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Aerial scene classification is a very essential element in Unmanned Aerial 
Vehicle (UAV) surveillance system. Also, it has wide applications in various 

computer vision tasks. 

Motivation 
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Landform Analysis 

UAV Safety 

UAV Surveillance 

Data Classification 

Wide Applications 
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 Forest Fire  

 Highway 

 Street 

… 

Huge quantities of  aerial 

videos and images 

 Parking 

 Airport 

 Mountain 

… 

Dynamic Scenes  
(Videos) 

Aerial Scenes  
(Images) 
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Data samples 
Dynamic Scenes 

Iceberg collapse Volcano Eruption 



Aerial scenes present large intra-class variations as 
well as small inter-class differences  

Problem Analysis 
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Large intra-class 
    variations  

 Small inter-class 
     variations  

 
 
 
 

Difficulties 

in aerial scene 

classification 

• Diversified appearance in single class 

Rush River Waterfall Fountain 

• Similar objects in different classes 

Highway 
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Aerial scenes: Appearance clues for classification 

Dynamic scenes: movement and appearance clues for classification 
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Available methods:  
Hand-crafted VS Deep-learned 

Hand-crafted features: 
• Appearance (SIFT,HOG,GIST,etc) 
• Motion (Optical flow) 
• Spatio-temporal (SOE,CSR) 

Deep-learned features: 
• Appearance (VGG, Googlenet, 

Alexnet, etc.) 
• Spatio-temporal (C3D) 
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Summarize 
The deep learning based methods have superior distinctive power o

ver hand crafted features. 

1. Deep learning based methods require large datasets for training. 

2.  Most deep learning methods concentrate on inter-class separabl

e and ignore large intra-class variations. 



Focus on reducing large intra-class 
variations while keeping features separable 

-----Batch loss regularization 

Proposed Method 
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VGG & C3D network: Extract separable features 

Training layer: Reduce large intra-class variations 

while keeping features separable 
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Training Layer 

Keep features separable Reduce large intra-class variations 
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Training Layer 

Softmax loss Batch loss 



Two applications:  
Dynamic scene classification   

Aerial image scene classification 
Four datasets: 

Dynamic scenes YUPENN dataset 
Dynamic scenes Maryland dataset 

Aerial scenes USGS dataset 
Aerial scenes RS dataset 

Results 
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Dynamic scenes Datasets 

The YUPENN dataset of dynamic scenes

The Maryland dataset of dynamic scenes



Batch Loss Regularization in Deep Learning 

1. Motivation 2. Problem Analysis 3. Proposed Method 4. Results 

Dynamic scenes Datasets 

Method Accuracy(%) 
Chaos+GIST [1] 23

SFA[9] 85
SOE[11] 81
CSO[19] 86
BoSE[20] 96
CSR[26] 94
C3D[3] 97

C3D with batch loss 98

Method Accuracy(%) 
Chaos+GIST [1] 58

SFA[9] 60
SOE[11] 43
CSO[19] 68
BoSE[20] 78
CSR[26] 86
C3D[3] 78

C3D with batch loss 81

Comparison Results on YUPENN Dataset Comparison Results on Maryland Dataset
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Aerial image scenes Datasets 

The USGS dataset of aerial scenes The RS dataset of aerial scenes
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Comparison Results on USGS Dataset 
Method Accuracy(%) 

BOVW[2] 76.8
SPM[2] 75.3

BOVW + co-occurrence kernel[2] 77.7
Color Gabor [2] 80.5

Color histogram [2] 81.2
Unsupervised learning [13] 81.7

Saliency-guided learning [27] 82.7
Wavelet BOVW [28] 87.4

Structural texture similarity [29] 86
Circle-structured BOVW [30] 86.6

Multifeature concatenation [31] 89.5
Pyramid-of-spatial-relatons [32] 89.1

MS-CLBP [33] 90.6
VGG [10] 91

VGG with batch loss 93
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Comparison Results on RS Dataset 

Method Accuracy(%) 
Bag of colors [31] 70.6

Tree of c-shapes [31] 80.4
Bag of SIFT [31] 85.5

Multifeature concatenation [31] 90.8
LTP-HF [34] 77.6

SIFT + LTP-HF + color [34] 93.6
MS-CLBP [33] 93.4

VGG [10] 95
VGG with batch loss 96
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Future Work 

Dynamic scene classification is more challenging than aerial image scene 
classification due to the lack of available training datas. 
 
Thus, future work may include training the neural networks with limited 
data resources while keeping high accuracy performance.  
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