BATCH LOSS REGULARIZATION IN DEEP LEARNING METHOD FOR AERIAL SCENE CLASSIFICATION

Yuanjun Huang (huangyuanjun76@126.com)

Prof. Xianbin Cao

Beihang University, Beijing, China

Beijing Laboratory for General Aviation Technology

O u t l i n e

1. Motivation

2. Problem Analysis

3. Proposed Model

4. Results and Conclusion

Motivation

Aerial scene classification is a very essential element in Unmanned Aerial Vehicle (UAV) surveillance system. Also, it has wide applications in various computer vision tasks.

1. Motivation

2. Problem Ana

3. Proposed Method

4. Results

Data samples

Dynamic Scenes

Iceberg collapse

Volcano Eruption

Problem Analysis

Aerial scenes present large intra-class variations as well as small inter-class differences

Aerial scene

Aerial scenes: Appearance clues for classification

Dynamic scenes: movement and appearance clues for classification

1. Motivation2. Problem Analysis3. Proposed Method4. Results

Available methods: Hand-crafted VS Deep-learned

Hand-crafted features:

- Appearance (SIFT, HOG, GIST, etc)
- Motion (Optical flow)
- Spatio-temporal (SOE,CSR)

Deep-learned features:

- Appearance (VGG, Googlenet, Alexnet, etc.)
- Spatio-temporal (C3D)

The deep learning based methods have superior distinctive power o ver hand crafted features.

- 1. Deep learning based methods require large datasets for training.
- Most deep learning methods concentrate on inter-class separabl e and ignore large intra-class variations.

Proposed Method

Focus on reducing large intra-class variations while keeping features separable -----Batch loss regularization

1. Motivation

2. Problem Analysi

3. Proposed Method

4. Results

VGG & C3D network: Extract separable features

Training layer: Reduce large intra-class variations while keeping features separable

C3D network

Results

Two applications: Dynamic scene classification Aerial image scene classification Four datasets: Dynamic scenes YUPENN dataset Dynamic scenes Maryland dataset Aerial scenes USGS dataset Aerial scenes RS dataset

1. Motivation

. Problem Analy

3. Proposed Method

4. Results

Dynamic scenes Datasets

The YUPENN dataset of dynamic scenes

The Maryland dataset of dynamic scenes

1. Motivation

2. Problem Ana

3. Proposed Metho

4. Results

Dynamic scenes Datasets

Comparison Results on YUPENN Dataset

Method	Accuracy(%)
Chaos+GIST [1]	23
SFA[9]	85
SOE[11]	81
CSO[19]	86
BoSE[20]	96
CSR[26]	94
C3D[3]	97
C3D with batch loss	98

Comparison Results on Maryland Dataset

Method	Accuracy(%)
Chaos+GIST [1]	58
SFA[9]	60
SOE[11]	43
CSO[19]	68
BoSE[20]	78
CSR[26]	86
C3D[3]	78
C3D with batch loss	81

1. Motivatio

. Problem Analy

3. Proposed Method

4. Results

Aerial image scenes Datasets

The USGS dataset of aerial scenes

The RS dataset of aerial scenes

1. Motivation

2. Problem An

3. Proposed Metho

4. Results

Comparison Results on USGS Dataset

Method	Accuracy(%)
BOVW[2]	76.8
SPM[2]	75.3
BOVW + co-occurrence kernel[2]	77.7
Color Gabor [2]	80.5
Color histogram [2]	81.2
Unsupervised learning [13]	81.7
Saliency-guided learning [27]	82.7
Wavelet BOVW [28]	87.4
Structural texture similarity [29]	86
Circle-structured BOVW [30]	86.6
Multifeature concatenation [31]	89.5
Pyramid-of-spatial-relatons [32]	89.1
MS-CLBP [33]	90.6
VGG [10]	91
VGG with batch loss	93

1. Motivation	2. Problem Analysis	3. Proposed Method	4. Results

Comparison Results on RS Dataset

Method	Accuracy(%)
Bag of colors [31]	70.6
Tree of c-shapes [31]	80.4
Bag of SIFT [31]	85.5
Multifeature concatenation [31]	90.8
LTP-HF [34]	77.6
SIFT + LTP-HF + color [34]	93.6
MS-CLBP [33]	93.4
VGG [10]	95
VGG with batch loss	96

1. Motivation2. Problem Analysis3. Proposed Method4. Results

Future Work

Dynamic scene classification is more challenging than aerial image scene classification due to the lack of available training datas.

Thus, future work may include training the neural networks with limited data resources while keeping high accuracy performance.

Thank you

