

An Efficient Protocol for UAS Security

Olivier Blazy¹, Pierre-François Bonnefoi¹, Emmanuel Conchon¹, Damien Sauveron^{1,3} Raja Naeem Akram², Konstantinos Markantonakis², Keith Mayes², Serge Chaumette³

1: XLIM (UMR CNRS 7252), MATHIS, Université de Limoges

2: Information Security Group Smart Card Centre, Royal Holloway, University of London

3: LaBRI (UMR CNRS 5800), Université de Bordeaux

Roadmap

- Introduction
- Contributions
- Requirements
- Cryptographic techniques used
- Protocol
 - Pre-protocol Setup
 - UAV processes
 - Protocol
- Formal Proof & Analysis of Efficiency Test-bed
- Conclusions and Future work

Introduction

- Unmanned Aerial Systems (UAS)
 - Ground Control Station (GCS or GS)
 - One or several Unmanned Aerial Vehicles (UAV)
- UAVs sense and store data
- UAVs send data to GS when communication is possible (UAVs in the range)

Introduction • Attacker interests in UAS BBC Sign in News Sport Weather Shop Earth Travel NEWS Ground control station Magazine Entertainment & Arts Home Business Tech Science Video World UK World Africa Asia Australia Europe Latin America Middle East US & Canada Owner of UAS Iran shows 'hacked US spy drone' video footage O 7 February 2013 Middle East < Share Wireless communication Iran has released what it says is استان اولین شکار ... decoded video footage extracted An attacker from a US surveillance drone captured in 2011. The material broadcast on Iranian state television purports to show a US Memory and base and the Afghan city of Kandahar. الميار شده يک 🎝 processing units It is not clear if the footage is genuine. Sensors The video footage has not been verified Last year Iran said it was building a Focus on a Interests of the attacker

copy of the drone - an RQ-170 Sentinel - after breaking its encryption codes.

ICNS 2017

single UAV

Introduction

- We consider a strong adversary model with a high attack potential.
 - the adversary has capabilities and knowledge to capture a UAV in a functional state

Then, he can perform advanced attacks

Contributions

• An Efficient Protocol for UAS Security

- To ensure confidentiality of sensed data
 - using efficient cryptographic techniques (encryption scheme is left to implementer choice)
 - withstanding an adversary with a high attack potential
- To minimize exchanges between UAVs and GS
 - 1 round is required (except in an optional case: 1.5 rounds).
- A Formal Proof of the Proposed Protocol

Requirements

- Each UAV must have its own cryptographic means (keys)
 - In other words, capture and forensic of UAVs should not compromise the security of UAS
- Keys must evolve during the mission to ensure the Perfect Forward and Backward Secrecy properties
- Cryptographic means of UAV should be renewed/refreshed from time to time
 - The C2 links can be used to refresh them
- Collected (sensed) data must be sent to the Ground Station as soon as a connection is possible to avoid potential loss
- Assumption: The GS is secure (else the whole network would be corrupted).

Cryptographic Techniques Used

- Keys stream
 - Based on an origin (the first key)
 - Subsequent keys are generated using a function (and potential parameters to diversify the result)

$$K_0 > K_1 > ... > K_i > K_{i+1} > ...$$

Origin

• We use a keyed hash function diversified with ID of UAV

$$K_{i+1} = H_{\mathsf{UAV}_{\mathsf{ID}}}(K_i)$$

Cryptographic Techniques Used

 Keys streams are timely updated to prevent attacks (since it is well known that an attacker can find subsequent keys in a stream if he knows only one key

Cryptographic Techniques Used

- One-time key: each key is used only once to encrypt data
 - The key is used:
 - to encrypt data
 - to compute a triplet of Authentication Tickets (used latter in the protocol for C2)

$$(H_1, H_2, H_3)$$

$$H_1 = H(K_i || 1) H_2 = H(K_i || 2) H_3 = H(K_i || 3)$$

- to generate the subsequent key of the stream
- Then, the key is cleared from memory and it cannot be recovered by anyone

Protocol Notations

UAV	:	Denotes an Unmanned Aerial Vehicle.		
GS	:	Denotes a Ground Station.		
$A \rightarrow B$:	Message sent by an entity A to an entity B.		
X_{ID}	:	Represents the identity of an entity X .		
$X \parallel Y$:	Represents the concatenation of the data items X, Y in the given order.		
$X \oplus Y$:	Represents the xor operation of the data items X, Y.		
$[D]^k$:	Data D are encrypted by a one-time key k .		
H(Z)	:	Is the result of generating a hash of data Z.		
$H_k(Z)$:	Result of generating a keyed hash of data Z using key k .		
$K^{\ell}_{UAV_{ID}}$:	The ℓ^{th} keys stream origin. This key is randomly chosen to initialize the ℓ^{th} stream of keys used to encrypt the sensed data. It is generated by the GS and sent to UAV UAV _{ID} . In the pre-protocol setup, $K^0_{UAV_{ID}}$ is set by the GS in UAV UAV _{ID} .		
K_i	:	A one-time key which evolves at each encryption of sensed data. The first key, K_0 is initialized using the value of the current keys stream origin $K_{\text{UAV}_{\text{ID}}}^{\ell}$. Subsequent keys are computed with $K_{i+1} = H_{\text{UAV}_{\text{ID}}}(K_i)$		
SD_i	:	Denotes the j^{th} block of sensed data.		
H_1	:	Denotes the following computation $H(K_i 1)$.		
H_2	:	Denotes the following computation $H(K_i 2)$.		
H_3	:	Denotes the following computation $H(K_i 3)$.		
i_{lastKS}	:	Denotes the rank of the last key used in the previous keys stream.		
Command	:	Denotes any command from the GS to UAV. Two examples of command are:		
		1) ACK to inform UAV that data have been received by GS and then can be deleted from its internal non-volatile memory. 2) NKS to inform the UAV to change the keys stream origin to $K^{\ell+1}$.		
Command	:	Denotes an Acknowledgment to some commands by UAV. An example of such acknowledgment is for the NKS command for		

which the UAV informs the GS of the last K_i of the current keys stream used to encrypt the sensed data.

_

Pre-Protocol Setup

• Each UAV is preconfigured with origin of its first keys stream

$$K_0 = K^0_{\mathsf{UAV}_{\mathsf{ID}}}$$

 The GS is pre-configured with the first keys stream for each UAV of the UAS

UAV in Mission – Sensing & encryption Process

- Each sensed data block SD_j is immediately encrypted and then stored in non-volatile memory of the UAV using the current key, K_i
 - SD_i is encrypted with any efficient symmetric algorithm using K_i and the result
 [SD_i || UAV_{ID}]^{K_i} is stored in NVM
 - UAV_{ID} is added to encrypted data to allow the GS to verify the result has meaning when coming from the UAV
- For each above encryption, UAV must also compute and store the triplet of Authentication ticket (H_1, H_2, H_3) $H_1 =$
 - These tickets will be used later to decrypt commands on C2 link.
- $H_1 = H(K_i || 1)$ $H_2 = H(K_i || 2)$ $H_3 = H(K_i || 3)$
- The subsequent key K_{i+1} is computed and the current one, K_i , is deleted from memory $K_{i+1} = H_{UAV_{ID}}(K_i)$

UAV in Mission – Communication Process

- When UAV is in communication range of GS, it sends available encrypted data: [SD_j || UAV_{ID}]^{K_i}, ..., [SD_{j+n} || UAV_{ID}]<sup>K_{i+n}</sub> and keeps them until it receives an authenticated command from GS
 </sup>
 - One authenticated command is required by encrypted SD. If UAV does not received the related authenticated command, it will send these encrypted data again and again until it receives it.
- When UAV receives commands from GS, it authenticates them with the computed Authentication ticket (H₁, H₂, H₃): it can then delete from its memory the encrypted data acknowledged along with the triplet related to the ticket used to authenticate the command.
 - There are 3 types of commands:
 - The ACK command is only used by GS to acknowledge receipt of data
 - The NKS command is to change the key stream to a new one. The new origin is provided along with the command.
 - Note to avoid some desynchronization attacks, for this specific command the UAV has to acknowledge it has change of keys stream
 - Other commands can be normal C2 commands.

UAV to GS Secure Communication Protocol

1.	UAV ightarrow GS	:	$UAV_{ID} \ [SD_j \ UAV_{ID}]^{K_i}$
2.	$GS\toUAV$:	UAV _{ID} Command
		:	with Command = $H_1 \oplus ACK$ for ACK
		:	with Command = $H_2 \oplus (NKS \ K_{UAV_{ID}}^{\ell+1})$ for New Keys Stream
		:	with Command = $H_3 \oplus (\langle any \ command \rangle)$ for any other command
3.	$UAV\toGS$:	$UAV_{ID} \ Command_{ack}$
	(optional step)	:	with Command _{<i>ack</i>} = $[ACK_{NKS} i_{lastKS}]^{K_0}$ with $K_0 = K_{UAV_{ID}}^{\ell+1}$

Formal Proof & Analysis of Efficiency

- Using security experiments, in the random oracle model, we have proven that the proposed protocol is secure under the security of the chosen encryption scheme.
- Most operations used in the protocol are lightweight: xor, hash function, keyed hash function
- The only not lightweight operation is the chosen encryption scheme, denoted by [], whose choice is left free to implementer.

Test-bed for UAS

- The UAV is a Parrot AR.Drone2 running Linux
 - Encryption scheme chosen is AES
 - Hash and keyed-hash functions are based on SHA-256
- The Ground Control Station is a desktop computer with a Wi-Fi card.

Conclusions and Future work

- Our protocol for UAS is efficient and secure against an attacker with a high attack potential.
- In addition, it is flexible: implementer can choice the encryption scheme
- We plan to extend it to hierarchical UAS
 - Several GSs
 - Network with big UAV acting as cluster head

Acknowledgements to

- the SFD (Security of Fleets of Drones) project
 - funded by Region Limousin;
- the **TRUSTED** (**TRUS**ted **TE**stbed for **D**rones) project
 - funded by the CNRS INS2I institute through the call 2016 PEPS ("Projet Exploratoire Premier Soutien") SISC ("Securité Informatique et des Systèmes Cyber-physiques");
- the SUITED (Suited secUrIty TEstbed for Drones), SUITED2 and UNITED (United NetworkIng TEstbed for Drones), UNITED2
 - projects funded by the MIRES (Mathematiques et leurs Interactions, Images et information numérique, Réseaux et Sécurité) CNRS research federation;
- the **SUITED-BX** and **UNITED-BX** projects
 - funded by LaBRI and its MUSe team.

Thank You! Any Questions or Suggestions

Université BORDEAUX

Backup slide for Security Experiment

```
 \begin{array}{|c|c|c|c|c|c|c|c|} & \mathsf{Exp}_{\mathcal{E},\mathcal{A}}^{\mathsf{drone}-b}(1^n) \\ & 1. (K_{\mathsf{UAV}_{\mathsf{ID}}}^0)_{\mathsf{ID}} \leftarrow \mathsf{KeyGen}(1^n) \\ & 2. (M_0, M_1, \mathsf{ID}^*, k^*, \ell^*) \leftarrow \mathcal{A}(\texttt{FIND}: \mathsf{OCorrupt}(\cdot, \cdot, \cdot)) \\ & 3. C^* \leftarrow \mathsf{Encrypt}(K_{\mathsf{UAV}_{\mathsf{ID}^*}}^{k^*, \ell^*}, M_b) \\ & 4. b' \leftarrow \mathcal{A}(\texttt{GUESS}: C^*, \mathsf{OCorrupt}(\cdot, \cdot, \cdot)) \\ & 5. \mathtt{IF} (\mathsf{ID}^*, k^*, \ell^*) \in \mathsf{CS} \mathtt{RETURN} \perp \\ & 6. \mathtt{ELSE} \mathtt{RETURN} b' \end{array}
```