
24	 November/December 2023	 Copublished by the IEEE Computer and Reliability Societies �

This work is licensed under a Creative
Commons Attribution 4.0 License. For more information,

see https://creativecommons.org/licenses/by/4.0/

SOFTWARE SUPPLY CHAIN SECURITY

Ákos Milánkovich | Security Evaluation Analysis and Research Laboratory
Katja Tuma | Vrije Universiteit

We developed and evaluated an industry-level tool to support practitioners in analyzing and visualizing
delta-certification to aid small companies specializing in security evaluation of the software supply chain.

T he continuous growth of open source software
using a combination of cloud and local storage

has resulted in complex software supply chains that,
if left unchecked, can lead to unprecedented security
breaches. Indeed, the contagions publicly exposed
vulnerabilities, such as Colonial Pipeline,1 Codecov,2
and Solarwinds,3 which equate to a storm of potential
threats expanding in scope, complexity, and impact.
Gartner predicts that by 2025, 45% of organizations
worldwide will have experienced attacks on their soft-
ware supply chains, a threefold increase from 2021.4
On the bright side, organizations with software bill of
materials (SBOMs) (i.e., record containing the details
and supply chain relationships of various components)
could identify the vulnerable component faster, com-
pared to spending weeks to find vulnerabilities.5,6

Introduction
In domains where security certification is required
(such as safety-critical systems7), keeping track of secu-
rity issues for software updates, including internal and
external dependencies, is not trivial.8 Certifying software
requires frequent recertification of components, their

propagating effects on legacy components, and their
compositions into systems that are part of the software
supply chain. In addition, rapid collaboration, continu-
ous integration (CI), and continuous deployment (CD)
are dramatically changing the speed. Still, propriety soft-
ware distributors are liable on the grounds of partner
agreements to deliver a (re)certified product.

The situation is even worse for small and medium-
sized enterprises, which often consume open source
software. In principle, the liability rests with the orga-
nization that placed the open source software into a
product and placed that product on the market. When
an organization uses open source software, it takes on
responsibility to (re)certify that component and verify
that no security vulnerability is propagated up the soft-
ware supply chain. To this aim, organizations could
adopt static application security testing (SAST) prod-
ucts. But, SAST solutions produce high numbers of
false positives, which means further resources must be
spent on sieving through security alerts.

Due to the limited use of certification in the infor-
mation and communications sector, the European reg-
ulation (Cybersecurity Act) on cybersecurity mandated
consistent software certification where the certifica-
tion is required. To this aim, the European regulation
tasked the European Union Agency for Cybersecurity

Digital Object Identifier 10.1109/MSEC.2023.3311464
Date of current version: 20 September 2023

Delta Security Certification for Software
Supply Chains

https://orcid.org/0000-0002-8954-7605
https://orcid.org/0000-0001-7189-2817

www.computer.org/security� 25

(ENISA) to create holistic certification schemes to
increase trust in digital solutions. Traditionally, soft-
ware certification requires analysts to pore over the
software as a whole, which can be a time-consuming
process. This costs of generating the evidence might
still be acceptable as one-off expense if the software is
frozen after production or is slowly evolving over time.
But in the era of CI/CD, such certification processes
could cripple the software development industry. In
fact, the Cybersecurity Act emphasizes that “(72)
flexible cybersecurity solutions are necessary for the
industry to stay ahead of cyber threats, and therefore
any certification scheme should be designed in a way
that avoids the risk of being outdated quickly” (https://
eur-lex.europa.eu/eli/reg/2019/881/oj). Focusing the
recertification on the software changes and their effects
could help shorten the recertification process. Similar
to SBOMs, the evidence collected for security delta-
certification (i.e., analyzing the introduced changes in
a new project version) could help analysts to quickly
check whether currently used software packages are
vulnerable to known vulnerabilities. But, there is no
existing work investigating recertification and how
to integrate it into the development process of open
source software.

To address this gap, this work investigates how secu-
rity certification scales when software is continuously
updated by new commits. From the perspective of the
practitioner, we focus our investigation on two specific
research questions (RQ):

■■ RQ1: What are the key performance indicators
for measuring industrial relevance of automating
delta-assessment?

■■ RQ2: To what extent can the effort of the human ana-
lyst be reduced by automating part of delta-assessment?

The Security Evaluation and Research Labora-
tory (SEARCH-Lab or SLAB) developed an industry-
level tool, based on lightweight static analysis, to explore
the feasibility of delta-certification for multiparty open
software and services (MOSS) of the supply chain. This
approach can help shorten the review time by at least
30% (as examined in the “Evaluation” section) and con-
tinuously identify vulnerabilities while enforcing poli-
cies to improve precision.

Beyond the State-of-the-Art
Table 1 shows existing certification schemes and
their suitability for certifying rapidly changing open
source software. Industry-standard security cer-
tification schemes, like Common Criteria (CC),9
Common Criteria based European Candidate Cyber-
security Certification (EUCC),10 and European
Cybersecurity Certification Scheme on Cloud Services
(EUCS)11 heavily rely on development process auditing
and documentation-based evaluation, which are chal-
lenging to automate. Santos et al.12 proposed a metrics
framework suitable for supply chains and in the indus-
trial context to promote the level of trust between the
nodes of a supply chain by using the same metrics and
goals related to certification. However, to the best of
our knowledge, no existing approach provides a pos-
sible solution for integrating certification into the CI/
CD process that is also compatible with automation.

Delta-certification is a novel certification approach
that focuses on the changes between the certified and
new versions of the target.13 By emphasizing the del-
tas, analysts can save time and effort by delving deeper
into the changes rather than performing a complete
evaluation again. This approach requires appropriate
automation tools to detect and present changes to the
human analyst.

Table 1. Existing certification schemes and their support for automated evaluation.

Scheme
Document
Based Effort

Static
Analysis

Delta
Evaluation Full Name for Reference

CC Yes High Partly No Common criteria (ISO/IEC 15408)

EUCC/EUCS Yes High Yes No EUCC scheme, EUCS, cloud services scheme (ENISA)

CSPN Partly Medium Partly No Certification de Sécurité de Premier Niveau (Agence
Nationale de la Sécurité des Systèmes d’Information)

MASVS No Medium Optional No Mobile application security verification standard (Open
Worldwide Application Security Project)

CLS Partly Medium Yes No Cybersecurity labeling scheme (Cyber Security Agency of
Singapore)

SCL No Medium Yes No VESSEDIA approach for security evaluation (H2020)

This work No Low Yes Yes Incremental and continuous certification scheme (SLAB)

https://eur-lex.europa.eu/eli/reg/2019/881/oj
https://eur-lex.europa.eu/eli/reg/2019/881/oj

26	 IEEE Security & Privacy� November/December 2023

SOFTWARE SUPPLY CHAIN SECURITY

Technical Challenges
We outline three major technical challenges of automat-
ing the certification for MOSS of the supply chain.

Finding Evidence
Sources at Scale
The software supply
chain is composed
of large projects with
internal and transient
dependencies, which
means that the secu-
rity evaluation would
require an investiga-
tion of thousands of
f i les. The number of
file changes at individ-
ual commits or builds
is usually significantly lower. But precisely identifying
only security-relevant files is not trivial. For example, in
the course of conducting the case study (see the “Evalu-
ation” section), we discovered that logging was imple-
mented using a particular library. We defined a filter rule
to list the instances the logger was called and the assess-
ment rule can decide whether it contains sensitive data.
Should a later commit include a change in the logging
library used, the filter rule would need to be updated
to detect the new implementation. Currently, the rule
update needs to be performed by the user. While po-
tentially this could be automated using source code
tracking, it would not be trivial, even for simpler rule
updates. Finding evidence sources is especially chal-
lenging in situations of absence of security control,
since security controls can be implemented in differ-
ent ways and at different locations in the code base.
The first technical challenge we face is to quickly gath-
er the “prime suspects” in the set of available files for a
deeper analysis.

The Level of Human Involvement
Our approach is based on static code analysis, which has
often been characterized by high false-positive rates. It
is well-known that striking a balance between false posi-
tives (alerts of potentially vulnerable code that is actually
safe) and false negatives (overlooked vulnerabilities) is
challenging in practice. The level of human involvement
and its role in striking the balance is not trivial to deter-
mine. The level of human involvement in code-review
has been investigated at Facebook, where static analyz-
ers have been used as bot participants in code review,
making automatic comments whenever an engineer
submits a code (so-called diff time deployment).14 The
alternative deployment model (dubbed as traditional
offline deployment) was also used internally. In the case

of offline deployment, the issues are presented to engi-
neers outside of their workflow (e.g., a security expert
opening an issues for the developer to solve). A strik-
ing observation is that the diff time deployment saw a

70% fix rate, where a
more traditional of-
fline deployment saw
a 0% fix rate. Bringing
the security analyst in
the loop (without in-
troducing too much
manual work) might
be the key to effectively
automate the security
evaluation of the soft-
ware supply chain. But,
it is not yet clear which
part of the security

evaluation of the supply chain should still be handled
by the analyst and what analyses can be safely automated.
Therefore, the second technical challenge we face is to
determine to what extent (and where) the analyst needs
to be involved so that the assessments are precise, quickly
obtained, and reliable so they can be used in a real indus-
trial context.

Finding Evidence for Concrete
Security Requirements
Once identified, the list of potential evidence files has
to be scrutinized to identify whether a particular change
in the code base has resulted in failing or passing con-
crete security requirements. For some requirements
(e.g., DATA.2, no sensitive data should be logged) find-
ing the lines of code where the logging library is called
is already a good starting point. But other requirements
require gathering evidence not only from source code,
but also configurations files or outputs of running mon-
itoring tools. Minor modification in the code could
cause a cascading effect, where several types of files have
to be modified for the project to satisfy the requirement
again. For instance, introducing rate limiting to prevent
denial of service attacks using the Zuul library is use-
less without appropriately configuring the proxy in the
configuration files. Many of these propagating changes
are very dependent on particular language features and
runtime environment frameworks, which makes gen-
eralizing the automated solutions difficult. The third
technical challenge is to automate the assessment of the
impact of the code modifications on fulfillment of con-
crete security requirements.

Certification With DeltAICert
In this section we outline the delta-certification scheme
and the main components of the tool.

There is no existing work investigating
recertification and how to integrate

it into the development process of open
source software.

www.computer.org/security� 27

The Scheme
The delta-certification workflow is shown in Figure 1.
The scheme consists of a mandatory baseline certification,
which establishes the minimum requirements for the cer-
tification process. The baseline certification is conducted
by security analysts who use tools to generate technical
evidence for subsequent delta-certifications. The filtering
rules (“Listings 1 to 5”) can be used to this purpose. These
can be further extended to the use of other SAST tools.

In the delta-certification, the human analyst lever-
ages information gained from running third-party tools
[e.g., SonarQube (www.sonarsource.com)] to define
the rules to extract evidence. The extracted evidence
is then assessed based on established requirements and
recorded in the certification report. Certification is
granted if all requirements are met. Delta-certifications
are typically conducted when a new version of the target
of evaluation (ToE) is released after a baseline certifica-
tion. However, if the certification’s validity period has
expired or an incident occurs, a new baseline certifica-
tion is required to earn the certificate. For this approach
to be practicable, we suggest the use of methods and
tools to provide continuous certification from commit
to commit instead of releases. In this way, the automa-
tion can handle most of the cases.

DeltAICert Tool
The purpose of the DeltAICert tool is to help security
analysts focus only on changes that may have an impact

on previous certifications rather than starting the certi-
fication process from scratch. The tool was developed
at SLAB, a company with experience in conducting
security assessments of software and services in the
software supply chain. The company has previously
developed an internal methodology (MEFORMA15) to
assess the ToE. First, the analysts gathers the informa-
tion, iteratively scopes the analysis, and conducts threat
modeling and risk analysis. DeltAICert automates the
information gathering and for delta-certification, the
comparison steps. The tool also supports the collection
of evidence during security assessments and provides
scripting abilities for the automatic extraction of useful
information from evidence.

To certify parts of the software supply chain, the
delta-certification scheme requires (read-only) access
to the source code repository, to be triggered by new
versions of the ToE and check out the project for ana-
lyzing the source code and configuration files. Next,
DeltAICert will collect and analyze the code base
for evidence. The tool analyzes various type of evi-
dence files, including source code snippets, (parts
of) runtime logs, network captures, results of static
or dynamic analysis tools, etc. Some of the outcomes
can be used directly as evidence [e.g., common vulner-
abilities and exposures (CVE) scores for identified
vulnerabilities], while source code snippets may still
require the analyst to read and understand what has
been modified.

Figure 1. Delta-certification workflow.

First Evaluation
SAST/DAST

Analyzers
(SonarQube,
SporBugs,

etc.)

Evidence

Review With
DeltAICert

First ModelCertificate

Certification
Scheme

Delta Evaluation

Delta Evidence

Automated
DeltAICert

Report Delta ModelReport

Human
Assessor

Review
Human

Assessor

Certificate

SAST/DAST
Analyzers

(SonarQube,
SporBugs,

etc.)

Changed
Source Code

Original
Source Code

http://www.sonarsource.com

28	 IEEE Security & Privacy� November/December 2023

SOFTWARE SUPPLY CHAIN SECURITY

DeltAICert also provides the evaluators with
the automation capability of analyzing dependencies
among the software packages. Namely, it provides the
framework to achieve these goals in a unified way. Check-
ing dependencies among the software packages is imple-
mented by using existing tools [e.g., we use the QualityGate
(https://www.quality-gate.com/webpage)]. We process
their outputs comparing the current state to their certified
state so that we know whether any of those changes affect
the requirements and the security of the target.

The results of this automated step are presented to
the analysts for a final review and for a final decision
on the assessment. (While the rules presented in this
work are based on simple heuristics, the approach can

be extended in the future by running SAST tools to help
collect the evidence.) The role of the analyst is to lever-
age the provided evidence (i.e., create explicit trace links
to the evidence files) and make the final assessment for
each security requirement.

Evaluation
In this section, we report our evaluation with a case
study, an evaluation with industry experts, and the
experiment with 69 students. We end this section with a
brief discussion of the threats to validity.

Case Study

ToE. We evaluated the DeltAICert tool with Piggy-
Metrics (https://github.com/sqshq/piggymetrics),
an open source financial advisor app implementing a
microservice architecture. The choice of the project
was motivated by the need to evaluate the tool with a
medium-size project (7,000 lines of code) with enough
complexity to be challenging from the perspective of
evaluating its security posture. The PiggyMetrics proj-
ect captures well the MOSS concept that the new certi-
fication scheme at SLAB aims to certify, and is amenable
to security analysts covering the manual evaluation due
to the good balance of code quantity and number of
technologies and features (including dependencies of
the software supply chain in the open source). In addi-
tion, the projects’ infrastructure automation serves as
a representative example of the continuous integration
workflows typically used in the software supply chain.

Overall, we have identified 35 security requirements,
including requirements related to securing the architec-
ture, data flows, and use of cryptographic primitives,
authentication, communication, and environment. For
the purpose of the baseline assessment, we focus on a
subset of the identified requirements.

Baseline assessment. To support the human analyst in
conducting the baseline assessment, DeltAICert imple-
ments filtering rules. Below, we show some examples of

Listing 1: Finding logging evidence.
import  os
import  sys
def  checkMapping(fname):
    fl = open(fname, ’rt’).readlines()
     for i in range(len(fl)):
       for check in [’log.’]:
       if (check in fl[i]):
        print (’%s:%d’%(fname, i))
       � print (’␣␣line:␣%s’%fl[i])
for root, subdirs, files in os.walk
(file_name):
   for filename in files:
    if filename.endswith(”.java”):
     path = os.path.join(root, filename)
      checkMapping(path)

Listing 2: Finding end points.
def  checkMapping(fname):
    fl = open(fname, ’rt’).readlines()
    for i in range(len(fl)):
    for check in [’@RequestMapping’,
      ’@GetMapping’, ’@PostMapping’,
      ’@PutMapping’, ’@DeleteMapping’,
      ’@PatchMapping’]:
       if (check in fl[i]):
         print (’%s:%d’%(fname, i))
for root, subdirs, files in os.walk
(dir_name):
   for filename in files:
    if filename.endswith(”.java”):
     � path = os.path.join(root, filename)

checkMapping(path)

Listing 3: Finding external
components
for o in piggy_metrics_services.elements:
   for t in
  � o.class_object_class.stereotype_

instances:
     if (str(t) == ’External␣Component’):
          for l in o.linked:
          print (str(l) + ’␣- > ␣%s’%(o))

https://www.quality-gate.com/webpage
https://github.com/sqshq/piggymetrics

www.computer.org/security� 29

the python scripts (“Listings 1 to 5”) used to go through
all of the files: e.g., log files, abstract syntax tree, source
code, list of third-party libraries, etc. For example, the
list of Java files and locations with occurrences of the
“log” keyword (“Listing 1”).

The authors analyzed all of the requirements
using these filtering rules. The result of the baseline
assessment revealed eight failing security requirements,

Table 2. Summary of baseline and delta-assessments.

ID Requirement Baseline Assessment Rationale Change Delta

DATA.1 No sensitive data should be stored
outside of the secure container.

Failed Sensitive data is stored in
MongDB without encryption,
but authentication is enabled

Docker encryption, auth
protection

Passed

DATA.2 No sensitive data is written to logs. Failed E-mail was logged Logging logic was
adapted to remove
e-mail logging.

Passed

DATA.4 The software does not hold
sensitive data in memory longer
than necessary, and memory is
cleared after use.

Failed Depends on MongoDB,
but Java does not meet this
requirement by default

— Failed

AUTH.4 The remote endpoint terminates
the existing session when the user
logs out.

Failed The token was deleted only
from the local storage.

— Failed

AUTH.6 The remote endpoint implements
a mechanism to protect
against excessive submission of
credentials.

Failed Rate limiting was not
configured in the Zuul proxy

Change in Zuul
configuration

Passed

COMM.1 Outgoing data is encrypted on
the network using transport layer
security.

Failed HTTP only endpoints found Change in configuration Passed

QUAL.3 All third party components used
by the software are identified and
checked for known vulnerabilities.

Failed 254 CVEs found — Failed

QUAL.4 The exceptions are handled
properly.

Failed Qualitygate warnings — Failed

CRYP.3 Cryptographic primitives are
used according to industry best
practices.

Passed BCrypt was used for password
hashing

Purposefully insecure
MD5 hashing algorithm
configured

Failed

The project version used for the baseline assessment can be found at commit 6bb2cf9ddbca980b664d3edbb6ff775d75369278.

Listing 4: Finding HTTP and
HTTPS calls.
from piggy_metrics_v1 import *
for o in piggy_metrics_services.elements:
   for l in o.links:
     for t in l.stereotype_instances:
       if (str(t) == ’HTTP’ or
          str(t) == ’HTTPS’):
          �print (’%s␣- > ␣%s,␣%s’%
          (str(o),str(l), str(t)))

Listing 5: Finding vulnerabilities in
dependencies.
b = open(sys.argv[1], ’rt’).read()
deps = json.loads(b)

for d in deps[’dependencies’]:
   if (’vulnerabilities’ in d):
     if (’packages’ in d):
      � for v in d[’vulnerabilities’]:
        � print (’%s␣-␣%s’%(d

[’filename’],
           v[’name’]))

30	 IEEE Security & Privacy� November/December 2023

SOFTWARE SUPPLY CHAIN SECURITY

as depicted in the first four columns of Table 2. For
brevity, we include one passed requirement (actually
15 requirements passed the baseline assessment)
and focus on the failing requirements. For instance, the
requirement DATA.2 failed the baseline assessment.
Security-sensitive data (e.g., e-mail, passwords, keys,
certificates) and privacy-sensitive data (e.g., PII) should
not be written to log files, even in case of crashes, since
access to the system or application logs could provide
valuable information to the attacker. “Listing 6” shows
an excerpt of the output of the filtering rules.

Since e-mail addresses were logged without encryp-
tion, personal data were logged and the authors concluded
that this requirement failed the baseline assessment.

Project changes and delta-assessment. The delta-
assessment was fully automated based on the rules defined by
the analyst. To show how the delta-certification method facili-
tates the automated assessment, we modified the PiggyMetrics
project by introducing changes that correct previously failing
requirements. For the purpose of the case study, we injected
one change that failed a previously passing requirement. The
results of the delta-assessment are shown in the last two col-
umns of Table 2. For all of the introduced changes, the auto-
mated rules correctly assessed the requirements. Since more
than one requirement failed the delta-assessment, such a proj-
ect state would not result in obtaining the desired certificate.

Validation With Experts
To achieve industrial relevance, we have defined and
measured key performance indicators (KPIs) presented
in Table 3.

First, we gathered feedback from an expert advisory
board on the industrial relevance of DeltaAICert dur-
ing a yearly project review meeting. (The advisory board
included, among others, members of the U.S. Depart-
ment for Homeland Security, open source, multinational
automotive corporation, and standardization body.)
The advisory board confirmed that the produced out-
comes of the DeltaAICert tool can be useful for security
researchers, developers, managers, and security audi-
tors/evaluators. When asked to rank the importance
of KPIs (from most important to least important), the
experts chose the following order: accuracy of the new
certification, detection accuracy of failed requirements,
usability and functionality satisfaction, the time needed
for the delta-assessment, the time needed for the base-
line evaluation, and difficulty in completing the process.
This confirms that the measures from the experiment are
practically relevant and that reducing the time needed to
perform the delta-assessment while maintaining a high
accuracy of the new certification is a top priority.

Second, we conducted a short (1 h) in-person work-
shop with four experts from the ETSI CYBER group at
a project plenary meeting. The structure of the work-
shop followed a short introduction to the context of
delta-certification, an explanation of the tool, a tool
demo, a brief quiz, and a roundtable discussion. Notes
were taken during the workshop by a dedicated person.
ETSI welcomed the concept of delta-evaluation and
more emphasis on automation. For instance, partici-
pants agreed that the tool can be useful for developers
and that it could help increase the security evaluation
speed. The main topic of interest during the roundta-
ble was the scalability of delta-assessments and security
evaluation at the system level. For instance, the experts
pointed out that the runtime environment can also Listing 6: Output of assessment rule

for DATA.2.
/piggymetrics-master/account-service/

src/main/java/com/piggymetrics/
account/service/AccountService
Impl.java:87

line: log.debug (“ account changes
has been saved “, name);

/piggymetrics-master/notification
-service/src/main/java/com/
piggymetrics/notification/
service/EmailServiceImpl.java:51

Line: log.info (“ e-mail notification
has been sent to “, type, recipient.
getEmail ());

Table 3. KPIs for measuring DeltaAICert
industrial relevance.

KPI Description

KPI1 Time needed for the first evaluation
(technical)

KPI2 Time needed for the delta-evaluation
(technical)

KPI3 Detection accuracy of failed requirements
(technical)

KPI4 Accuracy of the new certification (technical)

KPI5 Difficulty in completing the process with
respect to skill level (qualitative)

KPI6 Usability and functionality satisfaction
(qualitative)

www.computer.org/security� 31

influence the security properties, which are captured
among the environment-related requirements at vari-
ous (component, guest, host) levels. For the PiggyMet-
rics project, the automated rules returned the result on
average in 2 s, which is reasonable to support the asses-
sor in making the decision. However, the scalability of
the approach on a larger code base and with more cus-
tom rules is subject to future work.

Answer to RQ1. The experts confirmed that reducing the
time needed to perform the delta-assessment while main-
taining a high accuracy of the new certification is a top
priority and that the tool can be useful for developers and
that it could help increase the security evaluation speed.

Experiment
We conducted an experiment with 69 computer sci-
ence M.Sc. students and six practitioners to investigate
whether the automated rules effectively lower manual
effort in performing the delta-assessment.

Intervention. To this aim, we randomly assigned the
participants to two groups. Group A (control) used the
DeltaAICert tool to perform a delta-assessment with-
out using the automated rules and group B (interven-
tion) used the tool to perform the delta-assessment with
automated rules.

Measures. We measured the actual effectiveness of the
delta-assessment and the time spent on the task. The
actual effectiveness was calculated as the precision of
final assessments for the requirement (passed versus
failed), namely the number of correct requirement
assessments divided by all of the assessments. We also
measured perceived usefulness of the tool in a short
posttask questionnaire.

Setup and training. We conducted the experiment dur-
ing a course taught at the university premises. The data
gathered for research purposes were volunteered by the
students. To control the environment, we set up virtual
machines (VMs) with a preconfigured DeltaAICert
tool, and on the day of the experiment, we collected

the data with an online survey tool (www.qualtrics.
com). We provided training to prepare the students for
the task. All the participants finished before the allot-
ted time of 90 min.

Task. The groups were tasked with performing a delta-
assessment for one requirement with the DeltaAICert
tool on a new project version. Group A (control) was
tasked with analyzing AUTH.6 and group B was tasked
with analyzing DATA.2 (see Table 2). The task involved
running the assigned VM (with a preconfigured tool)
and either manually inspecting the project changes
(group A) or running the automated rules (group B)
and finally making an assessment (pass/fail) for the
requirement.

Execution with practitioners. Finally, to extend the
evaluation and measure the KPIs with experts, we con-
ducted an internal evaluation at SLAB (following a
similar experimental setup) with six experts. In addi-
tion, we measured the time spent on the initial and
delta-assessments of the PiggyMetrics project.

Results. Table 4 depicts the results (means) of the main
measures of the experiment. First, students from both
groups had a very low experience (on average, 0.4 on
a scale of 0 to 4) with programming in Java, container
technologies, pen-testing, and security standards.

In both groups, the correct final assessment is
that the requirement is passed in the new project
version. On average, the participants across the
two groups reported the results with the precision
of 0.85. However, the group using automated rules
(group B) used less time (≈33% less) to achieve the
same quality of result. In addition, we measured to
what extent the participants agreed that the tool was
useful to identify certification compliance or com-
pliance violations for the new changes in the reposi-
tory. On average, the experimental group (group B)
agreed with this statement (2.35) while group A was
neutral (1.97).

Table 5 presents the results from running the
experiment with practitioners. We found that the

Table 4. Results from the experiment.

Group No. of Students Experience [0–4] Precision [0–1]
Time
[min] Usefulness [0–4]

A 35 0.42 0.85 43.2 1.97

B 34 0.41 0.85 32.6 2.35

The values in bold indicate improvement of the experimental group (B) compared to the control group (A).

http://www.qualtrics.com
http://www.qualtrics.com

32	 IEEE Security & Privacy� November/December 2023

SOFTWARE SUPPLY CHAIN SECURITY

baseline assessment takes the same amount of time
whether performed with (on average, 6.6 h) or with-
out (on average, 6.67 h) DeltaAICert. Consistent with
our result in the experiment, the experts were able
to perform the delta-assessments ≈30% faster (3.4 h
with and 4.7 h without DeltaAICert). In addition, we
found that the quality (self-reported by experts on a
scale from 1 to 10) of the evaluation report and accu-
racy of the assessment increased (without: 7.6, with
DeltaAICert: 9).

Answer to RQ2. The evaluation with experiments
shows that, compared to a manual assessment, the
automated rules achieve at least ≈30% speed-up in
delta-assessment. The student groups using automated
rules took ≈33% less time to achieve the same quality
of result. In addition, practitioners using automated
rules experienced similar benefits in terms of speed-up
(≈30%) compared to the students.

Threats to Validity
A few students (four in group A and two in group B)
have performed a correct delta-assessment but have
not selected the corresponding final assessment as
passed. Based on the students’ own justification
of the assessment, we corrected their final assess-
ments as “passed” to reflect that. A possible expla-
nation is that the students have reconsidered their
assessment but forgot to change their initial final
assessment, which could be solved by improving
the user interface to detect a change of justification
text and prompt the user to verify their final assess-
ment. We speculatively removed these data points,
but found only a small drop in precision for group

A (to 0.83) and small increased precision for group
B (to 0.87), which does not impact the main results
of the evaluation.

To avoid the risk of exposing the participant to a
complicated task, we included control questions that
measured their levels of understanding of the mate-
rial presented and the task they were asked to perform
(which were good in both groups).

T his article presents an approach to resolve
the problem of delta security certification for

open source software supply chains. Resolving the
delta-certification could help organizations to reuse
open source components and manage (re)certification
of components and their compositions up the software
supply chain. In addition, tools that bring the cyberse-
curity requirements closer to development could help
reduce the manual effort for the regulatory practice or
security certification.

Our validation shows that even for nonexperts,
using the automation features of DeltAICert resulted in
at least 30% reduction in the time required for finish-
ing the delta-assessment while maintaining the level of
accuracy of the manual delta-assessment. Investigating
the scalability of the approach with more custom rules
and a larger code base is planned for future work.

Acknowledgment
This work involved human subjects or animals in its
research. The authors confirm that all human/animal
subject research procedures and protocols are exempt
from review board approval. This work was funded by
the European Union under the H2020 Program under

Table 5. Evaluation with six SLAB experts.

Expert Group

Baseline
Evaluation
[hours]

Delta
Evaluation
[hours]

Quality of
Evaluation
Report
[1–10]

Accuracy of
Assessment
Results
[1–10]

User
Experience
[1–10]

Perceived
Difficulty
Level
[1–10]

1 A 6.5 4.5 7 8 6 7

2 A 7 5 7 7 6 8

3 A 6.8 4.7 8 8 7 7

4 B 6.5 3.5 9 9 8 5

5 B 6.7 3.3 9 9 7 5

6 B 6.6 3.4 9 9 6 6

Average improvement
in B

+0,03% +0,28% +0,19% +0,15% +0,21% +0,27%

Group B was using the automated rules for delta-assessment, while group A performed the same task without the rules.

www.computer.org/security� 33

Grant 952647 (AssureMOSS). We would like to thank
Security Evaluation and Research-Laboratory develop-
ers of the DeltAICert tool for their effort and the mem-
bers of the AssureMOSS project for their support and
useful discussions.

References
	 1.	 S. M. Kerner, “Colonial pipeline hack explained: Every-

thing you need to know,” Tech Target, Apr. 2022. [Online].
Available: https://www.techtarget.com/whatis/feature/
Colonial-Pipeline-hack-explained-Everything-you-need
-to-know

	 2.	 A. Sharma, “What you need to know about the codecov
incident: A supply chain attack gone undetected for 2
months,” Sonatype, Apr. 2021. [Online]. Available: https://
blog.sonatype.com/what-you-need-to-know-about
-the-codecov-incident-a-supply-chain-attack-gone
-undetected-for-2-months

	 3.	 FireEye, “Highly evasive attacker leverages solarwinds supply
chain to compromise multiple global victims with sunburst
backdoor,” Mandiant, Dec. 2020. [Online]. Available: https://
www.mandiant.com/resources/blog/evasive-attacker
-leverages-solarwinds-supply-chain-compromises-with
-sunburst-backdoor

	 4.	 I. Gartner, “Gartner identifies top security and risk man-
agement trends for 2022,” Gartner, Mar. 2022. [Online].
Available: https://www.gartner.com/en/newsroom/press
-releases/2022-03-07-gartner-identifies-top-security-and
-risk-management-trends-for-2022

	 5.	 L. Vaas, “One year after log4shell, firms still struggle to hunt
down log4j,” Contrast Security, 2022. [Online]. Available:
https://www.contrastsecurity.com/security-influencers/
one-year-af ter- log4shel l- f i r ms - st i l l - str uggle-to
-hunt-down-log4j

	 6.	 W. Enck and L. Williams, “Top five challenges in software
supply chain security: Observations from 30 industry
and government organizations,” IEEE Security Privacy,
vol. 20, no. 2, pp. 96–100, Mar./Apr. 2022, doi: 10.1109/
MSEC.2022.3142338.

	 7.	 K. Tuma and M. Widman, “Seven pain points of threat
analysis and risk assessment in the automotive domain,”
IEEE Security Privacy, vol. 19, no. 5, pp. 78–82, Sep./Oct.
2021, doi: 10.1109/MSEC.2021.3093137.

	 8.	 J. L. Hernandez-Ramos, S. N. Matheu, and A. Skarmeta,
“The challenges of software cybersecurity certifica-
tion [Building Security In],” IEEE Security Privacy, vol.
19, no. 1, pp. 99–102, Jan./Feb. 2021, doi: 10.1109/
MSEC.2020.3037845.

	 9.	 Common Criteria for Information Technology Security
Evaluation - Part 1: Introduction and General Model. (Apr.

2017). Common Criteria Portal. [Online]. Available:
https://www.commoncriteriaportal.org/files/ccfiles/
CCPART1V3.1R5.pdf

	10.	 “EUCC scheme: Crossing a bridge: The first EU cyberse-
curity certification scheme is availed to the Commission,”
European Union Agency for Cybersecurity (ENISA),
Athens, Greece, 2021. [Online]. Available: https://
www.enisa.europa.eu/news/enisa-news/crossing-a
-br idge-the-f irst-eu-c ybersecur it y-cer t i f icat ion
-scheme-is-availed-to-the-commission

	11.	 “EUCS – Cloud services scheme,” ENISA, European Union
Agency for Cybersecurity (ENISA), Athens, Greece, Dec.
2020. [Online]. Available: https://www.enisa.europa.eu/
publications/eucs-cloud-service-scheme

	12.	 H. Santos, A. Oliveira, L. Soares, A. Satis, and A. Santos,
Information Security Assessment and Certification Within
Supply Chains. New York, NY, USA: Association for
Computing Machinery, 2021.

	13.	 T. Arnold. Common Criteria: Delta Evaluation. (2006).
Common Criteria Portal. [Online]. Available: https://
w w w.commoncr iter iapor tal .org/iccc/7iccc/t1/
t1201130.pdf

	14.	 D. Distefano, M. Fähndrich, F. Logozzo, and P. W.
O’Hearn, “Scaling static analyses at Facebook,” Com-
mun. ACM, vol. 62, no. 8, pp. 62–70, Aug. 2019, doi:
10.1145/3338112.

	15.	E. Jeges, B. Berkes, G. Eberhardt, and B. Kiss,
“MEFORMA security evaluation methodology - A case
study,” in Proc. 4th Int. Conf. Pervasive Embedded Com-
put. Commun. Syst. MeSeCCS, (PECCS), Setúbal, Por-
tugal: SciTePress, 2014, pp. 267–274, doi: 10.5220/
0004919902670274.

Ákos Milánkovich is a security researcher at Security Eval-
uation and Research-Laboratory Ltd., 1117 Budapest,
Hungary. His research interests include wireless sen-
sor networks, agricultural monitoring, UWB localization,
and security. Milánkovich received a Ph.D. in energy
efficiency of wireless sensor networks from Budapest
University of Technology and Economics, Hungary.
Contact him at akos.milankovich@search-lab.hu.

Katja Tuma is an assistant professor at the Vrije Uni-
versiteit, 1081 Amsterdam, The Netherlands. Her
research interests are at the intersection of software
engineering, security, and risk analysis, with a particu-
lar interest in human aspects. Tuma received a Ph.D.
in computer science and engineering from the Uni-
versity of Gothenburg, Sweden. She is a Member of
IEEE. Contact her at k.tuma@vu.nl.

https://www.techtarget.com/whatis/feature/Colonial-Pipeline-hack-explained-Everything-you-need-to-know
https://www.techtarget.com/whatis/feature/Colonial-Pipeline-hack-explained-Everything-you-need-to-know
https://www.techtarget.com/whatis/feature/Colonial-Pipeline-hack-explained-Everything-you-need-to-know
https://blog.sonatype.com/what-you-need-to-know-about-the-codecov-incident-a-supply-chain-attack-gone-undetected-for-2-months
https://blog.sonatype.com/what-you-need-to-know-about-the-codecov-incident-a-supply-chain-attack-gone-undetected-for-2-months
https://blog.sonatype.com/what-you-need-to-know-about-the-codecov-incident-a-supply-chain-attack-gone-undetected-for-2-months
https://blog.sonatype.com/what-you-need-to-know-about-the-codecov-incident-a-supply-chain-attack-gone-undetected-for-2-months
https://www.mandiant.com/resources/blog/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor
https://www.mandiant.com/resources/blog/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor
https://www.mandiant.com/resources/blog/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor
https://www.mandiant.com/resources/blog/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor
https://www.gartner.com/en/newsroom/press-releases/2022-03-07-gartner-identifies-top-security-and-risk-management-trends-for-2022
https://www.gartner.com/en/newsroom/press-releases/2022-03-07-gartner-identifies-top-security-and-risk-management-trends-for-2022
https://www.gartner.com/en/newsroom/press-releases/2022-03-07-gartner-identifies-top-security-and-risk-management-trends-for-2022
https://www.contrastsecurity.com/security-influencers/one-year-after-log4shell-firms-still-struggle-to-hunt-down-log4j
https://www.contrastsecurity.com/security-influencers/one-year-after-log4shell-firms-still-struggle-to-hunt-down-log4j
https://www.contrastsecurity.com/security-influencers/one-year-after-log4shell-firms-still-struggle-to-hunt-down-log4j
http://dx.doi.org/10.1109/MSEC.2022.3142338
http://dx.doi.org/10.1109/MSEC.2022.3142338
http://dx.doi.org/10.1109/MSEC.2021.3093137
http://dx.doi.org/10.1109/MSEC.2020.3037845
http://dx.doi.org/10.1109/MSEC.2020.3037845
https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf
https://www.enisa.europa.eu/news/enisa-news/crossing-a-bridge-the-first-eu-cybersecurity-certification-scheme-is-availed-to-the-commission
https://www.enisa.europa.eu/news/enisa-news/crossing-a-bridge-the-first-eu-cybersecurity-certification-scheme-is-availed-to-the-commission
https://www.enisa.europa.eu/news/enisa-news/crossing-a-bridge-the-first-eu-cybersecurity-certification-scheme-is-availed-to-the-commission
https://www.enisa.europa.eu/news/enisa-news/crossing-a-bridge-the-first-eu-cybersecurity-certification-scheme-is-availed-to-the-commission
https://www.enisa.europa.eu/publications/eucs-cloud-service-scheme
https://www.enisa.europa.eu/publications/eucs-cloud-service-scheme
https://www.commoncriteriaportal.org/iccc/7iccc/t1/t1201130.pdf
https://www.commoncriteriaportal.org/iccc/7iccc/t1/t1201130.pdf
https://www.commoncriteriaportal.org/iccc/7iccc/t1/t1201130.pdf
http://dx.doi.org/10.1145/3338112

	24_21msec06-tuma-3311464

