
2	 Month/Month 2024	 Copublished by the IEEE Computer and Reliability Societies �

This work is licensed under a Creative Commons Attribution-
NonCommercial-No Derivatives 4.0 License. For more information,

see https://creativecommons.org/licenses/by-nc-nd/4.0/

Recent advances of artificial intelligence (AI) code generators are opening new opportunities in soft-
ware security research, including misuse by malicious actors. We review use cases for AI code generators
for security and introduce an evaluation benchmark.

L arge language models (LLMs) represent the latest
breakthrough in machine learning and are going

to have a significant impact on supporting people in
various tasks. These models can automatically gener-
ate streams of humanlike text, as they are trained on
huge volumes of text scraped from the web and books,
using highly scalable deep learning architectures. Most
notably, these models are also artificial intelligence
(AI) code generators, as they can create computer pro-
grams using a programming language. Given, as input, a
description of a program in natural language (e.g., plain
English), AI can generate a corresponding program as a
sequence of output tokens.

Computer security is also going to be affected by the
advent of these AI code generators. They can represent
a new threat, as malicious actors can use them to write
new malicious software, bringing more diversity and
agility to their attacks. AI code generators are also easily
available to any malicious party through public services,
such as GitHub Copilot and Amazon CodeWhis-
perer, which leverage the same technology behind the
well-known ChatGPT and can convert natural language
(e.g., in a code comment) into entire methods and func-
tions from within the development environment.

At the same time, security analysts can (and
should) leverage AI code generators. We believe in
the need for an open discussion on the uses of this
technology for security applications. Since the dawn
of the Internet, security analysts have been debating
whether to publicly share information about vul-
nerabilities and programs to exploit them since this
information can be misused even by inexperienced
attackers (e.g., “newbies” and “script kiddies”).
Attackers will inevitably take any opportunity to
use AI code generators; cybersecurity professionals
should also strive to benefit from these tools to bet-
ter prevent and mitigate intrusions.

The field of generative AI for security is still a young
one. Recent studies analyzed this technology in the
context of generating malware, malicious content for
social engineering, and a few more use cases. However,
research on generative AI is limited by the availability of
labeled datasets for security use cases, which are needed
for fine-tuning LLMs since these models are trained
only in a nonsupervised way. Moreover, datasets are
needed to support research on new emerging LLMs by
enabling rigorous experimental evaluations.

In this article, we study the application of AI code
generators for creating synthetic attacks. First, we dis-
cuss potential benign applications of synthetic attack
generation across many use cases in the context of

AI Code Generators for Security:
Friend or Foe?
Roberto Natella  , Pietro Liguori  , and Cristina Improta  | University of Naples Federico II
Bojan Cukic  | University of North Carolina at Charlotte
Domenico Cotroneo  | University of Naples Federico II

Digital Object Identifier 10.1109/MSEC.2024.3355713
Date of current version: 1 February 2024

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://orcid.org/0000-0003-1084-4824
https://orcid.org/0000-0001-5579-1696
https://orcid.org/0000-0001-5300-2358
https://orcid.org/0000-0001-7130-9054
https://orcid.org/0000-0001-7103-592X

www.computer.org/security� 3

penetration testing. Then, we present a dataset and
an experimental evaluation of three popular LLMs
(GitHub Copilot, Amazon CodeWhisperer, and Code-
BERT) for generating synthetic attacks. Our novel
dataset includes a set of security-oriented programs in
Python, which we annotate with descriptions in natu-
ral language. Our experiments show that the LLMs
can generate security-oriented programs with high
accuracy, although with less accuracy compared to
general-purpose programs. We find that the best results
are obtained with natural language descriptions at a
fine grain (i.e., individual statements rather than whole
functions) and by fine-tuning CodeBERT with our
dataset. This dataset and the experiments can serve as
benchmarks for future research.

Security Uses (and Misuses) of AI Code
Generators
Many professional roles can benefit from AI code gen-
erators, including penetration testers, red teams, inci-
dent handlers, threat analysts, and more, as all these
roles rely on writing custom software to automate com-
plex tasks. Such tasks include the assessment of attack
surfaces, the collection and analysis of intelligence, and
the emulation of exploitations and adversarial behav-
iors. Moreover, AI code generators can assist newcom-
ers (e.g., students) in writing code for security, which
requires advanced coding skills on how to exploit soft-
ware vulnerabilities. This barrier is a limiting factor to
the growing demand for cybersecurity professionals,
more of whom are needed to flatten the learning curve
of security-oriented coding and to open the field to a
wider and less experienced community. Thus, ethical
hacking can greatly benefit from AI code generators.

Both the defensive and offensive sides invest signifi-
cant efforts to write programs for automating common
tasks and for scaling large systems and amounts of data.
Scripting programming languages, such as Python, are a
typical choice for task automation. These tasks include
the following:

■■ Attack surface analysis: This involves the discovery of
technical assets that are reachable from outside the
target network. Assets include Internet Protocol (IP)
addresses, servers, domain names, networks, and
Internet of Things (IoT) objects. These assets are
potentially affected by software vulnerabilities and
misconfigurations that can be exploited by an attacker.
For example, both defenders and attackers can write
tools to enumerate subdomains, scan network ports,
crawl web pages, and query search engines (e.g.,
Shodan) to identify vulnerable hosts and services,
such as code repositories, admin panels, shared files,
and e-mail and chat servers, which can be prone to data

leaks (e.g., source code and authentication tokens) and
can allow unauthorized access if not protected. Auto-
mated tools accelerate the analysis of multiple types of
assets using different sources of data.

■■ Open source intelligence: This relates to the discovery of
pieces of information about people in a target organi-
zation, such as names, e-mail addresses, phone num-
bers, and social network accounts, by looking into
publicly reachable sources. Again, attacker-written
tools can automate web crawling and parsing to
extract this information. This information can be lev-
eraged for attacks, such as for social engineering and
brute forcing. For example, in brute-force attacks, a
tool can include personal information to generate
tentative usernames and passwords for logging into a
system. In social engineering, attacker can use a tool
to craft spear phishing e-mails from templates and
send them to multiple targets. Similarly, defenders
need to collect open source intelligence (OSINT)
to learn about information leaks from their organi-
zation and to perform social engineering attacks for
assessment purposes.

■■ Vulnerability exploitation: Attacks rely on automa-
tion to trigger vulnerabilities. Once a vulnerability
has been discovered, malicious attackers use scripts
(“exploits”) to quickly exploit multiple targets (e.g.,
different organizations or different hosts in the same
organization). Writing exploits is of high interest to
security analysts too. They need exploits to test that
their systems are indeed protected from a known
attack. Moreover, exploits are often needed to dem-
onstrate the impact and actual exploitability of a vul-
nerability (“proof of concept”) to motivate vendors
and users to patch their systems. In the worst case,
writing an exploit can show that a vulnerability allows
a remote attacker to execute arbitrary code in the tar-
get host; in other cases, the attacker may get access to
data, cause a denial of service (e.g., killing a process
and consuming resources), or exploit more vulner-
abilities. It is challenging for vendors to tell apart vul-
nerabilities that are indeed exploitable; for example,
Common Vulnerabilities and Exposures data are not
technically verified and often misleading.

■■ Postexploitation activities: Getting a foothold through
an exploited vulnerability is only the initial step of
an attack (the “cyberkill chain”). Both attackers and
security analysts (“red teams”) leverage automated
tools for lateral movement and privilege escalation
by stealing credentials from sniffed traffic or compro-
mised hosts, for persistence by installing back doors
and remote-control tools to provide access and main-
tain it over time (e.g., after reboots), and for data theft
and exfiltration by logging keystrokes and screens and
transmitting the stolen data to an external network.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4	 IEEE Security & Privacy� Month/Month 2024

Attackers write custom programs for all these activi-
ties to tailor an attack for a specific victim and for
evading antivirus, network monitoring, and endpoint
detection and response solutions. For example, mal-
ware is often delivered as an encrypted payload to be
launched with a decryption program (an “unpacker”);
attackers apply their own custom-made (and even sim-
plistic) encryption to differentiate from other attacks
and evade malware detection signatures. Similarly,
red teams emulate real attacks by using custom-made
software to realistically assess the effectiveness of pro-
cedures and solutions for attack detection. Moreover,
security analysts can use AI-generated code for auto-
mating incident response actions.

These use cases show that offensive security is a
software-intensive area, but writing offensive code takes
its toll on the time budget. Moreover, it can be a tech-
nically difficult activity. For example, in exploit devel-
opment, “shellcode” payloads are typically written in
assembly language to perform low-level operations and
to gain full control of the layout of code and data in stack
and heap memory so as to make the shellcode more com-
pact and obfuscated. However, programming in assembly
is time-consuming and has low productivity. In testing
antimalware solutions, writing malware requires work-
ing with (and the abuse of) the complex C++ application
programming interfaces (APIs) of the Microsoft Win-
dows operating system and related products. Higher-level
languages, such as Python, make it easier to write offen-
sive code but provide less flexibility and can still require a
significant amount of time to write code.

We make the case that security analysts need to
leverage AI code generators to get support for defen-
sive tasks. In this case, developers would translate a
description of a piece of code in English (an “intent”)
into a corresponding code snippet. For example, secu-
rity analysts can query AI for code snippets that they
cannot recall or that they are not yet confident to
write themselves, in a similar way to querying a search

engine, with the additional benefit that the generated
code is tailored for the specific application. More-
over, working with security code, such as in assembly
language, can be a barrier for newcomers in security,
which is a limiting factor to the growing demand for
security analysts able to work with low-level attacks.
Thus, AI code generators can flatten the learning curve
with natural language processing. Finally, as malicious
actors reap the benefits of AI code generators (e.g., to
develop more diverse malware in larger quantities),
security analysts also need to leverage AI to keep up
with the pace.

Experimental Evaluation
We experimented with AI code generators in the context
of several security tasks. For evaluation purposes, we
built our own manually curated dataset (violent-python,
https://github.com/dessertlab/violent-python), where a
sample contains a piece of code from offensive software
(in a programming language) and its corresponding
description in natural language (plain English).

We built the dataset by using the popular book Vio-
lent Python, by T. J. O’Connor,1 which presents several
examples of offensive programs using the Python lan-
guage. Our dataset covers multiple areas of offensive
security, including penetration testing (e.g., an auto-
mated exploit for a Server Message Block vulnerability, a
port scanner, and a Secure Socket Shell botnet), forensic
analysis (e.g., geolocating individuals, recovering deleted
items, inspecting the Windows registry, examining meta-
data in documents and images, and analyzing data from
mobile and desktop applications), network traffic analy-
sis (e.g., capturing packets and geolocating IP addresses,
identifying distributed denial-of-service toolkits, dis-
covering decoy scans, analyzing botnet traffic, and foil-
ing intrusion detection systems), and OSINT and social
engineering (e.g., anonymously browsing the web, work-
ing with developer APIs, scraping popular social media
sites, and creating a spear phishing e-mail).

The dataset consists of 1,372 unique samples, as
shown in Table 1. Note that the row total indicates
the total number of unique examples (i.e., we did not
report replicated pairs of natural language intent/code
snippets). This dataset is complementary to our pre-
vious datasets (Shellcode_IA32 and EVIL), where we
included code snippets from shellcodes in assembly lan-
guage2 and from exploits in mixed Python and assem-
bly language.3

The size of our dataset is in line with other state-of-
the-art corpora used to fine-tune machine learning
models. In fact, in state-of-the-art code generation,
a model is not trained from scratch. Instead, exist-
ing LLMs (that were already trained with millions
of publicly available lines of code) are fine-tuned in a

Table 1. The violent-python dataset.

Individual
Lines

Multiline
Blocks Functions

Penetration testing 490 48 21

Forensic analysis 342 47 13

Network traffic analysis 375 43 20

OSINT and social engineering 553 55 25

Total 1,129 171 72

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://github.com/dessertlab/violent-python

www.computer.org/security� 5

supervised way to achieve transfer learning for a specific
case (in our case, generating offensive code). Typically,
the datasets for fine-tuning are relatively limited, on the
order of 1,000 samples.4

In our evaluation, we considered several approaches
to describe offensive code in natural language since
this is an important factor to determine the usability of
AI code generators. One approach is to describe indi-
vidual lines of code with an English statement, which is
typical of other datasets in the field of code generation.
This approach can provide the highest accuracy of the
generated code since the developer guides the AI code
generator with a fine-grained description. However, this
approach is also the most verbose and demanding one
for the developer. Therefore, we also consider other two
approaches, where, respectively, we use an English state-
ment to describe multiple lines of code (“blocks”) and
entire functions. In the case of blocks and functions,
multiple code snippets are joined by the newline char-
acter “\n”. Overall, the dataset consists of 82% individual
lines, 12% multiline blocks, and 6% entire functions. For
every script in the dataset, we manually described it in the
three alternative ways. We based the descriptions on the
contents of the chapter around each script and on com-
ments in the code where available. Table 2 lists examples
of descriptions of the three alternative granularities.

To evaluate AI code generators for security pur-
poses, we start from CodeBERT (https://github.com/
microsoft/CodeBERT), a pretrained language model
for programming languages. CodeBERT is a model rep-
resentative of the state of the art, which has achieved
high performance in several software engineering
tasks, including the generation of offensive code. It is
a multiprogramming-lingual model, which has been
pretrained on pairs of natural language intents and
code snippets, across six different programming lan-
guages. CodeBERT represents the state of the art for
several code-related tasks in the software engineering

field, such as code search and the generation of code
and other artifacts, such as comments, documentation,
and commit messages. According to the best practices
for using pretrained models, we use part of our data-
set as training data to fine-tune the model for the spe-
cific task of generating offensive code. Moreover, we
run the model along with data processing operations3
both before translation to prepare the input data and
after translation to improve the quality and readability
of the code in output. For our experiments, we used a
machine with a Debian-based distribution, with eight
virtual CPUs, 16 GB of random-access memory, and
two Nvidia T4 GPUs.

We assessed the model’s ability to generate offensive
code from different styles of natural language accord-
ing to the three different levels of details in the descrip-
tions of the dataset (i.e., lines, blocks, and functions).
We split the dataset into sets for training (the samples
for fine-tuning the model), validation (to tune the
hyperparameters of the models), and testing (for the
evaluation), using a random selection with the common
80%–10%–10% ratio.

To estimate the correctness of the AI-generated
code, the gold standard is represented by a manual
code review, where a human evaluator checks whether
the code generated by the models is semantically cor-
rect, i.e., that it performs exactly what is described in
the natural language intent. However, manual review is
often infeasible due to the large amount of data to scru-
tinize, which makes the process time-consuming and
prone to errors.

Therefore, the most common practice is to adopt
output similarity metrics to assess the similarity of the
code generated by the models with a reference ground
truth. Among the large set of available output similar-
ity metrics, we choose the edit distance (ED). We based
this choice on our previous work,5 where we systemati-
cally analyzed several similarity metrics for both Python

Table 2. Examples of intents in natural language.

Code Individual Lines Description
Multiple Lines (Block)
Description

Entire Function
Description

def connScan(tgtHost,
tgtPort)

Define function connScan with
parameters tgtHost and tgtPort.

Try to create the socket with
parameters AF_INET and
SOCK_STREAM, connect to
tgtHost on tgtPort, send the
message “ViolentPython,”
receive the response, and
acquire the lock.

Send the message
“ViolentPython” to
the host tgtHost on
the port tgtPort and
receive the response.

try: Start the try block.

connSkt = socket(AF_INET,
SOCK_STREAM)

Create the socket with parameters
AF_INET and SOCK_STREAM.

connSkt.send(ViolentPython
\r\n)

Send the message “ViolentPython.”

results = connSkt.recv(100) Receive the response.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://github.com/microsoft/CodeBERT
https://github.com/microsoft/CodeBERT

6	 IEEE Security & Privacy� Month/Month 2024

and assembly code and analyzed the correlation of these
metrics with semantic correctness. This metric mea-
sures the ED between two strings, i.e., the minimum
number of operations on single characters required to
make each code snippet produced by the model equal
to a reference code snippet from the dataset, which is
used as ground truth for the evaluation. The ED ranges
between zero and one, with higher scores correspond-
ing to smaller distances.

Including metrics that assess whether the code is
compilable would not yield any useful information
since these metrics assess the syntactical correctness
rather than the semantic one. In fact, a code can be
syntactically correct (i.e., compilable) but still not per-
form what is described in the intent (i.e., semantically
incorrect). As a matter of fact, metrics such as compi-
lation accuracy have shown to be less correlated to the
semantic correctness of security-oriented code for both
Python and assembly languages.5

To understand how the model fine-tuning impacts
the performance, we compare the results against the
performance of the model without any fine-tuning, also

known as zero-shot learning. Figure 1 describes the results
in terms of the ED. Unsurprisingly, the results highlight
that fine-tuning the model on offensive code always pro-
vides performance higher than that obtained without
fine-tuning. The boost in performance is more evident
when the models generate individual lines (19.05% ver-
sus 77.89%) and becomes closer when the model gen-
erates blocks (18.23% versus 43.45%) and functions
(22.31% versus 37.14%). This happens mainly for two
reasons: 1) the fine-tuned model, as expected, is less
accurate at generating complex code (e.g., code blocks
and functions) than individual lines and 2) the model
without fine-tuning (i.e., zero-shot learning) is insensi-
tive to the complexity of the code to be generated. Even
better, during zero-shot learning, CodeBERT generates
functions with higher performance than that obtained
during the generation of blocks and single lines. Most
likely, the data used to pretrain CodeBERT contained
several examples of complex code, such as entire func-
tions rather than simple code snippets.

Then, we compare the fine-tuned CodeBERT against
two popular and widely used public AI code genera-
tors: GitHub Copilot (https://github.com/features/
copilot) and Amazon CodeWhisperer (https://aws.
amazon.com/codewhisperer). They are both public
services that empower AI code assistants within the
development environment by providing code sugges-
tions from comments in natural language and from
existing code. They were trained on billions of lines of
code from open source projects. These solutions are
accessible via APIs.

We compare the performance of the three AI code
generators on the same test set. We used the train-
ing data only for CodeBERT since it is not possible
to further fine-tune public AI code generators. Fig-
ure 2 presents the results, in terms of the ED, of the
AI code generators in the generation of single lines,
code blocks, and entire functions of security-oriented
Python code. First, the figure shows that the perfor-
mance decreases from single lines to code blocks and
from code blocks to entire functions, regardless of the
code generator. This is an expected result due to the
increasing complexity of the code to be generated.
Let us analyze the results thoroughly. For the simplest
task, i.e., the generation of single lines, CodeBERT
(77.89%) provides the best performance, followed by
Copilot (65.38%) and CodeWhisperer (60.76%). We
attribute this to the fine-tuning of the model since the
process boosts performance at generating offensive
code. For blocks and functions, where the number of
samples in the dataset is limited, we found that Code-
BERT and Copilot have similar performance (43.45%
versus 45.52% for blocks and 37.14% versus 35.27%
for functions); hence, the fine-tuning does not boost

19.05 18.23 22.31

77.89

43.45
37.14

0
10
20
30
40
50
60
70
80
90

100

Line Block Function

E
D

 (
%

)

Zero-Shot Learning
Fine-Tuning

Figure 1. Zero-shot learning versus offensive code
fine-tuning.

77.89

43.45
37.14

65.38

45.42

35.27

60.76

38.76
31.31

0

10

20

30

40

50

60

70

80

90

100

Line Block Function

E
D

 (
%

)

CodeBERT
GitHub Copilot
Amazon CodeWhisperer

Figure 2. A comparison of AI code generators in the generation of offensive
Python code.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://github.com/features/copilot
https://github.com/features/copilot
https://aws.amazon.com/codewhisperer
https://aws.amazon.com/codewhisperer

www.computer.org/security� 7

the performance of CodeBERT when compared to
public AI code generators. CodeWhisperer, instead,
shows lower performance than the two competitors
(38.76% and 31.31% for blocks and functions, respec-
tively). The reasons can be attributed to the fact that
CodeWhisperer, differing from a general-purpose
tool, such as Copilot, caters first and foremost to
development use cases associated with Amazon plat-
forms, such as Amazon Web Services, i.e., to writing
code related to Amazon APIs.

Finally, to provide context about the results achieved
by the AI code generators, we can contrast them with
the performance of state-of-the-art LLMs in the gen-
eration of general-purpose (i.e., nonoffensive) Python
code, which is equal to 86.7%.6 This result is compara-
ble with the performance in the generation of individ-
ual lines of offensive code. Therefore, current language
models provide good potential for generating offensive
code, although they need to be fine-tuned for this task

and be guided by fine-grained descriptions from devel-
opers. As the scale and complexity of LLMs grow, we
can expect that their overall performance in security
applications will improve over time.

To provide more practical insights into the code
generated by the code generators, Table 3 provides a
qualitative analysis using cherry-picked examples from
our test sets. It is important to remark that the code we
collected for the dataset is always related to security use
cases. Unlike regular code generation that focuses on
nonsecurity programs (e.g., create, read, update, and
delete applications and small algorithms on data struc-
tures), security-oriented code contains a large number
of low-level arithmetic logic operations and bit-level
slices.7 Given that security code consists of several
lines of code, some versions can appear as “general
purpose” code if considered out of context. However,
all the examples in our dataset are indeed part of a real
security use case.

Table 3. Examples of generated code and expected code.

Type

Natural
Language
Intent

Ground Truth
Reference CodeBERT Output GitHub Copilot Output

Amazon
CodeWhisperer
Output

Line Assign 0 to
seqNum.

seqNum = 0 seqNum = 0 seqNum = 0 seqNum = 0

Block If city is not
equal to
an empty
string,
concatenate
the strings
city, “,” and
country to
geoLoc.

if city != ":
\n geoLoc = city
+ ', ' + country

if(cityFile =
None): \n cities =
geoLoc

if city != ": \n
geoLoc = city +
', ' + country \n
print(geoLoc)

city =
"London" \n
if city: \n
geoLoc = city
+ ", UK" \n
print(geoLoc)
\n else: \n
print("City is
not defined")

Function Connect to
the database
skypeDB and
execute the
command
“SELECT
displayname,
skypename,
city, country,
phone_
mobile,
birthday
FROM
Contacts;.”

def printContacts
(skypeDB):
\n conn =
sqlite3.connect
(skypeDB) \n c =
conn.cursor()
\n c.execute
("SELECT
displayname,
skypename, city,
country, phone_
mobile, birthday
FROM Contacts;"
\n

def printCookies
(cookiesDB): \n
try: \n conn =
sqlite3.connect
(cookiesDB) \n c =
conn.cursor() \n
c.execute("SELECT
displayname,
skypename, city,
country, phone_
mobile, birthday
FROM Contacts;")
\n for row in c:
\n ...

def connect_
skypeDB(): \n try:
\n conn = sqlite3.
connect ('skypeDB')
\n cur = conn.cursor()
\ncur.execute
("SELECT displayname,
skypename, city,
country, phone_mobile,
birthday FROM
Contacts;") \n
rows = cur.fetchall()
\n for row in rows:
\n ...

def connect_
db(): \n
conn =
sqlite3.connect
('skypeDB') \n
return conn

Generated code that perfectly matches the reference is in bold.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8	 IEEE Security & Privacy� Month/Month 2024

The first row of the table shows how the models can
correctly generate individual line code snippets by per-
forming a simple operation, such as the assignment of
a variable. The second row shows the ability of Copi-
lot to generate a whole multiline block by generating a
correct sequence of an if‒then statement. CodeBERT
and Amazon CodeWhisperer, instead, both fail to gen-
erate the correct output. Indeed, the former generates
something close to the expected output, yet the result
is incomplete. The latter, on the other hand, produces
a verbose snippet that is syntactically correct but that
diverges from the natural language description. Finally,
the third row shows how the models deal with the
generation of whole complex functions from a single
natural language description. CodeBERT and Copi-
lot prove their potential by generating several lines of
code snippets; hence, they prove to be a valid solution
as code assistants for more complex tasks. The code
generated by CodeWhisperer again generates a syntac-
tically correct function that, however, contains only a
subset of the operation required to accomplish what is
required by the natural language prompt.

Related Work
Given their recent advances, AI-based solutions have
become an attractive solution for different tasks in

the field of software security. Table 4 examines the
related work.

Our work uses AI code generators for the generation
of offensive code. Differing from previous work on gen-
erative AI, we adopt AI-based code generators to sup-
port several types of synthetic attacks in the context of
penetration testing. Indeed, due to the lack of corpora
containing security-oriented code to train AI-based
solutions, previous work focused on other more spe-
cific use cases, such as the generation of exploits with
low-level languages, malware generation, and malicious
content for social engineering. Therefore, our work
aims to expand the scope of generative AI for security
by introducing a novel dataset and experimental base-
lines for research in this area.

T hrough this experience with LLMs, and in build-
ing a security-oriented evaluation benchmark,

we learned about potential use cases for offensive secu-
rity. These use cases encompass attack surface analysis,
OSINT, vulnerability exploitation, and postexploitation.
We believe that cybersecurity professionals must embrace
AI code generators to prevent attacks more efficiently.

Overall, the results of our experiments on current AI
code generators emphasize the importance of a careful

Table 4. Related work.

Year Author Contribution

2022 Liguori et al. [2] Use of neural machine translation models to generate software exploits in assembly
language from natural language

2022 Kim et al. [8] Security surveillance toward AI-enabled digital twin service, which provides
ecofriendly security through the active participation of low-resource devices

2022 Yang et al. [9] Use of a shallow transformer model that performs code generation and
summarization to generate software exploits

2023 Yang et al. [7] Generation of software exploits using a rule-based template parser to generate
augmented natural language descriptions and a semantic attention layer to extract
and calculate each layer’s representational information

2023 Xiao et al. [10] Use of neural network-based API completion techniques to capture program
dependencies

2023 McIntosh et al. [11] Use of a state-of-the-art LLM in generating cybersecurity policies to deter and
mitigate ransomware attacks that perform data exfiltration

2023 Pa et al. [12] Development of malware programs and attack tools using public AI generative
models

2023 Gupta et al. [13] Use of public AI code generator to create social engineering attacks, phishing attacks,
automated hacking, payload attacks, and malware

2023 Botacin et al. [14] Use of public AI code generator to generate malware

2023 Grigoriadou et al.
[15]

Detection and mitigation of IoT cyberattacks by using an AI-powered intrusion
detection and prevention system

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

www.computer.org/security� 9

choice of which one to use. In particular, the experi-
ments showed the importance of fine-tuning the models
for security-oriented applications. In fact, when trained
with samples of security-oriented code, CodeBERT
can outperform popular public AI code generators and
achieve performance close to nonsecurity-oriented
applications. Unfortunately, the availability of data for
security applications is very limited, and the creation of
corpora from scratch is a difficult and time-consuming
task, as it requires significant manual effort supported
by high expertise and technical skills in the field.

When security-oriented code to fine-tune the models
is not available, the usage of public AI code generators is
a potential solution, although with a performance loss.
The choice of a public generator strongly depends on the
application, but the experiments we performed suggest
that a general-purpose tool, such as GitHub Copilot, that
was trained with more diverse programming languages
and projects can better deal with the generation of offen-
sive code than generators tailored for specific APIs and
architectures, such as Amazon CodeWhisperer.

Acknowledgment
This work has been partially supported by Minis-
try of University and Research Projects of Significant
National Interest 2022 project Federated Learning for
Generative Emulation of Advanced Persistent Threats,
CUP E53D23007950001 (https://flegrea.github.io/).

References
1.	 T. O’Connor, Violent Python: A Cookbook for Hackers,

Forensic Analysts, Penetration Testers and Security Engineers.
Oxford, U.K.: Newnes, 2012.

2.	 P. Liguori, E. Al-Hossami, D. Cotroneo, R. Natella, B.
Cukic, and S. Shaikh, “Can we generate shellcodes via
natural language? An empirical study,” Automated Softw.
Eng., vol. 29, no. 1, p. 30, Mar. 2022, doi: 10.1007/
s10515-022-00331-3.

3.	 P. Liguori et al., “EVIL: Exploiting software via natural
language,” in Proc. 32nd IEEE Int. Symp. Softw. Rel. Eng.
(ISSRE), Wuhan, China, Z. Jin, X. Li, J. Xiang, L. Mari-
ani, T. Liu, X. Yu, and N. Ivaki, Eds., Piscataway, NJ, USA:
IEEE, Oct. 25–28, 2021, pp. 321–332, doi: 10.1109/
ISSRE52982.2021.00042.

4.	 C. Zhou et al., “LIMA: Less is more for alignment,” 2023,
arXiv:2305.11206.

5.	 P. Liguori, C. Improta, R. Natella, B. Cukic, and D. Cotro-
neo, “Who evaluates the evaluators? On automatic met-
rics for assessing AI-based offensive code generators,”
Expert Syst. Appl., vol. 225, Sep. 2023, Art. 120073, doi:
10.1016/j.eswa.2023.120073.

6.	 A. Svyatkovskiy, S. K. Deng, S. Fu, and N. Sundaresan,
“IntelliCode compose: Code generation using trans-
former,” in Proc. 28th ACM Joint Eur. Softw. Eng. Conf.

Symp. Found. Softw. Eng. (ESEC/FSE), P. Devanbu, M.
B. Cohen, and T. Zimmermann, Eds., ACM, Nov. 8–13,
2020, pp. 1433–1443, doi: 10.1145/3368089.3417058.

7.	 G. Yang, Y. Zhou, X. Chen, X. Zhang, T. Han, and T. Chen,
“ExploitGen: Template-augmented exploit code genera-
tion based on codeBERT,” J. Syst. Softw., vol. 197, Mar.
2023, Art. no. 111577, doi: 10.1016/j.jss.2022.111577.

8.	 H. Kim and J. Ben-Othman, “Eco-friendly low resource
security surveillance framework toward green ai digital
twin,” IEEE Commun. Lett., vol. 27, no. 1, pp. 377–380,
Jan. 2023, doi: 10.1109/LCOMM.2022.3218050.

9.	 G. Yang, X. Chen, Y. Zhou, and C. Yu, “DualSC: Automatic
generation and summarization of shellcode via transformer
and dual learning,” in Proc. IEEE Int. Conf. Softw. Anal., Evol.
Reeng. (SANER), Honolulu, HI, USA, Mar. 15–18, 2022,
pp. 361–372, doi: 10.1109/SANER53432.2022.00052.

10.	 Y. Xiao, W. Song, J. Qi, B. Viswanath, P. D. McDaniel, and
D. Yao, “Specializing neural networks for cryptographic
code completion applications,” IEEE Trans. Softw. Eng,
vol. 49, no. 6, pp. 3524–3535, Jun. 2023, doi: 10.1109/
TSE.2023.3265362.

11.	 T. R. McIntosh et al., “Harnessing GPT-4 for generation
of cybersecurity GRC policies: A focus on ransomware
attack mitigation,” Comput. Secur., vol. 134, Nov. 2023,
Art. no. 103424, doi: 10.1016/j.cose.2023.103424.

12.	 Y. M. P. Pa, S. Tanizaki, T. Kou, M. van Eeten, K. Yosh-
ioka, and T. Matsumoto, “An attacker’s dream? Exploring
the capabilities of ChatGPT for developing malware,” in
Proc. Cyber Secur. Experimentation Test Workshop (CSET),
Marina del Rey, CA, USA. New York, NY, USA: ACM, Aug.
7–8, 2023. pp. 10–18, doi: 10.1145/3607505.3607513.

13.	 M. Gupta, C. Akiri, K. Aryal, E. Parker, and L. Praharaj,
“From ChatGPT to ThreatGPT: Impact of generative AI in
cybersecurity and privacy,” IEEE Access, vol. 11, pp. 80,218–
80,245, Aug. 2023, doi: 10.1109/ACCESS.2023.3300381.

14.	 M. Botacin, “GPThreats-3: Is automatic malware generation
a threat?” in Proc. IEEE Secur. Privacy Workshops (SPW), San
Francisco, CA, USA. Piscataway, NJ, USA: IEEE, May 25,
2023. pp. 238–254, doi: 10.1109/SPW59333.2023.00027.

15.	 S. Grigoriadou et al., “Hunting IoT cyberattacks with AI
- Powered intrusion detection,” in Proc. IEEE Int. Conf.
Cyber Secur. Resilience (CSR), Venice, Italy. Piscataway, NJ,
USA: IEEE, Jul. 31/Aug. 2, 2023. 2023, pp. 142–147, doi:
10.1109/CSR57506.2023.10224981.

Roberto Natella is an associate professor at the Uni-
versity of Naples Federico II, 80125 Naples, Italy.
His research interests include software security and
dependability, with a focus on the experimental
injection of faults, attacks, and stressful conditions.
Natella received a Ph.D. in information technol-
ogy and electrical engineering from the Univer-
sity of Naples Federico II. Contact him at roberto.
natella@unina.it.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://flegrea.github.io/
mailto:roberto.natella@unina.it
mailto:roberto.natella@unina.it

10	 IEEE Security & Privacy� Month/Month 2024

Pietro Liguori is an assistant professor at the Univer-
sity of Naples Federico II, 80125 Naples, Italy. His
research interests include automatic exploit genera-
tion and the robustness and security of large language
models. Liguori received a Ph.D. in information tech-
nology and electrical engineering from the University
of Naples Federico II. Contact him at pietro.liguori@
unina.it.

Cristina Improta is a Ph.D. student at the University of
Naples Federico II, 80125 Naples, Italy. Her research
interests include offensive security, artificial intelli-
gence code generation, and the security of machine
learning systems. Improta received an M.Sc. in com-
puter engineering from the University of Naples Fed-
erico II. Contact her at cristina.improta@unina.it.

Bojan Cukic is a professor in and the dean of the College
of Computing and Informatics, University of North
Carolina at Charlotte, Charlotte, NC 28223 USA. His
research interests include information assurance and

biometrics; software engineering, with an empha-
sis on verification and validation; and resilient com-
puting. Cukic received a Ph.D. in computer science
from the University of Houston, and an honorary
Ph.D. from the University of Rijeka. Contact him at
bcukic@charlotte.edu.

Domenico Cotroneo is a professor at the University of
Naples Federico II, 80125 Naples, Italy. His research
interests include software reliability and security,
field failure data analysis, and software fault injec-
tion. Cotroneo received a Ph.D. from the Depart-
ment of Computer Science and System Engineering,
University of Naples Federico II. He is the chair of
the IEEE Computer Society Technical Community
on Dependable Computing and Fault Tolerance
and an elected member of International Federation
for Information Processing Working Group 10.4 on
Dependable Computing and Fault Tolerance. He is a
Senior Member of IEEE. Contact him at cotroneo@
unina.it.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

mailto:pietro.liguori@unina.it
mailto:pietro.liguori@unina.it
mailto:cristina.improta@unina.it
mailto:bcukic@charlotte.edu
mailto:cotroneo@unina.it
mailto:cotroneo@unina.it

