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The passive and independent localization of aircraft has been the subject of much cyberphysical security 
research. We designed a multistage open competition focusing on the offline batch localization problem 
using opportunistic data sources. We discuss setup, results, and lessons learned.

T he passive and independent localization of air-
craft based on their wireless communication with 

other endpoints has been a long-standing problem and 
subject of much research. While modern aircraft often 
broadcast their (unauthenticated) position as obtained 
via global navigation satellite systems (GNSS), there 
are a multitude of reasons to calculate or verify aircrafts’ 
positions independently on the ground. Among other 
applications, the localization of aircraft based on their 
communication signals can be used to track noncoop-
erative aircraft, improve the security of unencrypted 
air traffic control (ATC) protocols, or act as redundant 
backup and safety system in case of outages of criti-
cal aviation infrastructures.1 In recent events, aircraft 

tracking has become an important factor in indepen-
dently observing military movements in conflict zones, 
including the war in Ukraine.2 This illustrates the true 
nature of aviation as a large-scale cyberphysical system, 
with many facets touching on security and privacy.

Originating from military settings, the capability to 
localize aircraft opportunistically first expanded into the 
civil aviation domain, and is now available to any actor 
who controls multiple inexpensive software-defined 
radios (SDRs). The widespread proliferation of such 
SDRs has at the same time given rise to globally ori-
ented, crowdsourced flight information websites, such 
as Flightradar24 (https://flightradar24.com) and the 
OpenSky Network (https://opensky-network.org). 
These organizations use the information gathered 
from many distributed SDR-based receivers of ATC 
data to display and share the tracks of aircraft around 
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the world. The data of these networks are used for 
many critical applications, from air traffic management 
to climate research and open source intelligence in 
times of conflict.2

Consequently, the practical aircraft localization 
problem (ALP) has expanded: from solving localized, 
controlled, homogeneous receiver environments to 
extremely heterogeneous, uncontrolled, and global-scale 
crowdsourced cyberphysical systems. However, the the-
oretical algorithms and solutions for use with the ALP 
have not been adapted to these developments.

Many classical solutions for the ALP have been 
proposed in the literature, with different theoreti-
cal underpinnings and typically focusing on the core 
multilateration (MLAT) algorithm. However, all suf-
fer from two critical flaws for modern deployments. 
First, they were principally not designed for the crowd-
sourced case with its typical organic, noncontrolled 
receiver growth and placement but instead rely on 
the ability to place receivers at will and in a proactive, 
near-optimal fashion. Second, until recently, there 
has been no scientific, 
standardized way 
to compare different 
methods of solving 
the different shapes 
and forms of the ALP.

These issues have 
recently been addressed 
with the Localization 
Reference Data Set 
(LocaRDS), which 
was developed spe-
cifically by scientists 
of the OpenSky Net-
work for competitive 
ALP comparisons, including the present competition.3 
Based on LocaRDS, we conducted an open competi-
tion in order to measure and improve the state-of-
the-art in ALP research and put it on a solid scientific 
grounding for securing the localization of aircraft. We 
seek to reduce the existing fragmentation of research 
on the ALP, where authors have to build their own test 
sets from real or simulated data in order to compare 
their novel methods. Naturally, as previously used data 
and metrics were generally not available and documen-
tation is sparse, the reproducibility and comparabil-
ity of results has been very limited until now. By using 
LocaRDS, we exploit the availability of open real-world 
crowdsourced flight data, which fulfills the require-
ments of different localization methods. We hope that 
through the use of a comparable and standardized 
source, it will become clear which are the best solutions 
to the ALP in different scenarios.

Competitions have been a popular method in sev-
eral areas of computer science, particularly in machine 
learning. They have proven to engage the community 
and include stakeholders from outside academia. Com-
petitions seek to foster a specific, often underdeveloped 
cause and have been applied successfully in (indoor) 
localization before, both online and in person.4 We 
argue that they are also useful in cyberphysical systems 
research, including security.

Contributions
 ■ We use LocaRDS,3 a reference dataset for scien-

tific comparability in localization research based on 
crowdsourced real-world air traffic data, in order to 
derive an effective benchmark for the ALP.

 ■ We report on the design and execution of a year-long 
public competition built to find novel and improved 
solutions to the ALP, in particular for the important 
crowdsourced setting.

 ■ We analyze the impressive results of the participants 
and their technical design choices and distill lessons 

learned from our long- 
term efforts.

Application of 
Localization 
to Security 
and Privacy 
in Aviation
Due to their legacy 
nature, all technolo-
gies used in a com-
mercial aircraft today 
are unauthenticated 
by nature, opening 
them up, among other 

things, to spoofing attacks. Since the rise of cheap com-
mercial off-the-shelf SDRs in the 2000s, published anal-
yses of attacks on wireless communication protocols in 
critical infrastructure abound. Of interest to us in par-
ticular are spoofing attacks on ATC technologies, such 
as secondary radar systems and the widely supported 
automatic dependent surveillance-broadcast (ADS-B) 
technology. ADS-B was mandated in most developed 
airspaces from 2020 onward and forms the heart of the 
next generation of ATC, a truly cyberphysical critical 
infrastructure system. The earliest security analyses 
were published by Costin and Francillon,5 McCallie 
et  al.,6 and Haines.7 In these analyses, it was already 
suggested that the use of independent localization 
could be a suitable way to improve the practical secu-
rity of the ADS-B system and ATC as a whole, but con-
crete public research improvements in this area have 
remained limited.

Based on LocaRDS, we conducted an open 
competition in order to measure and im-
prove the state-of-the-art in ALP research 

and put it on a solid scientific grounding for 
securing the localization of aircraft.
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At the same time, the tracking of aircraft has enjoyed 
rising importance in recent years, in particular outside 
of the academic literature. Public websites display air-
craft based on crowdsourced signals, both in real time 
and historically. These open source data are used by 
journalists, hobbyists, and nongovernmental organiza-
tions to investigate the climate emergency, crime, gov-
ernment corruption, human trafficking, and military 
movements in conflict areas. As not all aircraft send 
their own location, in particular military aircraft and 
aircraft operating outside industrialized countries, inde-
pendent localization of such aircraft helps to improve 
the necessary data in such cases.

Localization in Crowdsourced Networks
We consider the long-distance outdoor positioning 
problem to find the 3D position of an aircraft based 
on the signal characteristics of the communication.  
Figure 1 shows the abstract process.

This type of localization, or positioning, can in prin-
ciple be conducted with any communications signal 
sent out by an aircraft. Without loss of generality, the 
LocaRDS competition dataset uses the ADS-B system, 
which is readily collected by many web trackers includ-
ing, as mentioned before, OpenSky or Flightradar24. 
Thus, it offers not only sufficient data but based on its 
popularity, also many target users that would benefit 
from improved ALP solutions, in particular in a crowd-
sourced setting. As has been discussed widely in the lit-
erature, ADS-B and other ATC protocols are not secure 
and their verification using independent localization is 
the current method of choice to improve the security of 
the system as a whole.1

Time Difference of Arrival
The most popular approach to aircraft localization is to 
use the time differences of arrival (TDoA) concept, where 
n 1>  ground sensors receive and match the same signal 
sent by an aircraft. At reception, every receiver timestamps 
the signal. The time of arrival (ToA), measurements are 
then joined and the differences of all arrival timestamps 
,t tn1 f  between all n involved receivers are calculated. 

This is done, for example, by subtracting the earliest time-
stamp tmin or using a fixed receiver of the set as anchor. 
These data then form the basis for the TDoA approach, 
which as a surveillance technique is best known as MLAT.

MLAT is a proven and well-understood concept 
used in civil and military surveillance. It serves as an 
operational method for ATC around airports and even 
smaller countries (e.g., Austria or Czech Republic). 
Academic works and aviation regulatory bodies have 
argued for MLAT being an ideal backup for primary 
radar systems, which are slowly being phased out due to 
cost, accuracy, and reliability issues.8

However, classic MLAT solutions suffer from draw-
backs, most notably expensive hardware to enable 
highly accurate timestamps and tight synchronization. 
Both are a strict necessity for MLAT algorithms, as they 
are highly sensitive to noise, in particular in uncon-
trolled receiver placements where the geometric char-
acteristics are not optimized.9

We can assume that the localization accuracy depends 
on three elements:

1. the measurement accuracy
2. the spatial distribution of the stations
3. the algorithm used to solve the underlying geomet-

ric problem.

For the first two elements (measurement noise and 
sensor distribution), nothing can be improved within 
a crowdsourced network: it organically grows without 
any particular optimization of sensor positions and 
exploits receiver hardware of a given, highly variant, 
performance. Thus, we can only preprocess the data to 
statistically characterize the measurement noise, to dis-
card outliers, or to select the optimum subset of sensors.

Concerning the localization algorithm, a number of 
well-known approaches are available:

 ■ It can be treated as a regression problem, which can 
be linearized and solved using classical least squares 
(LS). This is the most common approach in literature 
and practice but requires an initial guess of the posi-
tion (iterative solution).

 ■ It can be treated as a statistical estimation problem and 
any classical estimator (e.g., the maximum-likelihood 
linear estimator or MLLE) can be applied. If the error 
model is well suited, this approach usually gives a 
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Figure 1. Representation of the ALP.
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nonbiased solution close to the optimal Cramer–
Rao lower bound. Under some simplification, this 
approach leads to the LS solution. In any case, an ini-
tial guess of the solution is needed (iterative solution).

 ■ Some numerical methods set a new mathematical 
function that relates the unknown target position, the 
measurements, and a new parameter derived from the 
target position (e.g., the target range). These methods 
do not require any initial guess to work and are com-
monly referred to as closed-form algorithms. On the 
other hand, they usually introduce quadratic noise 
terms and usually the solutions are biased. An exam-
ple of this approach is shown in Chan and Ho.10

 ■ Another approach uses geometrical methods that alge-
braically manipulate the hyperbolic equations until 
they directly set an 
inverse problem 
relating the target 
position with the 
measurements. 
These models usu-
ally require more 
measurements, 
introducing qua-
dratic and cubic 
noise as well. Like 
t h e  n u m e r i c a l 
methods, these do 
not require any 
guess for the solu-
tion (closed form) but typically are biased. An example 
is given in Schmidt.11

 ■ Recently, machine learning approaches have been pro-
posed. A dataset with all possible measurements, com-
puted on a grid of points, is generated and then the best 
match between the incoming measurement vector and 
the dataset is found by the use of a k-nearest neighbors 
algorithm. This approach can be classified as fingerprint-
ing and similar approaches were already tested in other 
application fields, such as indoor localization.

Methods requiring an initial guess can be very sensi-
tive to its choice. The solution can result in large errors if 
it is far away from the true position. This problem is even 
more important when the considered scenario is global, 
contrary to typical localized MLAT deployments around 
airports. Thus, for any iterative method, the strategy to 
select the initial guess must be well-defined.

Preprocessing and Synchronization
Classical approaches assume that any station is synchro-
nized with the reference station. Usually, time synchroni-
zation of the MLAT systems is achieved in two different 
ways: either by integrating a GPS receiver on each sensor 

or via a reference transponder in a known position that 
transmits radio frequency messages to all sensors.

Both methods are impractical in crowdsourced net-
works; there are only a few sensors using costly GPS 
synchronization, while the largest part feeds data with-
out any synchronization mechanism.

A common, suboptimal, solution to overcome this 
fragmentation is the use of opportunity traffic: airplanes 
transmit their position encoded in the ADS-B messages. 
This means that if an airplane is in view of more sensors, 
the time biases between the stations can be easily esti-
mated by inverting the equation:

  m c b b n, ,
i

i i i1 1 1
1i j i j

=
- - -

+ - +  (1)

where ( , , )x y z T
i =  is 

the target position, ij =
( , , )x y zi i i

T  represents 
the sensor position, c is 
the velocity of light, n ,i 1  
represents the difference 
between the realization 
of the noise of the sensor 
n and the sensor 1, b ,i 1  
represents the bias of the 
station i with respect to 
the reference station 1, 
and all positions in the 
equations are known.

This method has some limitations: it is difficult to 
achieve the synchronization of the complete network and 
the synchronization performance depends on the sensor 
measurement noise, the sensor position error, the aircraft 
ADS-B position accuracy, and the system geometry.

Moreover, the estimation of the clock offset at one 
moment usually is not sufficient, due to clock drift 
over time.

Clock drift comes from two main components of 
error: systematic fluctuations and random fluctuations.12 
Systematic deviation over time can be written as follows 
(approximating to the second-order term)12:

 ( ) ( ) ( ) .b t b f t Dt0 0 0 5 2
sys = + +  (2)

where t is the time, b(0) is the initial time offset of the 
clock, f(0) is the initial frequency offset of the clock, and 
D is the frequency drift of the oscillator (it represents the 
systematic change of frequency due to a combination of 
internal factors, such as aging or production tolerances).

There are several solutions to this problem:

 ■ Sequential estimation using a priori assumptions about 
the clock dynamic model and its noise characteristics, 

Academic works and aviation regulatory 
bodies have argued for MLAT being an ideal 

backup for primary radar systems, which 
are slowly being phased out due to cost, 

 accuracy, and reliability issues.
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for example using Kalman filtering or a simple alpha–
beta filter. The clock model and statistical properties 
or the errors are required.

 ■ Regression to compute the parameters in (2). Only the 
regression formulation is required.

 ■ Fitting/smoothing the sequence of measurements. No 
a priori information about the clock is required.

The first two methods use past data to extrapolate the 
future and can be used also in real-time applications. The 
third method is suitable only for offline batch localization.

Postprocessing and Aircraft Tracking
Having computed the aircraft positions for each 
received message individually, it is possible to signifi-
cantly improve the accuracy and completeness of the 
results by applying postprocessing techniques. Con-
sidering that generally the trajectories of airplanes are 
smooth, or in accordance with dynamic constraints, it 
is possible to again use estimators to improve the qual-
ity of the final localization output. In particular, we can 
detect outliers, smooth the trajectory, interpolate the 
trajectory, or produce an initial guess for the following 
measurements. Known methods include sequential 
estimation by using a priori statistical information of 
the aircraft and filtering as proposed by Kalman, or fit-
ting and smoothing methods, such as regression that 
can be used without a specific knowledge of the air-
craft dynamic.

Competition Design

Design Goals
Our competition had four main design goals:

1. Batch localization: Our competition mimicked an 
offline, batch localization problem, where a flight 
has fully finished and complete knowledge is avail-
able. Thus, exploiting the fact that aircraft move in 
predictable trajectories is explicitly allowed, as is 
the inclusion of “future data.” This is in contrast to 
live online MLAT, where only knowledge up to the 
present point can be included. We plan to examine 
this problem in a future competition.

2. Target metric: The target metric was exclusively the 
localization accuracy, here loosely defined as dif-
ference between the ADS-B ground truth and the 
localization data.

3. Integration of LocaRDS: Use of a comparable data-
set, developed specifically for comparison and com-
petition, that offered significant amounts of training 
data for the participants, including TDoA, but also 
the received signal strength (RSS) as optional local-
ization primitive.

4. No computational requirements: There were no 
requirements on execution time placed on the par-
ticipants, in line with the batch localization goal.

Implicit goal: Sensor synchronization. Calibration and 
synchronization of the receiving sensors is effectively 
a prerequirement for all practical localization meth-
ods, and it is of particularly crucial importance in the 
uncontrolled crowdsourced setting. It can thus be con-
sidered a separate, implicit subgoal of our competition. 
Many of the existing localization solutions require very 
tight time synchronization, in particular those based on 
TDoA measurements. This is costly even in controlled 
industrial deployments but impossible to achieve con-
sistently with the variety of modern crowdsourced sen-
sors used by enthusiasts to feed OpenSky and similar 
networks. While some algorithms may be more or less 
robust against noise in the TDoA data, the better the 
synchronization, the better the end results will be.

Competition Datasets
The offline competition and the first round of the 
online competition shared the same datasets (training 
and test) provided by the nonprofit research network 
OpenSky, with exclusively GPS-synchronized receiv-
ers, a subset of the LocaRDS dataset.3 For the second 
round of competition, we used the full LocaRDS data-
set, which included both synchronized and nonsyn-
chronized receivers from the crowdsourced OpenSky 
Network. The competition ended before the full release 
of LocaRDS, including the test data, in March 2021.

Figure 2 illustrates the positions of the sensors and 
the measured aircraft trajectories. As can be seen, the 
focus of the dataset is on Europe, where the underly-
ing data provider OpenSky has the best coverage with 
a sufficient number of sensors to conduct practical 
localization. Europe is also an interesting test case for 
cyberphysical research as it comprises many developed 
countries, typically with their own sovereign critical 
aviation infrastructure. Tables 1 and 2 provide the sta-
tistics for the different test and training datasets. For the 
full detailed description of the features and an in-depth 
discussion of the design of LocaRDS, see Schäfer et al.3

Sensor dataset. For all rounds, the relevant sensor infor-
mation was provided in a separate CSV file. These 
covered a subset of 514 (offline/R1) and 716 (R2) 
receivers, respectively, which were feeding aircraft data 
to the OpenSky Network in the relevant time period in 
2018. The sensor data comprised their type, capabili-
ties (GPS-synchronized or not), and the precise loca-
tion as provided by OpenSky. It is worth noting here 
that the positions of the sensors are of varying accu-
racy. The sensor positions have only been entered by 
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the user when the sensor was added to the network and 
there is no guarantee for correctness or accuracy. While 
some users report accurate positions for their anten-
nas (e.g., measured with their smartphone), others just 
provide a rough estimate based on services like Google 
Maps. Some may even report wrong locations for pri-
vacy reasons.

Training datasets. Each dataset (a CSV file) contained 
the data recorded by the OpenSky Network over a 
duration of 1 h and has a (uncompressed) size of about  
300 MB (only synchronized receivers) or 1 GB (all 
receivers). Each row represents the reception of one 
aircraft position report and contains the following 

information: a unique aircraft identifier, the Unix time-
stamp indicated when the message was received by 
OpenSky, unique identifiers of all sensors that received 
this signal, nanosecond timestamps from each of the 
sensors, signal strength measurements from each of the 
sensors, the position of the aircraft (latitude, longitude, 
height), and the barometric altitude of the aircraft.

Test datasets. The test or evaluation CSV was con-
structed in the same way as the training datasets. We 
then excluded the longitude, latitude, and geomet-
ric altitude of an arbitrarily chosen 10% of the flights, 
which the participants had to predict for the competi-
tion. This means the full position is present for all other 
aircraft in the dataset and can be used to synchronize 
the receiver clocks. Furthermore, the rough geomet-
ric height of the aircraft can be estimated based on the 
barometric altitude provided.

Evaluation Metrics
The metrics chosen for the scientific evaluation of the 
ALP should be as broadly applicable to the different 
scenarios and approaches as possible. In particular, in 
case of a formal competition, they should further have 
as low a complexity as possible so the users can easily 
understand how they are calculated. Finally, they should 
be robust against cheating.

Localization accuracy. The key metric for research in 
localization in general is the accuracy with which the 
position of the target is predicted. While the utility of 
aircraft localization depends on the context and the use 
case, more accuracy is strictly better.

The root-mean-square error (RMSE) has been 
widely included as a standard metric to compare the 
predictive performance of different localization models 
(see Lymberopoulos et al.4). However, as a basic metric, 
we chose the truncated RMSE (TRMSE) between the 

Table 2. Nonsynchronized competition datasets.

Round 2 Positions Flights Size (GiB)

Training set 1 6,535,444 2,888 1.20 

Training set 2 6,569,830 2,818 1.20 

Training set 3 6,348,679 2,680 1.17 

Training set 4 6,111,569 2,932 1.11 

Training set 5 6,309,260 2,854 1.15 

Training set 6 6,345,589 2,812 1.16 

Training set 7 6,187,378 2,695 1.14 

Test set 6,457,542 2,929 1.18 

Table 1. Synchronized competition datasets.

Offline/R1 Positions Flights Size (MiB)

Training set 1 2,074,194 2,769 307.8 

Training set 2 1,887,990 3,076 277.7 

Training set 3 2,002,847 2,809 296.4 

Training set 4 1,994,590 2,585 300.0 

Training set 5 1,951,877 2,319 295.1 

Training set 6 1,930,138 2,347 296.9 

Training set 7 1,869,587 2,144 283.8 

Test set 1,836,730 2,888 272.9 

Figure 2. Illustration of the full LocaRDS dataset, with 
50,865,291 aircraft positions (black lines) and 323 sensor 
positions (orange dots). In addition to geographic 
information, the dataset contains ToA and signal strength 
measurements for each position reported by an aircraft.
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real aircraft position as reported by the ADS-B ground 
truth and the contestants’ predictions for our main rank-
ing metric. This makes the metrics more robust against 
a small number of outliers with large position errors.

Dataset coverage. The second consideration concerns 
the coverage of the evaluation datasets, i.e., how many of 
the data points were chosen to be predicted. While ide-
ally all samples would have a prediction, this is not practi-
cal for several reasons. For example, some methods may 
need initial samples to calibrate and also regularly recali-
brate. Furthermore, there is also value in correctly choos-
ing to not predict bad or uncertain samples in order to 
minimize outliers and improve the average localization 
performance. However, it is obvious that with equal 
localization accuracy, higher coverage is strictly better.

Concretely, we first required a minimum sample cov-
erage of 50%, which should on average satisfy any non-
tactical applications of the ALP, i.e., those where update 
rates of aircraft positional information of more than 1 s 
are allowed. However, other values can sensibly be cho-
sen based on the application requirements and also 
depending on the sen-
sor coverage in a given 
geographical region.

Further considerations. 
Due to the variation in 
the distribution of 
uncertainty and qual-
ity of measurements 
in OpenSky, it is clear 
that there can be trad-
eoffs between cover-
age and accuracy, 
which we might want to capture to enable truly compa-
rable scientific research. Besides requiring a minimum 
coverage, this tradeoff could also be quantified for a 
provided solution through applying a penalty directly 
toward the accuracy scoring. By assuming a fixed high 
localization error for any missing observation, the 
TRMSE is increased, incentivizing the contestants to 
provide a higher number of observations. However, 
the effectiveness of the penalty is highly dependent on 
the quality of the provided solution: if the penalty is set 
below the TRMSE, it will actually improve the quality 
score and thus set a false incentive to leave out observa-
tions. As we were not aware of the quality of these solu-
tions, we dropped the application of such a penalty and 
do not report it.

A second consideration is centered around the run-
times of the provided solutions. While the speed of 
localization algorithms is not crucial in our batch local-
ization scenario, it may still be insightful to analyze. 

Variations in training times for ML-based solutions 
may impact the choice of algorithms in situations 
where regular retraining is required. Similarly, light-
weight algorithms for distributed resource-constraint 
edge computing are a relevant application, for example 
for crowdsourced flight tracking networks. However, 
we decided to exclude the runtime from the initial scor-
ing of the competition to enable participants to work 
on their own environments, making direct compari-
sons difficult.

Competition Execution
We briefly discuss the first, offline, stage of the compe-
tition before providing more detail about the signifi-
cantly more successful online stages.

Offline Competition

Format. We first decided to conduct this competition 
offline and in person, in conjunction with a leading aca-
demic conference on sensor networks. As the chosen 
venue regularly hosts on-site competitions of varying 

nature, this provided us 
with several advantages: 
first, a fixed framework 
with a prespecified day 
and location; and sec-
ond, embedding into a 
major conference would 
give additional aware-
ness among a relevant 
academic community.

Participants from 
all backgrounds were 
free to join the contest, 

whether coming from academia, industry, government, or 
out of private interest. Two months before the on-site meet-
ing, the competition attracted preregistrations from 42 con-
testants with 33 different affiliations.

As an additional incentive beyond the scientific chal-
lenge, there was prize money available.

Rules. The competition required every solution con-
sidered for the awards to be open sourced and their 
integrity and veracity subsequently verified by the orga-
nizers. Concretely, all source codes and additional data-
sets used to generate the results from the measurement 
data needed to be published under the GNU General 
Public License version 3 license. In addition, sufficient 
documentation needed to be provided to understand 
and reproduce the results.

Usage of any external datasets (e.g., weather data or 
tracking data from other sources) required explicit per-
mission by the organizers one month prior to the on-site 

Participants from all backgrounds were free 
to join the contest, whether coming from 

academia, industry, government, or out of 
private interest.
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competition day and sharing with all other contestants. 
Contestants were only allowed to use their own origi-
nal implementations. The simple reuse of existing code 
was explicitly disallowed. We encouraged individuals 
and teams of up to five persons from all backgrounds 
to register and participate. No affiliation with any of the 
organizers or their institutions was allowed.

Execution. Three months before the day of the on-site 
competition, we provided the training datasets to all 
competitors in form of CSV files, which included the 
ground truth of all aircraft locations. These datasets 
could be used by the participating teams to train their 
models in advance. For participating in the on-site 
competition, each team had to send at least one team 
member to the conference, where they received access 
to a nonlabeled evaluation dataset. They could be sup-
ported by their team members remotely and a voice 
channel to the competition site was constantly avail-
able. Overall, six teams with 11 members attended the 
evaluation day, with several thwarted last-minute due to 
visa and flight issues.

The teams had 9 h to find all locations of aircraft that 
were missing location information in the datasets. Every 
3 h, the teams had to submit their intermediate results 
(as a CSV file) to the organizers present. The organizers 
calculated an indicator of the accuracy of their solution 
and provided an intermediate ranking. After 9 h, the 
teams submitted their final results and the final rank-
ing was determined. It was possible to submit multiple 
times in each 3-h slot.

Online Competition

Format. We provided the labeled training datasets and 
the test datasets at the start of the competition period. 
The task was again to predict all locations of the aircraft 
flights that were missing location information. Each 
team (or individual) submitted their results for both 
rounds during the competition periods as a CSV file of 
a defined number of rows, which was uploaded to the 
AICrowd website. Afterward, an indicator of the accu-
racy (the 90% TRMSE) of their solution was immedi-
ately calculated and an intermediate ranking provided. 
When the competition time ended, the final ranking 
was determined using this leaderboard.

Rules. The rules with regards to open sourcing, licens-
ing, external data used, and eligibility remained the 
same as in the offline competition. For full award eli-
gibility, the quality of the solutions was required to be 
below 1,000 m TRSME. Between 1,000 m and 5,000 m,  
still half of the award money for a top five finish would 
be distributed, and none distributed for those above 

5,000 m. For each round, the full awards were set 
at 4,000, 3,000, 2,000, 1,000, and 500 Swiss Francs 
(CHF), respectively.

Execution of first round: Synchronized. The first round 
ran from 15 June to 31 July 2020. In this round, all pro-
vided data were from GPS-equipped sensors, which 
simplified things significantly as the competitors did 
not necessarily have to put any effort into sensor time 
synchronization in order to achieve practical results.

For this round, we instituted a minimum coverage 
requirement of 50%. Thus, to be ranked, at least 50% 
of the missing aircraft positions had to be provided. 
Based on the rankings at the deadline, the underly-
ing code was shared with the organizers by the top 
five teams/participants. We verified and ran the code 
independently in order to ensure that the entries were 
in accordance with the competition rules. There were 
no issues; thus, the winners were confirmed and the 
awards distributed. Overall, 46 teams with 75 partici-
pants contested this round.

Finally, we solicited feedback on the AICrowd forum 
that was set up for this competition. This resulted in 
several helpful comments by the participants in how 
to make the second round more engaging and remove 
some frustrations.

Execution of second round: Nonsynchronized. The sec-
ond round ran originally from 15 September to 31 
October 2020. We made three main changes compared 
to the first round:

 ■ We instituted a minimum coverage requirement of 
70%, since the results were better than expected in the 
first round and did not suffer much when requiring 
higher coverage.

 ■ We restricted submissions to five per day in order to 
reduce submission spamming.

 ■ We implemented a separate public and a hidden score 
in order to reduce overfitting. During the competi-
tion, feedback was provided on the scoreboard based 
on a fixed, arbitrarily chosen, 30% of all aircraft tra-
jectories that needed to be predicted. Only after the 
end of the competition were the scores on the full test 
dataset calculated and shown. The winners of the sec-
ond round were determined by this full ranking on 
the whole-test dataset.

However, we found that participation was lower, as 
was the eventual localization success, thus no awards 
were distributed. Building on our efforts, we again lis-
tened to the participants’ feedback and refined the 
second round. Most notably, we released the open 
source code of the winning entries of round 1, as well 
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as additional description of the training data. We reran 
the second round from 1 December 2020 until 31 Janu-
ary 2021, where it saw a good uptake of 19 teams with 
26 participants and an excellent localization success 
comparable to the first round in orders of magnitude, 
despite the significantly more complex setting. After 
the same verification procedure conducted in the first 
round, the same number of prizes were awarded and the 
new solutions also open sourced on GitHub.

Competition Results

Offline Competition
Table 3 shows the on-site results of the top contestants, 
as well as OpenSky’s previous reference implementa-
tion. The teams picked one, or a combination of several 
fundamental solution techniques: machine learning, 
traditional MLAT, ranging using the RSS, statistical 
regression, and analyzing the distribution of the data 
and deducting the position based on the historical data 
gleaned from the training sets.

Coverage targets varied significantly between 50% 
and 100%. While the two (at least partly) machine 
learning-based solutions targeted the whole dataset, all 
other teams chose to stay close to the 50% requirement, 
which is likely reflecting the difficulty of localizing a sig-
nificant part of the real-world dataset measurements, 
even though they were from synchronized receivers. 
Yet, a combined ML/MLAT algorithm provided the 
best solution after 9 h, with 100% coverage and a 90% 
truncated RMSE of 11,915.81 m. Overall, we noted sig-
nificant improvements throughout the evaluation day 
for all participants, making it likely that all approaches 
can be made more accurate.

In comparison, OpenSky’s reference implementation 
based on traditional MLAT showed that good aircraft 

localization results can be achieved with crowdsourced 
measurements based on cheap off-the-shelf hardware. 
It targeted measurements with at least three receivers, 
as is geometrically required for pure MLAT, and thus 
achieved a coverage of 45% and a TRMSE of 682.38 m.

Despite having three months preparation time with 
the training datasets, all on-site contestants were sig-
nificantly less accurate than the traditional reference 
implementation based on MLAT used by OpenSky. 
This disappointing result shifted our approach toward 
an online competition to increase ease of participation 
and widen accessibility.

Online Competition
As discussed in the previous section, the offline com-
petition results were not able to beat the existing refer-
ence implementations, partly by a wide margin. This 
changed significantly in the online competition, both 
in the first round (GPS-synchronized receivers only) as 
well as in the more difficult second round (all receivers, 
including nonsynchronized ones). Table 4 summarizes 
the results of both rounds.

First round. The results in the first round significantly 
beat our expectations in terms of accuracy. The three top 
results clustered within around 1 m of a 25 m TRMSE, 
with the fourth and fifth place still below 60 m.

All solutions were provided in Python/Cython 
and used fundamentally a variation of a classical 
MLAT approach. They differed, however, in their pre- 
and postprocessing (see Table 5). Common themes 
included the identification of the most reliable receivers 

Table 4. Winning entries of the online competition.

Rank 
Team  
type Background 

Coverage  
(%)

TRMSE (m)  
(Public/Full)

Round 1 (synchronized, 50% minimum coverage) 

1 Solo Academic 50 25.020 — 

2 Team Academic 50.2 25.817 — 

3 Team Independent 50 26.214 — 

4 Team Independent 50.2 33.544 — 

5 Solo Academic 50 59.467 — 

Round 2 (unsynchronized, 70% minimum coverage)

1 Solo Independent 70 78.14 81.89 

2 Team Independent 70 90.13 98.37 

3 Team Academic 70 141.07 154.57 

4 Team Academic 72.3 157.32 171.66 

5 Solo Academic 72.3 1,497.99 2,392.53

Table 3. Localization results (TRMSE 
and coverage) of the offline competition 
(synchronized), compared to the MLAT 
reference implementation of OpenSky.

Rank Solution type Coverage (%) TRMSE (m)

1 ML/MLAT 100 11,915.81

2 RSS ranging 62 22,654.32

3 Distribution 
analysis

52 36,505.45

4 Distribution 
analysis

51 44,818.18

5 Regression 50 50,708.14

Ref. MLAT 45 682.38
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and the most accurate measurements and tracks. These 
were then filtered and smoothed using a wide variety of 
methods from DBSCAN to Hooke Jeeves.

We further observed that all teams are exactly at, 
or very close to the minimum coverage requirement 
of 50%, selecting only the most reliable data points for 
grading and ranking. This is an intended feature that is 
also relevant in real-world localization systems and illus-
trates the effort put into the optimal data selection.

“Sniping” was a practical issue we observed during 
the execution. As the deadline drew closer, more teams 
entered the competition and significantly more results 
were entered for grading, leading to a frantic final day and 
deadline experience for everyone. In terms of team types, 
we had a mix of participants with academic affiliation and 
independent competitors; most were teams of two or 
three but the top contestant was a single individual.

Second round. The second round also exceeded our 
expectations significantly. As only about 15% of the 
available sensors were GPS-synchronized, the prob-
lem set posed a much harder challenge, which the 

participants solved with two excellent results below 
100 m and two very good ones below 200 m. Round 2 
was also won by a solo participant, this time without 
academic affiliation.

Participants again approached the 70% coverage 
requirement. The difference between the public and 
hidden score was between 4.8% and 9.6% for the top 
four. This means no significant overfitting and impor-
tantly it did not affect the final ranking order.

Methodologically, the focus was on accurate sensor 
synchronization, which the participants attempted to 
do either locally or globally and with different choices 
of good sensors. Interestingly, the winning solution 
incorporated open sourced ideas from round 1, illus-
trating the power of an iterative and open process.

Technical Evaluation
In this section, we discuss the technical outcomes of the 
competition. Table 5 shows the methods used both in 
round 1 and round 2 of the online competition. Nota-
bly, all teams focused exclusively on the TDoA option 
and excluded the RSS that was also available in the 

Table 5. Pre- and postprocessing methods used by the winning entries.

R1/R2 Preprocessing Postprocessing 

R1

P1 Minimize offsets with training data. Fit spline to trajectory, identify good quality timings. 

P2 Correct offsets, exclude bad sensors, first guess 
using ML. (gradient boosting trees). 

Filter for aircraft with sufficient sensor data (nine 
triplets), smooth trajectories. 

P3 Calculate offsets. Filter outliers, Hooke Jeeves, linear interpolation, fit 
a/c track. 

P4 Filter outliers. Filter for direction and density with DBSCAN. 
Localized extrapolation with Huber regression. 

P5 Identify good sensor combinations from  
training data. 

Identify trajectories, filter outliers. 

R2

P1 Estimation of effective signal wave velocity, 
including altitude dependency. Iterative 
synchronization of good stations first. 

Huber regression plus graph-based filter.

P2 Local adaptive sensor synchronization. Sensor 
outlier filtering. 

Filtering of predicted outliers. Track smoothing 
with low-pass filter. Interpolation of points with <4 
measurements. 

P3 Global sensor synchronization. Calculate 
measurements with four or more sensors. 

Interpolate missing points. 

P4 Barometric altitude estimation. Sensor 
synchronization plus error minimization. 

Basic filtering/trajectory smoothing. 

P5 Models clock drifts of sensors from training data. Interpolates between predictions. 
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dataset. Regarding the applied MLAT solutions, teams 
used closed-form approaches, which are generally 
lighter and simpler than LS or MLLE, with all refine-
ment outsourced to the postprocessing.

One of the goals of the competition was to find 
new strategies (or new combinations of strategies) 
to solve the MLAT problem in a demanding unsyn-
chronized real environment, as required in round 2. 
This meant an unprecedented focus on effective pre- 
and postprocessing.

The winning solution of round 2, discussed in detail 
in Markochev,13 uses the training data to estimate the 
fixed measurement offset in the sensors, and to estimate 
the speed of the signal in the troposphere (instead of 
using the classical approximation of the speed of light). 
In postprocessing, the trajectories were smoothed with 
a spline algorithm. This final step is the major con-
tribution to improve accuracy and availability of the 
solutions. It is noted that the proposed method is not 
suitable for any real-time application but can nonethe-
less provide accurate localization for less time-sensitive 
security applications.

Another interesting approach is a different way of 
obtaining local synchronization used by the second-place 
team of round 2: instead of classical sequential algo-
rithms, they used a heavier linear regression of neigh-
bors points to compute offset and drift terms. This 
approach is agnostic to the system model and can be 
also used in real-time applications.

An important different approach was to first use lin-
ear regression for time synchronization, then solving 
the MLAT problem with LS for subsets of four stations. 
This involved selecting the best subset of sensors to 
calculate the solution (this is a sanity check of the mea-
surements similar to integrity monitoring processes in 
the GNSS field). Additionally, it computes the aircraft 
altitude using light gradient boosting machines because 
the MLAT problem is usually ill-conditioned in the ver-
tical dimension and the inversion usually produces large 
errors in altitude.

Finally, while the obtained results are an order of 
magnitude worse than the top four, a radically different 
ML approach was proposed by the fifth-placed team. 
After global synchronization using linear regression, a 
grid of possible positions is defined and a cost function 
on this grid is minimized. This circumvents inverting 
the problem.

The winning solution showed 78.14 m and 81.89 m 
TRMSE on the public and the full LocaRDS datasets, 
correspondingly, both with 70% of coverage. These are 
very impressive results, which can aid the development 
of accurate cyberphysical security systems in this space. 
Distribution of location errors for the full dataset is 
shown Figure 3.

Lessons Learned
There are several insights from our process of designing 
and executing a large-scale competition on aircraft local-
ization and we believe these can be applied to other poten-
tial competitions in the (cyberphysical) security context:

 ■ Offline versus online competition: There are several 
practical drawbacks of running on-site data science 
competitions, which from our experience outweigh 
the advantages even in the prepandemic world. 
These range from the costs and environmental foot-
print of experts traveling from around the world to 
issues with visas and last-minute weather-related 
cancelations. While the appeal of a live competition 
is tempting and face-to-face exchanges facilitate cre-
ativity and foster competition, these features do not 
compensate for the sheer efficiency of online con-
tests. Our online competitions saw both a signifi-
cant increase in contestants and improved results in 
orders of magnitude.

 ■ Obstacles for industry participation: We overestimated 
the interest of industry entities involved with MLAT or 
other localization approaches in an open competition. 
While in theory, competitions can be attractive to com-
panies as they can show off the quality of their work, it 
is also a risk factor in the marketplace in case their solu-
tion performs worse. Another significant factor that pre-
vents industry is the protection of intellectual property 
surrounding the solution or the implementation, even 
when the source code does not need to be opened.

 ■ Value of open sourced localization code: Our goal of 
advancing practical aircraft localization and making 
it accessible beyond the proprietary industry systems, 
where it is currently prevalent, included the open 
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dataset in the winning solution.
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sourcing of the code from the very beginning. Our 
experiences with the extension of round 2 illustrate the 
power of this open and collaborative approach; all top 
results improved significantly, often by learning from 
the published approaches (code, documentation, and 
papers, such as Figuet et al.14) of round 1. In the mean-
time, new projects have popped up on Github (for 
example, https://github.com/radoslawkrolikowski/ 
adsb-flight-localization), illustrating their own meth-
ods and building on the code and data published after 
the conclusion of round 2. In one development, the 
data have been used for a secure multiparty compu-
tation implementation of MLAT using the Python 
package MyPC.15

 ■ Improving existing algorithms: Analyzing the different 
solutions paved the way for new localization research, 
merging insights from different fields of research, 
such as machine learning and geometrical solutions. 
Moreover, it was clearly shown that a big improve-
ment of the ALP solution can be obtained applying 
well-tailored postprocessing and data smoothing.

 ■ Underutilization of RSS: By measuring the strength of 
an incoming signal and by knowing or estimating the 
transmit power of the aircraft, the distance between 
sender and receiver can be estimated based on their 
difference, i.e., the path loss. One notable drawback 
of the RSS is, however, that its accuracy depends on 
many potentially unknown factors, the radio environ-
ment, and (analogous to TDoA) the measurement 
resolution. Besides direct ranging measurements, 
RSS-based localization approaches often use indoor 
radio maps. This is intuitively more difficult to rec-
reate with fast-moving aircraft spread out over long 
distances in highly dynamic environments (due to 
weather, buildings, and other influences). Building 
radio maps further requires a setup phase and sepa-
rate infrastructure, which cannot be offered through 
a reference dataset. These are likely reasons why the 
RSS has been underutilized in our competition.

 ■ Ongoing evaluation: The widely varying approaches 
both in the literature and our competition show 
that there is still much room for improvement in the 
theoretical development and practical implemen-
tation of solutions for the ALP. The results show 
that the contestants have significantly improved on 
the OpenSky reference implementation. We expect 
further improvements through open research with 
the released data, code, and scientific reports to a 
wider audience.

C rowdsourced air traffic trajectories are used in 
many areas of science and commerce. Their verac-

ity strongly depends on the quality and accuracy of the 

data, which is derived from an unauthenticated ATC 
system. Using cyberphysical features and physical-layer 
security, such as MLAT and localization, can verify the 
data and consequently identify attacks and anomalies. 
Thus, improving the state-of-the-art of aircraft localiza-
tion is crucial in order to improve the underlying cyber-
physical system.

In this article, we have presented the design and 
execution of a multistage open competition on solv-
ing the ALP in this context. The 72 participating teams 
reached a highly practical localization accuracy of up to 
25 m in a fully GPS-synchronized setting and 78 m in a 
largely unsynchronized setting, with the cheapest pos-
sible receiver hardware (USD$50 and less). By compar-
ing online and offline competitions, many novel lessons 
were learned for future scientific challenges, including 
real-time localization. 

Code and Data Availability
The complete code of the aircraft localization competi-
tion, including the winning entries, has been made avail-
able at https://github.com/openskynetwork/aircraft 
-localization. The training and test data have been 
made permanently available on Zenodo: https://
zenodo.org/record/4739276. The competition web-
sites are available at AICrowd (https://www.aicrowd.
com/challenges/cyd-campus-aircraft-localization 
-competition/) and the OpenSky Network Association 
(https://competition.opensky-network.org/).
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