of the application program-
ming interface (API) at the host-to-enclave boundary
is often the root cause for memory corruption vulner-
abilities in enclave code. Our investigation focuses on
the popular TEE implementation of Intel, called Intel
SGX (software guard extensions). For instance, Micro-
soft Azure offers SGX-based enclaves to their customers
and features sophisticated memory protection tech-
niques, e.g., enclave code and data are encrypted and
integrity-protected. We also discuss the extent to which
our results apply to other TEE technologies on ARM,
RISC-V, or AMD.

SGX Threat Model
SGX enclaves are loaded into the virtual address
space of the host process. However, only the enclave
can access its own private and secure memory. The
enclave memory is stored in an encrypted and
integrity-protected memory region in RAM to pro-
vide strong isolation and to safeguard the enclave
against hardware-level attacks.

Memory Corruption at the Border of
Trusted Execution
Tobias Cloosters and Oussama Draissi | University of Duisburg-Essen
Johannes Willbold | Ruhr University Bochum
Thorsten Holz | CISPA Helmholtz Center for Information Security
Lucas Davi | University of Duisburg-Essen

Digital Object Identifier 10.1109/MSEC.2024.3381439

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://orcid.org/0009-0008-3682-0197
https://orcid.org/0009-0005-6065-8087
https://orcid.org/0000-0001-8074-4322
https://orcid.org/0000-0002-2783-1264
https://orcid.org/0000-0002-7322-2777

www.computer.org/security 3

An enclave can directly use the host data for its com-
putation, as it is assigned the same read and write per-
missions to the virtual address space. However, enclave
access to the host’s virtual address space should be used
with care, as there is a high change for race conditions or
time-of-check/time-of-use bugs. Hence, this is usually
only done when copying input data to private memory or
for returning output data upon completion of an enclave
call. In contrast, code execution permissions are more
restrictive, i.e., using branch instructions (x86: jmp/
call) across the host-to-enclave boundary is prohibited.
Instead, dedicated SGX instructions have to be used.

These instructions limit enclave execution as fol-
lows: The host process starts executing enclave code
using the special EENTER instruction, which enables
enclave mode and jumps to a selected entry point. The
entry points of enclaves are defined in the so-called
thread control structures (TCSs), which are locked while
in use by a thread. This makes the number of TCSs
also the maximum number of threads that can enter
an enclave concurrently. Defining only one TCS is an
effective means to mitigate time-of-check/time-of-use
bugs. Further, the enclave must explicitly leave enclave
mode by using the EEXIT instruction before the thread
can execute any host application code.

Pointer Handling
Unsafe pointer operations are the root cause of count-
less vulnerabilities. However, pointers are also crucial to
implement memory access. The threat model of TEEs
defines a powerful attacker that controls most of the sys-
tem; thus, pointers have to be handled with extreme care.

On the assembly level, chunks of data are always
handled using pointers. This is also true when pass-
ing chunks of data across the host-to-enclave bound-
ary. Since the whole host memory is shared with the
enclave, these pointers are per se indistinguishable from
other code pointers. As a result, SGX enclaves may unin-
tentionally operate on untrusted data when handling
pointers. Therefore, SGX enclaves should ideally check
if pointers reference untrusted (outside) or private data
(inside) before use. As we will show later, performing
this check accurately is not always straightforward.

In particular, it is important that enclaves verify
that a given input is not part of their own private mem-
ory. For example, an enclave may serve as a transport
layer security (TLS) client that stores and protects the
encryption secrets in its private memory. When an
attacker calls the “send data” method using a pointer to
the internal secrets, and if the pointer is not validated,
the enclave would send the secrets to a remote party.
The same applies in the other direction: Failure to vali-
date an attacker-provided destination pointer being
outside may result in a “receive-data” function writing

the data intended for the host application into its private
memory, thereby corrupting its own integrity.

Furthermore, enclaves should never be designed
to purposely take pointers to private memory as input
arguments, but we have seen it abused for compatibil-
ity purposes, thereby introducing vulnerabilities. When
developing C libraries, it is common practice to store
state in objects and to use a pointer to this state to iden-
tify subsequent library calls to the same state, such as a
TLS session. However, using this pattern in enclaves is
risky because the session pointer now crosses the trust
boundary, making it attacker controlled. This is even
exploitable if the enclave validates that the pointer’s
memory is part of its private memory. Due to possible
race conditions, an enclave can never operate directly
on outside data; the very first action is always to copy
input data into the enclave. The consequence is that—
even if the data validation fails—there is now a copy
in the private memory. The attacker can abuse this to
construct counterfeit objects in the secure memory. We
discovered this bug pattern and identified multiple vul-
nerable TLS enclaves.

Fortunately, Intel provides a regularly updated SGX
software development kit (SDK) to ease the memory
operations at the boundary. This SDK includes an
interface generator that automatically generates code
for secure input and output copies. However, it only
supports simple and linear data types like byte buf-
fers and strings. For more complex and, in particular,
nested structures, it still up to the developer to perform
a secure copy manually.

Nested Pointers
Structures that reference substructures are even harder
to validate safely. The TaLoS3 project implemented
shadow copies of input data to protect the TLS session
objects within the enclave, but also to allow the host
application to access some attributes. These shadow
objects are created using the input at the beginning of
enclave functions and changes are written back after-
ward. Our analysis revealed several critical vulnerabilities
in this code rooted in race conditions and null-pointer
dereferences. Thus, the SGX SDKs opted not to support
arbitrary complex data types. Current SDKs show two
primary approaches for passing data between enclaves
and hosts, supporting only basic data types or com-
pletely serializing and deserializing the objects. While
the latter approach avoids the need for developers to val-
idate objects themselves, it also adds a lot of code com-
plexity and run-time overhead to the enclave.

Null-Pointer Dereference
The memory address “zero” plays a noteworthy role
in the exploitation of SGX enclaves. We have found

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE Security & Privacy

several exploits abusing this address. Many program-
ming languages, including C/C++, conventionally use
zero to indicate uninitialized or missing data. Thus,
fresh pointer variables are typically initialized to the null
pointer and numerous functions from standard librar-
ies return the null pointer to indicate an error. However,
the virtual address 0 is a valid address in user space, but
since modern kernels prohibit its usage, null-pointer
dereferences are rather harmless. In contrast, in the
SGX setting, a null-pointer dereference is critical. Since
the kernel is untrusted, an attacker can easily disable
the kernel safeguards for address 0. As a consequence,
enclaves that erroneously read a null pointer may not
fail but rather read untrusted data.

Exploitation of SGX Enclaves
Memory corruption vulnerabilities are a major security
concern, as they allow attackers to modify memory in a
way that leads to malicious behavior. These vulnerabili-
ties can be exploited to manipulate control-flow infor-
mation, such as return addresses and function pointers,
or to corrupt noncontrol data, such as decision-making
variables. In both cases, the attacker can influence the
program’s execution flow and execute malicious code.

Over the past years, we have witnessed an ongo-
ing battle between defenses and memory corruption
attacks. Data execution prevention effectively thwarts
injection of malicious code into data memory, in
particular for SGX because mprotect is not available.
However, it can be bypassed through return-oriented
programming (ROP) attacks, which exploit exist-
ing code residing in code memory without injecting
new code. ROP attacks are more challenging against
SGX enclaves because the enclaves can be shipped as
encrypted binaries, which hinders the static analysis
to find ROP gadgets. This is addressed by Dark-ROP,4
a technique to dynamically identify ROP gadgets by
iteratively executing the enclave and analyzing mem-
ory accesses. This method enables the identification
of ROP gadgets in real time by dynamically observ-
ing the memory behavior during execution. On the
other hand, Dark-ROP attacks require a consistent
memory layout of an enclave. Hence, code randomiza-
tion (address space layout randomization or ASLR)
schemes like SGX-Shield can be used to effectively
mitigate Dark-ROP attacks.

Nevertheless, current SGX randomization schemes
fall short in providing comprehensive protection
against all types of ROP attacks. Biondo et al.5 show
that the Intel SGX SDK contains several powerful
ROP gadgets at locations that cannot be randomized as
part of the fixed-entry points of SGX enclaves. These
gadgets are invoked when resuming the context of an
SGX enclave (OCALL-return). Therefore, an attacker

can still hijack a vulnerable enclave by launching a
memory-corruption attack and providing counterfeit
context information. Even if we assume the existence of
a perfect control-flow integrity (CFI) scheme, noncon-
trol data attacks still pose a threat. These attacks manip-
ulate data without breaking the benign control flow and,
therefore, cannot be prevented by CFI.

The current state of exploitation techniques indicates
that all vulnerabilities in enclaves must be considered
critical. If an enclave contains a memory-corruption vul-
nerability, defenses are unlikely to prevent compromise.

In summary, memory corruption attacks against
SGX typically exploit the host-to-enclave boundary, as
this serves as an entry point to trigger and halt enclave
execution.

Vulnerability Analysis
In the following, we summarize our approaches to vul-
nerability detection.

Symbolic Execution
Symbolic execution was first proposed in the 1970s as
a generalization of testing and has become one of the
standard tools for high-coverage testing and vulner-
ability analysis. However, the modeling of side effects
caused by the OS is highly challenging, e.g., symbolic
execution must typically simulate and support all OS
system calls and manage a simulated file system. Fortu-
nately, there are several SGX peculiarities that simplify
symbolic execution for SGX enclaves: Enclave code
is self-contained (i.e., no external dependencies like
libraries) and isolated from the rest of the system. SGX
enclaves are prohibited to perform any system calls
and any interaction with the OS is handled through an
OCALL to the untrusted host application.

The high-level architecture of TeeRex1 is shown
in Figure 1. The main goal of our method is to find
vulnerable states during the symbolic exploration. In
particular, TeeRex uncovers unsafe usage of point-
ers in the input, and null pointers, which in the con-
sequence enables an attacker to control the enclave’s
private memory and its execution. Further, it aims
to collect metadata to eventually generate a detailed
vulnerability report. This is achieved by executing
each ECALL symbolically and checking every state
for different vulnerability classes. To produce accu-
rate vulnerability reports, we add pointer tracking to
the symbolic execution engine. This allows us to track
pointer dereferences and propagate labels that allow us
to distinguish between data loaded from enclave and
host memory. As a result, TeeRex can spot vulnerable
instructions that read data from outside the protected
enclave memory. Note that TeeRex does not detect
vulnerabilities caused by multithreading.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

www.computer.org/security 5

TeeRex produces a vulnerability report, which con-
tains: 1. the type of the vulnerability, 2. the location in
the binary, 3. the controlled pointer and its position in
the attacker-controlled input, and 4. an execution trace
to reach the vulnerable instruction. The vulnerabil-
ity report provides sufficient detailed information to
an analyst for constructing a proof-of-concept exploit,
even for closed-source enclaves.

Fuzzing
Fuzzing (short for “fuzz testing”) is a dynamic
program-analysis technique where a fuzzer feeds seem-
ingly random input into a program. In our SGXFuzz2
approach, we use feedback-driven fuzzing and present a
novel method for fuzzing SGX enclaves that efficiently
synthesizes nested input structures. Our approach con-
sists of an enclave transplantation technique and a data
structure synthesis method. A high-level overview of
our approach is shown in Figure 2.

Enclave Transplantation
While multiple approaches to fuzzing SGX enclaves
were explored, the main problem was to obtain feed-
back, usually in the form of code coverage, indicating
which code branches were covered during execution.
To address this, we extract the memory, including the
code part of an enclave, and transplant it into a user
space application. We extract the enclave memory by
introducing changes to the SGX drivers for Linux and
Windows to automatically dump the enclave’s code.
The specially crafted user space application mimics the
SGX environment and instructions, most importantly,

the context switches (i.e., EENTER and EEXIT). A
notable exception are the instructions for attestation,
for which we do not have access to the processor’s inter-
nal key. We intercept SIGILL signals to detect SGX’
ENCLU instruction without the need for SGX-capable
hardware. This allows us to mimic an SGX environment
without emulation.

Data Structure Synthesis
With this user space application, we can execute
enclaves natively without any form of emulation and
the inherent constraints to introspection imposed by
regular SGX setups. The ability to natively execute the
enclave as user space application also enables efficient
fuzzing using readily available fuzzing tools. While
previous SGX fuzzing approaches were either limited
in compatibility (i.e., requiring specific source code
changes) or feedback (i.e., not having efficient code
coverage feedback), our approach solves both problems
and is binary-only compatible. Apart from requiring an
efficient execution setup, enclaves also pose the chal-
lenge of feeding the correct input format. Usually, when
fuzzing a program, the target receives data in form of a
single buffer (e.g., via standard input), making it trivial
for a fuzzer to generate this linear buffer. However, since
functions expose regular C functions as their APIs, they
might receive any number and type of parameters. To
know these signatures in advance, header files or static
analysis are required to reverse-engineer them. Instead,
we implement an analysis-free binary-only data struc-
ture synthesis approach, which incrementally “learns”
the layout of the input structure and uncovers possible

Figure 1. The architecture of TeeRex is split into several major components. The preprocessor identifies instructions and functions that cannot
be executed symbolically and locates the ECALL table. The enclave loader sets up the environment and creates the argument structure for
the ECALL with unconstrained symbolic values. The vulnerability detection analyzes the symbolic states during symbolic exploration for
vulnerabilities, and specifically analyzes instructions that access memory and jumps. TeeRex also implements pointer tracking to determine
whether data are loaded from enclave or host memory, or loaded via an ECALL parameter.

Identify
ECALLs

Symbolic Hooks
for Common

Functions

Enclave
Binary

Exploit

TeeRex
Preprocessor

(Static Analysis) Vulnerability Report

Controlled Pointer

Symbolic
Execution Trace

Vuln. Instruction

Vulnerability Class

Analyst

Emulation
of Special

Instructions

Pointer
Tracking

Symbolic
Explorer

Enclave
Loader

Vulnerability Detection

Controlled Branches

Controlled Writes

NULL-Pointer Dereferences

TeeRex Symbolic Execution

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE Security & Privacy

size fields of variable-sized arrays. Thus, any access
beyond our buffer causes a memory fault and prompts
us to adjust the layout.

Finally, to detect enclave-specific access violations,
i.e., the enclave working on untrusted memory, we
probe different types of pointer in the previously deter-
mined input layout. More specifically, we test whether
pointers inside, outside, or on the enclave’s memory
boundary lead to distinctive code coverage.

In total, we found 79 vulnerabilities, of which three
have been assigned common vulnerabilities and expo-
sure identifiers and a bug bounty of US$ 13k was issued.
Notably, we did not encounter any false positives in
our evaluation of SGXFuzz. We manually verified that
each report is caused by an actual bug, only some bugs
occurred duplicated, resulting in more reports than ver-
ified bugs.

Examining current and ongoing research, the gen-
eration of structures for SGX fuzzing remains a persis-
tent topic. Khan et al.6 use a combination of static and
symbolic program analysis of the enclave and its host
application to infer the enclave interface.

Symbolic Execution Versus Fuzzing
An overview of all vulnerabilities found and the root
causes identified is provided in Table 1. In the following,
we discuss the strengths and weakness of the two analy-
sis techniques we used. First, there are the fundamental
advantages of fuzzing and symbolic execution, respec-
tively. Fuzzing provides complete and reproducible test
cases with a low false-positive rate. However, every test
case starts at the entry point and tests a full execution
path. Further, fuzzers have to test identical code paths
multiple times until they find a new path because the
exact relation between input bytes and branches taken
is unknown. At some point, this will reach roadblocks
that the fuzzer cannot solve.

Symbolic execution, on the other hand, is a compre-
hensive approach to explore all possible program states
in a single analysis. However, a complete analysis of
nonnegligible code sizes is infeasible due to the amount
of possible states. Hence, practical symbolic execution
approaches focus on specific parts and approximate
or exclude others. Moreover, there are conceptional
no-ops in programs that introduce high complexity for
a symbolic solver. For example, SGX enclaves create
secure copies of input data using malloc and memcpy.
While this hardly affects possible memory corrup-
tions, these memory management functions consist
of many read/write instructions that impose a burden
for the symbolic memory. As a countermeasure, sym-
bolic execution engines try to replace these functions
with mocks that are optimized for symbolic engines,
but this is not trivial for stripped closed-source binaries, Fi

gu
re

 2
. H

ig
h-

le
ve

l o
ve

rv
ie

w
 o

f S
G

XF
uz

z a
rc

hi
te

ct
ur

e.
2 W

e
fir

st
 e

xt
ra

ct
 th

e
en

cl
av

e’s
 m

em
or

y
fro

m
 th

e
en

cl
av

e’s
 d

ist
rib

ut
io

n
fo

rm
at

. T
he

 e
nc

la
ve

 ru
nn

er
 (o

r h
ar

ne
ss

) i
s c

ap
ab

le
 o

f e
xe

cu
tin

g
an

y
EC

A
LL

 o
ut

sid
e

SG
X

us
in

g
th

e
du

m
pe

d
en

cl
av

e,
 a

 se
ria

liz
ed

 st
ru

ct
ur

e
de

sc
rip

tio
n,

 a
nd

 th
e

pa
yl

oa
d

by
te

s.
O

ur
 S

G
X

st
ru

ct
ur

e
fu

zz
er

 u
se

s t
he

 si
gn

al
s e

m
itt

ed
 d

ur
in

g
th

e
en

cl
av

e’s
 e

xe
cu

tio
n

to
 g

en
er

at
e

an
d

ad
ap

t t
he

 la
yo

ut
s o

f t
he

 st
ru

ct
ur

es
.

&
bu

f1
&

bu
f0

B
uf

fe
r

0B
uf

fe
r

1

1)
 S

et
up

2)
 S

tr
uc

t A
llo

ca
tio

n
an

d
E

C
A

LL

E
nc

la
ve

 M
em

or
y

cm
p

 r
ax

,0
x0

jn
z

 0
x5

55
55

58
f7

7b
6

m
ov

 r
ax

,q
w

or
d

pt
r g

s:
[0

x8
]

cm
p

 r
ax

,0
x0

jn
z

 0
x5

55
55

58
f7

73
a

m
ov

 r
ax

,r
bx

su
b

 r
ax

,0
x1

00
00

su
b

 r
ax

,0
x2

b0
xc

hg
 r

ax
,r

sp
... en

cl
u

S
G

X
 S

tr
uc

tu
re

 F
uz

ze
r

E
C

A
LL

S
tr

uc
tu

re
P

ay
lo

ad

S
tr

uc
t S

yn
th

es
is

E
C

A
LL

E
xp

lo
ra

tio
n

S
iz

e
F

ie
ld

 D
et

ec
tio

n

kA
F

L
P

ay
lo

ad
M

ut
at

io
n

S
iz

e
F

ie
ld

H
av

oc

P
oi

nt
er

 T
yp

e
H

av
oc

N
at

iv
e

E
nc

la
ve

 R
un

ne
r

E
nc

la
ve

 D
um

pe
r

en
cl

av
e.

si
gn

ed
.s

o

A
na

ly
ze

 F
au

lt

R
eg

ul
ar

S
ig

na
l

ex
it

F
au

lt
In

fo

3)
 F

ee
db

ac
k

S
et

 S
ig

na
l H

an
dl

er
In

iti
al

iz
e

E
C

A
LL

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

www.computer.org/security 7

whereas the overhead of these functions is negligible
for a fuzzer. As a result, it is difficult for TeeRex to ana-
lyze ECALLs with complex input structures in stripped
closed-source binaries.

Race Conditions, OCALLs, and Call Order
In addition to the blackbox approaches of TeeRex and
SGXFuzz, source-code based analysis can reveal more
complex vulnerabilities. COIN attacks7 analyze vul-
nerabilities that arise from the interaction of multiple
ECALLs. First, if enclaves opt to enable multithreading,
race conditions become a serious threat and enclaves
have to implement locking mechanisms for their private
memory access. SGXRacer8 is also a blackbox approach
to specifically detect race conditions in SGX enclaves.
However, it unfortunately reports many false positives.
Second, as also shown by the presented blackbox tools,
the call order is significant for SGX, e.g., skipping the
initialization ECALL may lead to null-pointer derefer-
ences. COIN is able to reveal more subtle cases due to
source-code analysis.

Third, OCALLs extend the enclave API and
introduce further data input to ECALLs. That is,
the attacker-controlled data for a single ECALL now
consists of the original input data plus all return
data every time the enclave function performs an
OCALL. Although TeeRex and SGXFuzz support
the concept, it is not yet implemented in the current

automated analysis process. Attacks using manipu-
lation of return values were introduced for kernel
system calls, i.e., Iago9 attacks. Cui et al.10 show that
Iago attacks are also a threat to SGX enclaves, in par-
ticular, when legacy code is ported to enclaves using
compatibility wrappers.

Finally, OCALLs may also introduce reentrancy vul-
nerabilities, depending on the enclave configuration.
This scenario considers one additional level of call, i.e.,
an ECALL leaves the enclave for an OCALL that again
calls into the enclave before returning. In this case, the
first (outer) ECALL is not finished when the second
ECALL is executed, which may lead to state inconsis-
tencies. The attack of this nature is explained in COIN,7
but it has not been assessed.

Toward Memory-Safe SGX Enclaves
The vulnerabilities we discovered showed similar pat-
terns of development practices that easily introduce
bugs in SGX enclaves. These are usually code patterns
from C/C++ libraries, where either the pattern or even
legacy code bases were taken into the development of
enclaves. After reporting our findings, developers took
our advice into consideration to change and secure the
interaction between the host and the enclave.

The first vulnerability pattern we found is the (pri-
vate) state of SGX enclaves. C libraries commonly let
the main application allocate and delete the memory

Table 1. Vulnerabilities found by our analysis using symbolic execution and fuzzing, respectively.

Enclaves
Unchecked
Address in Input

Race
Condition

Uninitialized/
Null Pointers

Out-of-
Bounds Access

Inside
Pointers

Overlapping
Pointers

Symbolic execution
 Intel GMP example
 Rust SGX SDK’s tlsclient
 TaLoS TLS client
 WolfSSL example enclave
 Synaptics SynaTEE driver
 Goodix fingerprint driver

–
–
•
–
•
•

–
–
•
–
–
–

–
–
–
–
–
–

•
•
•
•
•
•

–
•
–
–
–
–

•
–
•
–
–
–

Fuzzing
 Goodix fingerprint driver
 sgxwallet
 Gingytech fingerprint driver
 STANlite
 ELAN fingerprint biometric SSL
 Town Crier
 Synaptics fingerprint driver enclave
 OMEC Project’s C3P0
 lockbox
 SGX Darknet
 Plinius

•
•
–
•
•
•
–
•
•
–
–

–
–
–
–
–
–

–
–
–
–
–

•
•
–
–
–
–
•
–
–
•
–

–
–
–
–
–
–

–
–
–
–
–

–
–
–
–
–
–

–
–
–
–
–

–
–
•
•
–
–

–
–
–
–
•

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE Security & Privacy

for state objects. Further, the libraries trust the main
application to only use the correct type of state
objects that are valid for calling a library function. In
other words, the library code typically assumes that
the state objects are valid and trusted. In SGX, state
management has to happen within the enclave and
state objects have to be validated for specific enclave
functions. While developers tend to take validation
of input into account, it is often missed for internal
state objects leading to null-pointer dereferences. We
encountered multiple enclaves that use one function
for initializing the internal state, while other functions
operate on this state. Since the state is purely internal,
other functions trust this state. However, in SGX, an
attacker can also call these functions without calling
the initialization first. Hence, the enclave functions
operate on the attacker-controlled address zero. Most
prominently, we found this type of vulnerability in all
fingerprint driver enclaves we analyzed. Since these
enclaves are closed source, we cannot analyze code
patterns. However, binary analysis reveals that Synap-
tics added various checks on input and state objects
after we reported our findings.

While missing state initialization is the most obvious
kind of violation of the state invariants, there also may be
other constraints. For example, a cryptographic library
may require session initialization and key exchange before
sending data. An attacker that initializes a session but skips
key exchange may send data using an uninitialized key,
thus breaking the encryption. For one fingerprint driver
enclave, we constructed an exploit that reads arbitrary
private enclave data because the enclave can be tricked to
encrypt its memory using an uninitialized key.

The second insecure coding pattern addresses the
state references. We noticed that TLS enclaves of the
Rust SDK and WolfSSL return pointers to the private
memory to track different TLS sessions. As discussed
above, this is exploitable because it is impossible for
an enclave to check whether the referenced session is
genuine. An attacker can easily inject arbitrary data into
an enclave as part of a legitimate call because enclaves
always have to copy the input data before validation.
Therefore, the only option is to verify not the session
but whether the pointer itself is a known valid session.
This requires the enclave to keep a list of valid session
pointers and effectively make the pointer an arbitrary
resource identifier. The developers of the TLS enclaves
of the Rust SDK and WolfSSL followed our advice and
replaced the session pointer with an ID serving as an
index in a list of internal session objects.

The third pattern is related to nested data structures.
The Intel GMP example code demonstrates GMP math
usage inside enclaves by adding two numbers. To do
so securely, the code first creates copies of the input

numbers in the private memory. However, as it turns
out, these copies are flat copies and still reference out-
side memory. We demonstrated that this vulnerabil-
ity allows arbitrary writes in the enclave. This bug was
probably missed by the enclave developers because the
internal structure of GMP numbers is not visible to the
users of GMP. Thus, they were not aware of the nested
references while using GMP for the enclave. After we
reported our findings, the example was changed to only
pass serialized data across the enclave boundary. That is,
the numbers are now represented as text strings instead
of a binary representation.

In general, data serialization is the most promising way
to mitigate pointer-based vulnerabilities at the host-to-
enclave boundary. Intel’s enclave definition language can
protect strings and other flat data structures (i.e., without
nested pointers). Google’s enclave SDK goes one step
further and serializes the data using protobuf definitions,
which also supports more complex data structures.

Overlapping Memory in the Rust SGX SDK
The Rust SGX SDK is a framework for developing
SGX enclaves in the Rust programming language. This
promises memory safety within these enclaves due to
the inherent memory safety properties of Rust. The
Rust SGX SDK is shipped with a tlsclient enclave as an
example how to run a TLS server and client inside an
SGX enclave. We analyzed the tlsclient enclave using
TeeRex and discovered a memory-corruption vul-
nerability that enables arbitrary code execution. This
example demonstrates that Rust cannot protect against
memory-corruption at the host-to-enclave boundary
since it is unaware of this border.

The API of the enclave consists of functions to cre-
ate TLS sessions, and then utilize the session to send
and receive data securely. Since this used pointers to
private memory for the session objects, this enclave is
vulnerable to an object-injection attack, where coun-
terfeit objects are written to enclave memory as part of
legitimate data in another enclave function. However,
this vulnerability can even be exploited without object
injection due to another misconception. The develop-
ers who used the pointer-as-session reference intended
to disallow sessions outside the secure memory, thus
ensuring that the reference is not in the untrusted mem-
ory region of the host application. Here, the semantics
are crucial because the Intel SGX SDK provides two
functions to check whether a memory area is either
strictly outside or inside the enclave memory. Both
functions return false for memory that is partially inside
and partially outside the secure memory. Since the
developers chose to disallow outside memory, they still
allowed for two types of memory: inside and partially
inside (see Figure 3 for an illustration).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

www.computer.org/security 9

The enclave’s tls_client_write function receives
a session pointer as parameter, which references a struc-
ture representing a secure TLS session. Since Rust allows
polymorphism, there is a pointer to the virtual method
table (vtable) embedded within the object structure. The
vtable is a crucial component that stores addresses of all
virtual methods associated with a class, which enables
the dynamic function calls of polymorphic data types.
Hence, if an attacker gains the ability to modify the vtable
pointer, this allows the attacker to redirect the enclave’s
execution flow to arbitrary code within the enclave.

The exploitation of this vulnerability is achieved by
constructing a counterfeit sessions object that over-
laps enclave and untrusted host memory. This object
is placed just before the first page of enclave memory,
so that the last byte of the object overlaps into the
enclave memory. This is possible because host and
enclave share the address space. The single byte is suf-
ficient to be partially inside, i.e., not strictly outside,
thus passing the validation. While the value of this last
byte is obviously not attacker-controlled, an attacker
still maintains control over most bytes of the object,
including the vtable address, which can be exploited
to execute arbitrary code within the enclave. The Rust
SGX SDK developers promptly addressed the issue
by introducing session identifiers instead of pointers
for the TLS sessions. This mitigates both exploits, the
object injection attacks and the edge cases of overlap-
ping memory.

In summary, this example illustrates that Rust, a
memory-safe language, is not a silver bullet for enclave
security because it does not incorporate the paradigms
of SGX into its model. We conclude that the entire soft-
ware stack, including the SDK itself, must be rigorously
analyzed for memory safety vulnerabilities.

Memory Corruption Outside SGX
In addition to Intel SGX, there are several other TEEs,
which we present below. Each differ in design choices
that change the attack surface, thus mitigating some
attacks, while introducing others.

ARM TrustZone
The TEE introduced by ARM, called ARM TrustZone, is
a security architecture that is extensively used in mobile
devices. For instance, Samsung’s Knox platform uses ARM
TrustZone for secure boot, protected storage, and remote
attestation. Furthermore, Google has made TEEs manda-
tory for any Android device with a fingerprint reader.

TrustZone follows a different trust design than
SGX. While the SGX enclave concept provides isola-
tion at the application level, TrustZone partitions the
OS into a secure world and an untrusted (rich) system.
Both worlds use separate memory spaces to isolate the

secure world from the normal world. Each world—
secure and nonsecure—has its dedicated OS and appli-
cations, categorizing software as trusted or untrusted. By
dividing the processor’s memory into distinct regions
for each world, it prevents software in one world from
directly accessing or altering data in the other world’s
memory space.

However, since there is only one secure world for
all trusted applications (TAs), this design is susceptible
to attacks from one (vulnerable) TA to another. Fur-
ther, TrustZone TAs have privileged access to sensitive
data. This leads to a new class of vulnerabilities, namely
Boomerang,11 that exposes this semantic gap between
TAs and their untrusted surroundings to manipulated
and perform unauthorized operations on behalf of
untrusted applications. Untrusted pointers, controlled
by user-level applications, can target any memory loca-
tion in the untrusted environment. However, due to lim-
ited visibility into the untrusted environment’s security
mechanisms, TAs cannot distinguish between safe and
unsafe pointers. In a Boomerang attack, an untrusted
application manipulates these pointers to read and write
any memory location in the untrusted environment,
exploiting the TA’s full memory access.

Similar to the presented SGX attacks, Boomerang
leverages the absence of checks at the host-to-enclave
boundary, enabling arbitrary memory reads and writes.
Attackers can overwrite kernel memory with a mali-
cious ROP payload, allowing them to steal sensitive
data from other applications, bypass security checks, or
even gain full control of the untrusted OS.

RISC-V Keystone
Keystone, a RISC-V TEE, uses the RISC-V physical
memory protection unit to establish secure enclaves,
ensuring isolated processes resistant to manipula-
tion. However, similar to SGX, the software within the
enclaves is still prone to memory corruption vulner-
abilities and control-flow hijacks, and the binary inter-
face of enclaves exposes a wide attack surface, which
together introduces a high risk of vulnerabilities. In
contrast to SGX, Keystone enclaves do not share the

Figure 3. The memory layout of SGX enclaves leads to a
third security state. Developers have to be aware that the
logical inverse of outside is not only within. Thus, partially
overlapping chunks are not (strictly) outside, but still
largely attacker-controlled. This bug enabled exploitation of
the Rust SDK’s TLS client enclave.

Host Application SGX Enclave

Outside WithinPartially

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE Security & Privacy

address space with the untrusted world, which makes
null-pointer dereferences hardly exploitable. Further,
Keystone enclaves cannot access the standard system
calls, but only application-specific functions imple-
mented in the trusted OS layer. This limits the privi-
leged calls available to enclaves, and shellcode injection
attacks based on manipulation of memory permissions
are usually not possible. Hence, exploitation primarily
relies on sophisticated ROP chains.

We developed RiscyROP,12 a ROP gadget finding
and generation tool kit for RISC-V. ROP on RISC-V is
more challenging than on Intel x86 due to the architec-
ture’s lack of a stack-based return instruction, dedicated
registers for function calls, and the memory alignment
of instructions. RiscyROP is a tool that addresses these
challenges by using symbolic execution to find and chain
gadgets. We use RiscyROP to exploit the attestation
demo application running within a Keystone enclave on
a HiFive Unleashed RISC-V development board.

AMD Secure Encrypted Virtualization
Secure encrypted virtualization (SEV) is a TEE
designed by AMD for virtualized environments. SEV
encrypts the memory of each virtual machine (VM)
using a secure processor (SP), a coprocessor based
on the ARM architecture. The encryption performed
within the SP uses individual keys for every VM, which
ensures increased security as these keys never leave the
SP. This approach provides robust protection against
unauthorized access to sensitive data within each pro-
tected VM. Notably, the SP exclusively retains all keys
to impede external entities from accessing them. Conse-
quently, SEV fortifies systems against memory attacks,
and also serves as a deterrent against malicious hypervi-
sors attempting to access sensitive VM data. In a typical
system, the hypervisor maintains control over the page
tables and can arbitrarily change them. With AMD’s
SEV, the memory is encrypted using a set of keys known
only to the processor, which prevents the hypervisor
from reading the memory contents.

While AMD’s SEV provides a robust mechanism to
protect memory from hypervisor-level attacks, it does
not address the inherent vulnerabilities of legacy soft-
ware that assumes a trustworthy kernel. This assump-
tion is prevalent in traditional Unix-like systems, but
leaves existing software vulnerable to Iago9 attacks that
exploit the lack of validation of data passed from the
kernel to the TEE. A malicious kernel can exploit this
weakness by returning bogus values from system calls,
thereby corrupting the memory of a user space process.
Iago attacks are applicable to most security solutions,
including TrustZone, Keystone, SGX, and AMD SEV.
The Iago attack highlights the need for comprehensive
system call interface protection in TEEs, encompassing

memory pointer integrity to prevent arbitrary code exe-
cution and malicious kernel manipulation.

The AMD SEV-ES extension defends against mem-
ory leakage and malicious modifications of CPU state
by encrypting and integrity-protecting the content of
CPU registers when a VM is inactive. However, it does
not guard against malicious hypervisors, similar to Iago
attacks. The hypervisor can manipulate random number
generation within a VM, diminishing entropy in defenses
like kernel code randomization and stack canaries. Nota-
bly, the SEV-ES extension only protects CPU state and
SEV still lacks integrity protection for the encryption of
a VM’s memory. Radev and Morbitzer13 demonstrate an
attack wherein a malicious hypervisor overwrites a VM’s
encrypted stack with addresses of suitable ROP gadgets.

T EEs are a promising security technology to strongly
isolate sensitive code and data into enclaves. How-

ever, the secure implementation of the boundary between
host and enclave is extremely critical, as the enclave pro-
cesses and handles input that originates from an untrusted
memory area. To enable a thorough security review of
this interface, we have provided a systematic overview of
existing research in this area, including an overview of the
security assessments of publicly available SGX enclaves.
Addressing these findings is crucial to allow secure
deployment of TEEs and enclaves in practice.

Acknowledgment
This work has been partially funded by the Deutsche Forsc-
hungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy – EXC 2092 CASA
– 390781972 and SFB 1119–236615297 within project S2.
The work was partially supported by the Ministry of Cul-
ture and Science–North Rhine Westphalia research train-
ing group SecHuman and the European Research Council
under the consolidator grant RS3 (101045669).

References
1. T. Cloosters, M. Rodler, and L. Davi, “TeeRex: Discovery

and exploitation of memory corruption vulnerabilities in
SGX enclaves,” in Proc. 29th USENIX Secur. Symp., 2020,
pp. 841–858.

2. T. Cloosters, J. Willbold, T. Holz, and L. Davi, “SGX-
Fuzz: Efficiently synthesizing nested structures for SGX
enclave fuzzing,” in Proc. 31st USENIX Secur. Symp., 2022,
pp. 3147–3164.

3. P. Aublin et al., “TaLoS: Secure and transparent TLS ter-
mination inside SGX enclaves,” Imperial College London,
London, U.K., Tech. Rep. 2017/5, 2017.

4. J. Lee et al., “Hacking in darkness: Return-oriented pro-
gramming against secure enclaves,” in Proc. 26th USENIX
Secur. Symp., 2017, pp. 523–539.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

www.computer.org/security 11

5. A. Biondo, M. Conti, L. Davi, T. Frassetto, and A.-R. Sade-
ghi, “The guard’s dilemma: Efficient code-reuse attacks
against Intel SGX,” in Proc. 27th USENIX Secur. Symp.,
2018, pp. 1213–1227.

6. A. Khan, M. Zou, K. Kim, D. Xu, A. Bianchi, and D. J. Tian,
“Fuzzing SGX enclaves via host program mutations,” in
Proc. 8th Eur. Symp. Secur. Privacy, 2023, pp. 472–488.

7. M. R. Khandaker, Y. Cheng, Z. Wang, and T. Wei, “COIN
attacks: On insecurity of enclave untrusted interfaces in
SGX,” in Proc. 25th Int. Conf. Archit. Support Program.
Lang. Oper. Syst. (ASPLOS), 2020, pp. 971–985.

8. S. Chen, Z. Lin, and Y. Zhang, “Controlled data races in
enclaves: Attacks and detection,” in Proc. 32nd USENIX
Secur. Symp., 2023, pp. 4069–4086.

9. S. Checkoway and H. Shacham, “Iago attacks: Why
the system call API is a bad untrusted RPC interface,”
SIGARCH Comput. Archit. News, vol. 41, no. 1, 2013, pp.
253–264, doi: 10.1145/2490301.2451145.

10. R. Cui, L. Zhao, and D. Lie, “Emilia: Catching Iago in
legacy code,” in Proc. Netw. Distrib. Syst. Secur. (NDSS)
Symp., 2021, pp. 1–22. [Online]. Available: https://www.
doi.org/10.14722/ndss.2021.24328

11. A. Machiry et al., “Boomerang: Exploiting the semantic
gap in trusted execution environments,” in Proc. 24th ISOC
Netw. Distrib. Syst. Secur. (NDSS) Symp., 2017, pp. 1–14.
[Online]. Available: https://www.doi.org/10.14722/ndss.
2017.23227

12. T. Cloosters et al., “RiscyROP: Automated return-oriented
programming attacks on RISC-V and ARM64,” in Proc.
25th Symp. Res. Attacks, Intrusions Defenses (RAID), 2022,
pp. 30–42, doi: 10.1145/3545948.3545997.

13. M. Radev and M. Morbitzer, “Exploiting interfaces of
secure encrypted virtual machines,” in Proc. ACM Revers-
ing Offensive-Oriented Trends Symp. (ROOTS), 2020,
pp. 1–12, doi: 10.1145/3433667.3433668.

Tobias Cloosters is a research assistant at the Univer-
sity of Duisburg-Essen, 45127 Essen, Germany. His
research interests include discovery and exploita-
tion of memory-corruption vulnerabilities, includ-
ing trusted execution on x86 and RISC-V, as well as
smart contracts. Cloosters received a M.Sc. from the
University of Duisberg-Essen. His work on vulner-
ability discovery in enclaves on the Intel software
guard extensions platform using symbolic execu-
tion was awarded with the third prize of the German
IT-Security Award 2020. Contact him at tobias.
cloosters@uni-due.de.

Oussama Draissi is a research assistant at the University
of Duisburg-Essen, 45127 Essen, Germany, special-
izing in system and software security. His research

interests include RISC-V architecture and smart con-
tracts. Draissi received an M.Sc. from the University of
Duisburg-Essen. His recent work on detecting bugs in
Solana programs was accepted at the Association for
Computing Machinery Conference on Communica-
tions Security 2023. Contact him at oussama.draissi@
uni-due.de.

Johannes Willbold is a research assistant at the chair
for systems security at the Ruhr University Bochum,
44801 Bochum, Germany. His research interests
include security of space and satellite systems, with an
emphasis on firmware security aspects of space sys-
tems. Willbold received an M.Sc. from the Ruhr Uni-
versity of Bochum. He recently published a security
analysis of low Earth orbit satellites at the 44th IEEE
Symposium on Security & Privacy and is the general
chair of the SpaceSec workshop. He is a Graduate
Student Member of IEEE. Contact him at johannes.
willbold@rub.de.

Thorsten Holz is a tenured faculty member at the CISPA
Helmholtz Center for Information Security, 66123
Saarbrüken, Germany. His research interests include
technical aspects of secure systems, with a specific
focus on systems security. Holz received a Ph.D. in
computer science from the University of Mannheim.
In 2011, he received the Heinz Maier-Leibnitz Prize
from the German Research Foundation (DFG), a
European Research Council Starting Grant in 2014,
and a European Research Council Consolidator
Grant in 2022. He is a Member of IEEE. Contact him
at holz@cispa.de.

Lucas Davi is a full professor for computer science at
University of Duisburg-Essen, 45127 Essen, Ger-
many. His research interests are system and software
security, especially focusing on memory exploita-
tion techniques, embedded security, smart contract
security, and trusted computing. He received a Ph.D.
in computer science from TU Darmstadt. His Ph.D.
dissertation on code-reuse attacks and defenses
was awarded with the Association for Computing
Machinery (ACM) Special Interest Group on Secu-
rity, Audit, and Control Dissertation Award in 2016.
He also received Best and Distinguished Paper awards
at IEEE Security & Privacy, Design Automation Con-
ference, and ACM Asia Conference on Commu-
nications Security. He currently holds a European
Research Council Starting Grant on smart contract
security. He is a Member of IEEE. Contact him at
lucas.davi@uni-due.de.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

http://dx.doi.org/10.1145/2490301.2451145
https://www.doi.org/10.14722/ndss.2021.24328
https://www.doi.org/10.14722/ndss.2021.24328
https://www.doi.org/10.14722/ndss.2017.23227
https://www.doi.org/10.14722/ndss.2017.23227
http://dx.doi.org/10.1145/3545948.3545997
http://dx.doi.org/10.1145/3433667.3433668
mailto:tobias.cloosters@uni-due.de
mailto:tobias.cloosters@uni-due.de
mailto:oussama.draissi@uni-due.de
mailto:oussama.draissi@uni-due.de
mailto:johannes.willbold@rub.de
mailto:johannes.willbold@rub.de
mailto:lucas.davi@uni-due.de

