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Recent advances of artificial intelligence (AI) code generators are opening new opportunities in soft-
ware security research, including misuse by malicious actors. We review use cases for AI code generators 
for security and introduce an evaluation benchmark. 

L arge language models (LLMs) represent the latest 
breakthrough in machine learning and are going 

to have a significant impact on supporting people in 
various tasks. These models can automatically gener-
ate streams of humanlike text, as they are trained on 
huge volumes of text scraped from the web and books, 
using highly scalable deep learning architectures. Most 
notably, these models are also artificial intelligence 
(AI) code generators, as they can create computer pro-
grams using a programming language. Given, as input, a 
description of a program in natural language (e.g., plain 
English), AI can generate a corresponding program as a 
sequence of output tokens.

Computer security is also going to be affected by the 
advent of these AI code generators. They can represent 
a new threat, as malicious actors can use them to write 
new malicious software, bringing more diversity and 
agility to their attacks. AI code generators are also easily 
available to any malicious party through public services, 
such as GitHub Copilot and Amazon CodeWhis-
perer, which leverage the same technology behind the 
well-known ChatGPT and can convert natural language 
(e.g., in a code comment) into entire methods and func-
tions from within the development environment.

At the same time, security analysts can (and 
should) leverage AI code generators. We believe in 
the need for an open discussion on the uses of this 
technology for security applications. Since the dawn 
of the Internet, security analysts have been debating 
whether to publicly share information about vul-
nerabilities and programs to exploit them since this 
information can be misused even by inexperienced 
attackers (e.g., “newbies” and “script kiddies”). 
Attackers will inevitably take any opportunity to 
use AI code generators; cybersecurity professionals 
should also strive to benefit from these tools to bet-
ter prevent and mitigate intrusions.

The field of generative AI for security is still a young 
one. Recent studies analyzed this technology in the 
context of generating malware, malicious content for 
social engineering, and a few more use cases. However, 
research on generative AI is limited by the availability of 
labeled datasets for security use cases, which are needed 
for fine-tuning LLMs since these models are trained 
only in a nonsupervised way. Moreover, datasets are 
needed to support research on new emerging LLMs by 
enabling rigorous experimental evaluations.

In this article, we study the application of AI code 
generators for creating synthetic attacks. First, we dis-
cuss potential benign applications of synthetic attack 
generation across many use cases in the context of 
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penetration testing. Then, we present a dataset and 
an experimental evaluation of three popular LLMs 
(GitHub Copilot, Amazon CodeWhisperer, and Code-
BERT) for generating synthetic attacks. Our novel 
dataset includes a set of security-oriented programs in 
Python, which we annotate with descriptions in natu-
ral language. Our experiments show that the LLMs 
can generate security-oriented programs with high 
accuracy, although with less accuracy compared to 
general-purpose programs. We find that the best results 
are obtained with natural language descriptions at a 
fine grain (i.e., individual statements rather than whole 
functions) and by fine-tuning CodeBERT with our 
dataset. This dataset and the experiments can serve as 
benchmarks for future research.

Security Uses (and Misuses) of AI Code 
Generators
Many professional roles can benefit from AI code gen-
erators, including penetration testers, red teams, inci-
dent handlers, threat analysts, and more, as all these 
roles rely on writing custom software to automate com-
plex tasks. Such tasks include the assessment of attack 
surfaces, the collection and analysis of intelligence, and 
the emulation of exploitations and adversarial behav-
iors. Moreover, AI code generators can assist newcom-
ers (e.g., students) in writing code for security, which 
requires advanced coding skills on how to exploit soft-
ware vulnerabilities. This barrier is a limiting factor to 
the growing demand for cybersecurity professionals, 
more of whom are needed to flatten the learning curve 
of security-oriented coding and to open the field to a 
wider and less experienced community. Thus, ethical 
hacking can greatly benefit from AI code generators.

Both the defensive and offensive sides invest signifi-
cant efforts to write programs for automating common 
tasks and for scaling large systems and amounts of data. 
Scripting programming languages, such as Python, are a 
typical choice for task automation. These tasks include 
the following:

■■ Attack surface analysis: This involves the discovery of 
technical assets that are reachable from outside the 
target network. Assets include Internet Protocol (IP) 
addresses, servers, domain names, networks, and 
Internet of Things (IoT) objects. These assets are 
potentially affected by software vulnerabilities and 
misconfigurations that can be exploited by an attacker. 
For example, both defenders and attackers can write 
tools to enumerate subdomains, scan network ports, 
crawl web pages, and query search engines (e.g., 
Shodan) to identify vulnerable hosts and services, 
such as code repositories, admin panels, shared files, 
and e-mail and chat servers, which can be prone to data 

leaks (e.g., source code and authentication tokens) and 
can allow unauthorized access if not protected. Auto-
mated tools accelerate the analysis of multiple types of 
assets using different sources of data.

■■ Open source intelligence: This relates to the discovery of 
pieces of information about people in a target organi-
zation, such as names, e-mail addresses, phone num-
bers, and social network accounts, by looking into 
publicly reachable sources. Again, attacker-written 
tools can automate web crawling and parsing to 
extract this information. This information can be lev-
eraged for attacks, such as for social engineering and 
brute forcing. For example, in brute-force attacks, a 
tool can include personal information to generate 
tentative usernames and passwords for logging into a 
system. In social engineering, attacker can use a tool 
to craft spear phishing e-mails from templates and 
send them to multiple targets. Similarly, defenders 
need to collect open source intelligence (OSINT) 
to learn about information leaks from their organi-
zation and to perform social engineering attacks for 
assessment purposes.

■■ Vulnerability exploitation: Attacks rely on automa-
tion to trigger vulnerabilities. Once a vulnerability 
has been discovered, malicious attackers use scripts 
(“exploits”) to quickly exploit multiple targets (e.g., 
different organizations or different hosts in the same 
organization). Writing exploits is of high interest to 
security analysts too. They need exploits to test that 
their systems are indeed protected from a known 
attack. Moreover, exploits are often needed to dem-
onstrate the impact and actual exploitability of a vul-
nerability (“proof of concept”) to motivate vendors 
and users to patch their systems. In the worst case, 
writing an exploit can show that a vulnerability allows 
a remote attacker to execute arbitrary code in the tar-
get host; in other cases, the attacker may get access to 
data, cause a denial of service (e.g., killing a process 
and consuming resources), or exploit more vulner-
abilities. It is challenging for vendors to tell apart vul-
nerabilities that are indeed exploitable; for example, 
Common Vulnerabilities and Exposures data are not 
technically verified and often misleading.

■■ Postexploitation activities: Getting a foothold through 
an exploited vulnerability is only the initial step of 
an attack (the “cyberkill chain”). Both attackers and 
security analysts (“red teams”) leverage automated 
tools for lateral movement and privilege escalation 
by stealing credentials from sniffed traffic or compro-
mised hosts, for persistence by installing back doors 
and remote-control tools to provide access and main-
tain it over time (e.g., after reboots), and for data theft 
and exfiltration by logging keystrokes and screens and 
transmitting the stolen data to an external network. 

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



4	 IEEE Security & Privacy� Month/Month 2024

 

Attackers write custom programs for all these activi-
ties to tailor an attack for a specific victim and for 
evading antivirus, network monitoring, and endpoint 
detection and response solutions. For example, mal-
ware is often delivered as an encrypted payload to be 
launched with a decryption program (an “unpacker”); 
attackers apply their own custom-made (and even sim-
plistic) encryption to differentiate from other attacks 
and evade malware detection signatures. Similarly, 
red teams emulate real attacks by using custom-made 
software to realistically assess the effectiveness of pro-
cedures and solutions for attack detection. Moreover, 
security analysts can use AI-generated code for auto-
mating incident response actions.

These use cases show that offensive security is a 
software-intensive area, but writing offensive code takes 
its toll on the time budget. Moreover, it can be a tech-
nically difficult activity. For example, in exploit devel-
opment, “shellcode” payloads are typically written in 
assembly language to perform low-level operations and 
to gain full control of the layout of code and data in stack 
and heap memory so as to make the shellcode more com-
pact and obfuscated. However, programming in assembly 
is time-consuming and has low productivity. In testing 
antimalware solutions, writing malware requires work-
ing with (and the abuse of) the complex C++ application 
programming interfaces (APIs) of the Microsoft Win-
dows operating system and related products. Higher-level 
languages, such as Python, make it easier to write offen-
sive code but provide less flexibility and can still require a 
significant amount of time to write code.

We make the case that security analysts need to 
leverage AI code generators to get support for defen-
sive tasks. In this case, developers would translate a 
description of a piece of code in English (an “intent”) 
into a corresponding code snippet. For example, secu-
rity analysts can query AI for code snippets that they 
cannot recall or that they are not yet confident to 
write themselves, in a similar way to querying a search 

engine, with the additional benefit that the generated 
code is tailored for the specific application. More-
over, working with security code, such as in assembly 
language, can be a barrier for newcomers in security, 
which is a limiting factor to the growing demand for 
security analysts able to work with low-level attacks. 
Thus, AI code generators can flatten the learning curve 
with natural language processing. Finally, as malicious 
actors reap the benefits of AI code generators (e.g., to 
develop more diverse malware in larger quantities), 
security analysts also need to leverage AI to keep up 
with the pace.

Experimental Evaluation
We experimented with AI code generators in the context 
of several security tasks. For evaluation purposes, we 
built our own manually curated dataset (violent-python, 
https://github.com/dessertlab/violent-python), where a 
sample contains a piece of code from offensive software 
(in a programming language) and its corresponding 
description in natural language (plain English).

We built the dataset by using the popular book Vio-
lent Python, by T. J. O’Connor,1 which presents several 
examples of offensive programs using the Python lan-
guage. Our dataset covers multiple areas of offensive 
security, including penetration testing (e.g., an auto-
mated exploit for a Server Message Block vulnerability, a 
port scanner, and a Secure Socket Shell botnet), forensic 
analysis (e.g., geolocating individuals, recovering deleted 
items, inspecting the Windows registry, examining meta-
data in documents and images, and analyzing data from 
mobile and desktop applications), network traffic analy-
sis (e.g., capturing packets and geolocating IP addresses, 
identifying distributed denial-of-service toolkits, dis-
covering decoy scans, analyzing botnet traffic, and foil-
ing intrusion detection systems), and OSINT and social 
engineering (e.g., anonymously browsing the web, work-
ing with developer APIs, scraping popular social media 
sites, and creating a spear phishing e-mail).

The dataset consists of 1,372 unique samples, as 
shown in Table 1. Note that the row total indicates 
the total number of unique examples (i.e., we did not 
report replicated pairs of natural language intent/code 
snippets). This dataset is complementary to our pre-
vious datasets (Shellcode_IA32 and EVIL), where we 
included code snippets from shellcodes in assembly lan-
guage2 and from exploits in mixed Python and assem-
bly language.3

The size of our dataset is in line with other state-of-
the-art corpora used to fine-tune machine learning 
models. In fact, in state-of-the-art code generation, 
a model is not trained from scratch. Instead, exist-
ing LLMs (that were already trained with millions 
of publicly available lines of code) are fine-tuned in a 

Table 1. The violent-python dataset.

Individual 
Lines

Multiline 
Blocks Functions

Penetration testing 490 48 21

Forensic analysis 342 47 13

Network traffic analysis 375 43 20

OSINT and social engineering 553 55 25

Total 1,129 171 72
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supervised way to achieve transfer learning for a specific 
case (in our case, generating offensive code). Typically, 
the datasets for fine-tuning are relatively limited, on the 
order of 1,000 samples.4

In our evaluation, we considered several approaches 
to describe offensive code in natural language since 
this is an important factor to determine the usability of 
AI code generators. One approach is to describe indi-
vidual lines of code with an English statement, which is 
typical of other datasets in the field of code generation. 
This approach can provide the highest accuracy of the 
generated code since the developer guides the AI code 
generator with a fine-grained description. However, this 
approach is also the most verbose and demanding one 
for the developer. Therefore, we also consider other two 
approaches, where, respectively, we use an English state-
ment to describe multiple lines of code (“blocks”) and 
entire functions. In the case of blocks and functions, 
multiple code snippets are joined by the newline char-
acter “\n”. Overall, the dataset consists of 82% individual 
lines, 12% multiline blocks, and 6% entire functions. For 
every script in the dataset, we manually described it in the 
three alternative ways. We based the descriptions on the 
contents of the chapter around each script and on com-
ments in the code where available. Table 2 lists examples 
of descriptions of the three alternative granularities.

To evaluate AI code generators for security pur-
poses, we start from CodeBERT (https://github.com/
microsoft/CodeBERT), a pretrained language model 
for programming languages. CodeBERT is a model rep-
resentative of the state of the art, which has achieved 
high performance in several software engineering 
tasks, including the generation of offensive code. It is 
a multiprogramming-lingual model, which has been 
pretrained on pairs of natural language intents and 
code snippets, across six different programming lan-
guages. CodeBERT represents the state of the art for 
several code-related tasks in the software engineering 

field, such as code search and the generation of code 
and other artifacts, such as comments, documentation, 
and commit messages. According to the best practices 
for using pretrained models, we use part of our data-
set as training data to fine-tune the model for the spe-
cific task of generating offensive code. Moreover, we 
run the model along with data processing operations3 
both before translation to prepare the input data and 
after translation to improve the quality and readability 
of the code in output. For our experiments, we used a 
machine with a Debian-based distribution, with eight 
virtual CPUs, 16 GB of random-access memory, and 
two Nvidia T4 GPUs.

We assessed the model’s ability to generate offensive 
code from different styles of natural language accord-
ing to the three different levels of details in the descrip-
tions of the dataset (i.e., lines, blocks, and functions). 
We split the dataset into sets for training (the samples 
for fine-tuning the model), validation (to tune the 
hyperparameters of the models), and testing (for the 
evaluation), using a random selection with the common 
80%–10%–10% ratio.

To estimate the correctness of the AI-generated 
code, the gold standard is represented by a manual 
code review, where a human evaluator checks whether 
the code generated by the models is semantically cor-
rect, i.e., that it performs exactly what is described in 
the natural language intent. However, manual review is 
often infeasible due to the large amount of data to scru-
tinize, which makes the process time-consuming and 
prone to errors.

Therefore, the most common practice is to adopt 
output similarity metrics to assess the similarity of the 
code generated by the models with a reference ground 
truth. Among the large set of available output similar-
ity metrics, we choose the edit distance (ED). We based 
this choice on our previous work,5 where we systemati-
cally analyzed several similarity metrics for both Python 

Table 2. Examples of intents in natural language.

Code Individual Lines Description
Multiple Lines (Block) 
Description

Entire Function 
Description

def connScan(tgtHost, 
tgtPort)

Define function connScan with 
parameters tgtHost and tgtPort.  

 
Try to create the socket with 
parameters AF_INET and 
SOCK_STREAM, connect to 
tgtHost on tgtPort, send the 
message “ViolentPython,” 
receive the response, and 
acquire the lock.

 
 
 
Send the message 
“ViolentPython” to 
the host tgtHost on 
the port tgtPort and 
receive the response.

try: Start the try block.

connSkt = socket(AF_INET, 
SOCK_STREAM)

Create the socket with parameters 
AF_INET and SOCK_STREAM.

connSkt.send(ViolentPython 
\r\n)

Send the message “ViolentPython.”

results = connSkt.recv(100) Receive the response.
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and assembly code and analyzed the correlation of these 
metrics with semantic correctness. This metric mea-
sures the ED between two strings, i.e., the minimum 
number of operations on single characters required to 
make each code snippet produced by the model equal 
to a reference code snippet from the dataset, which is 
used as ground truth for the evaluation. The ED ranges 
between zero and one, with higher scores correspond-
ing to smaller distances.

Including metrics that assess whether the code is 
compilable would not yield any useful information 
since these metrics assess the syntactical correctness 
rather than the semantic one. In fact, a code can be 
syntactically correct (i.e., compilable) but still not per-
form what is described in the intent (i.e., semantically 
incorrect). As a matter of fact, metrics such as compi-
lation accuracy have shown to be less correlated to the 
semantic correctness of security-oriented code for both 
Python and assembly languages.5

To understand how the model fine-tuning impacts 
the performance, we compare the results against the 
performance of the model without any fine-tuning, also 

known as zero-shot learning. Figure 1 describes the results 
in terms of the ED. Unsurprisingly, the results highlight 
that fine-tuning the model on offensive code always pro-
vides performance higher than that obtained without 
fine-tuning. The boost in performance is more evident 
when the models generate individual lines (19.05% ver-
sus 77.89%) and becomes closer when the model gen-
erates blocks (18.23% versus 43.45%) and functions 
(22.31% versus 37.14%). This happens mainly for two 
reasons: 1) the fine-tuned model, as expected, is less 
accurate at generating complex code (e.g., code blocks 
and functions) than individual lines and 2) the model 
without fine-tuning (i.e., zero-shot learning) is insensi-
tive to the complexity of the code to be generated. Even 
better, during zero-shot learning, CodeBERT generates 
functions with higher performance than that obtained 
during the generation of blocks and single lines. Most 
likely, the data used to pretrain CodeBERT contained 
several examples of complex code, such as entire func-
tions rather than simple code snippets.

Then, we compare the fine-tuned CodeBERT against 
two popular and widely used public AI code genera-
tors: GitHub Copilot (https://github.com/features/ 
copilot) and Amazon CodeWhisperer (https://aws.
amazon.com/codewhisperer). They are both public 
services that empower AI code assistants within the 
development environment by providing code sugges-
tions from comments in natural language and from 
existing code. They were trained on billions of lines of 
code from open source projects. These solutions are 
accessible via APIs.

We compare the performance of the three AI code 
generators on the same test set. We used the train-
ing data only for CodeBERT since it is not possible 
to further fine-tune public AI code generators. Fig-
ure 2 presents the results, in terms of the ED, of the 
AI code generators in the generation of single lines, 
code blocks, and entire functions of security-oriented 
Python code. First, the figure shows that the perfor-
mance decreases from single lines to code blocks and 
from code blocks to entire functions, regardless of the 
code generator. This is an expected result due to the 
increasing complexity of the code to be generated. 
Let us analyze the results thoroughly. For the simplest 
task, i.e., the generation of single lines, CodeBERT 
(77.89%) provides the best performance, followed by 
Copilot (65.38%) and CodeWhisperer (60.76%). We 
attribute this to the fine-tuning of the model since the 
process boosts performance at generating offensive 
code. For blocks and functions, where the number of 
samples in the dataset is limited, we found that Code-
BERT and Copilot have similar performance (43.45% 
versus 45.52% for blocks and 37.14% versus 35.27% 
for functions); hence, the fine-tuning does not boost 
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Figure 1. Zero-shot learning versus offensive code 
fine-tuning.
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Figure 2. A comparison of AI code generators in the generation of offensive 
Python code.
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the performance of CodeBERT when compared to 
public AI code generators. CodeWhisperer, instead, 
shows lower performance than the two competitors 
(38.76% and 31.31% for blocks and functions, respec-
tively). The reasons can be attributed to the fact that 
CodeWhisperer, differing from a general-purpose 
tool, such as Copilot, caters first and foremost to 
development use cases associated with Amazon plat-
forms, such as Amazon Web Services, i.e., to writing 
code related to Amazon APIs.

Finally, to provide context about the results achieved 
by the AI code generators, we can contrast them with 
the performance of state-of-the-art LLMs in the gen-
eration of general-purpose (i.e., nonoffensive) Python 
code, which is equal to 86.7%.6 This result is compara-
ble with the performance in the generation of individ-
ual lines of offensive code. Therefore, current language 
models provide good potential for generating offensive 
code, although they need to be fine-tuned for this task 

and be guided by fine-grained descriptions from devel-
opers. As the scale and complexity of LLMs grow, we 
can expect that their overall performance in security 
applications will improve over time.

To provide more practical insights into the code 
generated by the code generators, Table 3 provides a 
qualitative analysis using cherry-picked examples from 
our test sets. It is important to remark that the code we 
collected for the dataset is always related to security use 
cases. Unlike regular code generation that focuses on 
nonsecurity programs (e.g., create, read, update, and 
delete applications and small algorithms on data struc-
tures), security-oriented code contains a large number 
of low-level arithmetic logic operations and bit-level 
slices.7 Given that security code consists of several 
lines of code, some versions can appear as “general 
purpose” code if considered out of context. However, 
all the examples in our dataset are indeed part of a real 
security use case.

Table 3. Examples of generated code and expected code.

Type

Natural 
Language 
Intent

Ground Truth 
Reference CodeBERT Output GitHub Copilot Output

Amazon 
CodeWhisperer 
Output

Line Assign 0 to 
seqNum. 

seqNum = 0 seqNum = 0 seqNum = 0 seqNum = 0

Block If city is not 
equal to 
an empty 
string, 
concatenate 
the strings 
city, “,” and 
country to 
geoLoc.

if city != ": 
\n geoLoc = city 
+ ', ' + country

if(cityFile = 
None): \n cities = 
geoLoc

if city != ": \n 
geoLoc = city + 
', ' + country \n 
print(geoLoc)

city = 
"London" \n 
if city: \n 
geoLoc = city 
+ ", UK" \n 
print(geoLoc) 
\n else: \n 
print("City is 
not defined")

Function Connect to 
the database 
skypeDB and 
execute the 
command 
“SELECT 
displayname, 
skypename, 
city, country, 
phone_
mobile, 
birthday 
FROM 
Contacts;.”

def printContacts 
(skypeDB): 
\n conn = 
sqlite3.connect 
(skypeDB) \n c =  
conn.cursor() 
\n c.execute 
("SELECT 
displayname, 
skypename, city, 
country, phone_
mobile, birthday 
FROM Contacts;" 
\n

def printCookies 
(cookiesDB): \n 
try: \n conn = 
sqlite3.connect 
(cookiesDB) \n c = 
conn.cursor() \n 
c.execute("SELECT 
displayname, 
skypename, city, 
country, phone_
mobile, birthday 
FROM Contacts;") 
\n for row in c: 
\n ...

def connect_
skypeDB(): \n try: 
\n conn = sqlite3.
connect ('skypeDB') 
\n cur = conn.cursor()  
\ncur.execute 
("SELECT displayname, 
skypename, city, 
country, phone_mobile, 
birthday FROM  
Contacts;") \n 
rows = cur.fetchall() 
\n for row in rows: 
\n ...

def connect_
db(): \n 
conn =  
sqlite3.connect 
('skypeDB') \n 
return conn

Generated code that perfectly matches the reference is in bold.
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The first row of the table shows how the models can 
correctly generate individual line code snippets by per-
forming a simple operation, such as the assignment of 
a variable. The second row shows the ability of Copi-
lot to generate a whole multiline block by generating a 
correct sequence of an if‒then statement. CodeBERT 
and Amazon CodeWhisperer, instead, both fail to gen-
erate the correct output. Indeed, the former generates 
something close to the expected output, yet the result 
is incomplete. The latter, on the other hand, produces 
a verbose snippet that is syntactically correct but that 
diverges from the natural language description. Finally, 
the third row shows how the models deal with the 
generation of whole complex functions from a single 
natural language description. CodeBERT and Copi-
lot prove their potential by generating several lines of 
code snippets; hence, they prove to be a valid solution 
as code assistants for more complex tasks. The code 
generated by CodeWhisperer again generates a syntac-
tically correct function that, however, contains only a 
subset of the operation required to accomplish what is 
required by the natural language prompt.

Related Work
Given their recent advances, AI-based solutions have 
become an attractive solution for different tasks in 

the field of software security. Table 4 examines the 
related work.

Our work uses AI code generators for the generation 
of offensive code. Differing from previous work on gen-
erative AI, we adopt AI-based code generators to sup-
port several types of synthetic attacks in the context of 
penetration testing. Indeed, due to the lack of corpora 
containing security-oriented code to train AI-based 
solutions, previous work focused on other more spe-
cific use cases, such as the generation of exploits with 
low-level languages, malware generation, and malicious 
content for social engineering. Therefore, our work 
aims to expand the scope of generative AI for security 
by introducing a novel dataset and experimental base-
lines for research in this area.

T hrough this experience with LLMs, and in build-
ing a security-oriented evaluation benchmark, 

we learned about potential use cases for offensive secu-
rity. These use cases encompass attack surface analysis, 
OSINT, vulnerability exploitation, and postexploitation. 
We believe that cybersecurity professionals must embrace 
AI code generators to prevent attacks more efficiently.

Overall, the results of our experiments on current AI 
code generators emphasize the importance of a careful 

Table 4. Related work.

Year Author Contribution

2022 Liguori et al. [2] Use of neural machine translation models to generate software exploits in assembly 
language from natural language

2022 Kim et al. [8] Security surveillance toward AI-enabled digital twin service, which provides 
ecofriendly security through the active participation of low-resource devices

2022 Yang et al. [9] Use of a shallow transformer model that performs code generation and 
summarization to generate software exploits

2023 Yang et al. [7] Generation of software exploits using a rule-based template parser to generate 
augmented natural language descriptions and a semantic attention layer to extract 
and calculate each layer’s representational information

2023 Xiao et al. [10] Use of neural network-based API completion techniques to capture program 
dependencies

2023 McIntosh et al. [11] Use of a state-of-the-art LLM in generating cybersecurity policies to deter and 
mitigate ransomware attacks that perform data exfiltration

2023 Pa et al. [12] Development of malware programs and attack tools using public AI generative 
models

2023 Gupta et al. [13] Use of public AI code generator to create social engineering attacks, phishing attacks, 
automated hacking, payload attacks, and malware

2023 Botacin et al. [14] Use of public AI code generator to generate malware

2023 Grigoriadou et al. 
[15]

Detection and mitigation of IoT cyberattacks by using an AI-powered intrusion 
detection and prevention system
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choice of which one to use. In particular, the experi-
ments showed the importance of fine-tuning the models 
for security-oriented applications. In fact, when trained 
with samples of security-oriented code, CodeBERT 
can outperform popular public AI code generators and 
achieve performance close to nonsecurity-oriented 
applications. Unfortunately, the availability of data for 
security applications is very limited, and the creation of 
corpora from scratch is a difficult and time-consuming 
task, as it requires significant manual effort supported 
by high expertise and technical skills in the field.

When security-oriented code to fine-tune the models 
is not available, the usage of public AI code generators is 
a potential solution, although with a performance loss. 
The choice of a public generator strongly depends on the 
application, but the experiments we performed suggest 
that a general-purpose tool, such as GitHub Copilot, that 
was trained with more diverse programming languages 
and projects can better deal with the generation of offen-
sive code than generators tailored for specific APIs and 
architectures, such as Amazon CodeWhisperer. 
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