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On the Low-Frequency Behavior of Vector Potential Integral Equations
for Perfect Electrically Conducting Scatterers

Rui Chen™, H. Arda Ulku

Abstract— Low-frequency behavior of vector potential integral equa-
tions (VPIEs) for perfect electrically conducting (PEC) scatterers is
investigated. Two equation sets are considered: the first set (VPIE-1)
enforces the tangential component of the vector potential on the scatterer
surface to be zero and uses the fundamental field relationship on its
normal component. The second set (VPIE-2) uses the same condition
as VPIE-1 for the tangential component of the vector potential but
enforces its divergence to be zero. In both the sets, unknowns are the
electric current and the normal component of the vector potential on
the scatterer surface and are expanded using the Rao—Wilton—Glisson
(RWG) and pulse basis functions, respectively. To achieve a conforming
discretization, RWG, scalar Buffa—Christiansen (BC), and pulse testing
functions are used. Theoretical and numerical analyses of the resulting
matrix systems show that the electric current obtained by solving VPIE-1
has the wrong frequency scaling and is inaccurate at low frequencies.

Index Terms— Loop-star decomposition, low-frequency behavior, low-
frequency breakdown, low-frequency electromagnetic simulation, perfect
electrically conducting (PEC) scatterer, vector potential integral equations
(VPIEs).

I. INTRODUCTION

Time-harmonic (frequency-domain) electromagnetic scattering
from a perfect electrically conducting (PEC) object is often ana-
lyzed by solving the field integral equations, e.g., electric field
integral equation (EFIE) or magnetic field integral equation (MFIE).
However, it is well-known that EFIE discretized using the Rao—
Wilton—Glisson (RWG) functions [1] suffers from low-frequency and
dense discretization breakdowns, i.e., the matrix system that arises
from its discretization becomes ill-conditioned [2], [3]. On the other
hand, discretization of MFIE using the RWG functions yields a
well-conditioned matrix system regardless of the frequency, but the
solution of this matrix system is inaccurate at low frequencies [4], [5],
[6], [7]. In the past few decades, many methods have been proposed
to address these problems associated with the field integral equations.
These methods include Helmholtz decomposition [8], [9], [10], [11],
[12], preconditioning techniques [13], [14], [15], [16], [17], [18],
mixed discretization schemes [5], [6], [7], and the formulation of new
integral equations where electric charge density is defined as one of
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the unknowns to be solved for [19], [20], [21], and [22]. However,
these methods call for complicated discretization schemes [5], [6],
[71, [8], [9], [10], [11], [12], [16], [17], [18], implementations that
rely on perturbation analysis to address inaccuracy issues [18], [21],
and specific excitation formulations [19], and/or come with higher
computational requirements.

Recently, potential integral equations [23], [24], [25], [26], [27],
[28], [29], [30], [31], [32] have been proposed as alternatives to the
field integral equations for analyzing low-frequency electromagnetic
scattering problems. In [24] and [25], formulations of different poten-
tial integral equations for dielectric and PEC scatterers are derived
using the equivalence principle and the generalized Green theorem.
These equations impose the continuity of the tangential and normal
components of the vector potential on the scatterer surface and define
the electric current and the normal component of the vector potential
on the same surface as the unknowns to be solved for. The potential
integral equations proposed in [26] rely on the formulation from [24]
but they enforce the tangential component and the divergence of the
vector potential on the scatterer surface. These equations are free
from an apparent low-frequency breakdown, but the efficient iterative
solution of the matrix system resulting from their discretization calls
for a special preconditioner (due to the presence of a saddle point
problem as the frequency approaches zero). This iterative solution
often converges faster than the solution of the matrix system resulting
from the discretization of the augmented EFIE [20] at low frequencies
and/or for densely discretized surfaces. The formulation in [28] starts
with the potential equations introduced in [26] but introduces an
additional equation which has the normal component of the gradient
of the scalar potential on the scatterer surface as the unknown. This
additional equation helps compute the electric field in the near-field
region more accurately at low frequencies.

In [27], a more generalized approach to derive potential integral
equations for dielectric scatterers is described. Four different traces
of the vector potential, namely, tangential component of curl of the
vector potential, tangential component of the vector potential (same
as the one in [24], [25], and [26]), normal component of the vector
potential (same as the one in [24] and [25]), and divergence of the
vector potential (same as the one in [26]), are used to derive four
different integral equations in unknowns electric current and normal
component of the vector potential on the scatterer surface. These two
unknowns can be obtained by solving any combination of two of
these integral equations. Note that for the specific vector potential
integral equation (VPIE) formulation in [27], the first one of the
four equations (the one obtained using the trace of the tangential
component of curl of the vector potential) is MFIE (in only electric
current), which is decoupled from the other three equations.

In this work, the low-frequency behavior of VPIEs for PEC
scatterers is investigated. Since the solution of MFIE discretized using
the RWG functions is inaccurate at low frequencies, any choice of
combinations that includes MFIE is also expected to suffer from the
same problem. Therefore, two sets of VPIEs that do not include
MFIE are studied here. The first set includes the two equations
obtained using the tangential and normal components of the vector
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potential [25] (this set is termed as VPIE-1), and the second set
includes the two equations obtained using the tangential component
and the divergence of the vector potential [26] (this set is termed as
VPIE-2).

To numerically investigate the low-frequency problem, the elec-
tric current and the normal component of the vector potential are
expanded using the RWG and pulse basis functions, respectively, and
these expansions are inserted into VPIE-1 and VPIE-2. To obtain a
conformal discretization, VPIE-1 is tested using the RWG and scalar
Buffa—Christiansen (BC) functions [14], [31], and VPIE-2 is tested
using the RWG and pulse functions. The resulting matrix systems
are then solved for the unknown expansion coefficients. To analyze
the frequency behavior of the solutions of VPIE-1 and VPIE-2,
loop—star decomposition [8] is used. This analysis and the numerical
experiments, which are carried out for two different vector and scalar
potential representations of the incident wave [23], show that the
electric current solution of VPIE-1 is inaccurate at low frequencies;
more specifically, it scales with the incorrect frequency dependence
as the frequency approaches zero. Note that a preliminary version of
this work is presented in a conference contribution [32].

II. FORMULATION
A. Vector Potential Integral Equation

Let I" represent the (closed) surface of a PEC object that resides in
an unbounded homogeneous background medium with permittivity
go and permeability uo. The time dependence e/® is assumed
for all the sources, fields, and potentials. An electric field Einc(r),
which is characterized by the vector potential A"(r) and scalar
potential ®i"(r), is incident on T. Upon this excitation, I" supports
the surface electric current J(r) = fi(r) x V x A(r)/uo. Here,
A(r) = AS(r) + A™(r) is the total vector potential, AS“?(r) is
the scattered vector potential, and n(r) is the outward pointing unit
vector atron . On I, i(r) x A(r) =0 and V-A(r) = 0. A5 (r)
can be represented as [24], [26], [27]

A*U(r) = S[uoJ1(r) — VS[i - A](r) ey
where

S[X]:/ G(r, r/)X(r’)ds/
r

G(r,r') = e~ J*Ir=r'l )4z |r — ¥'|) is the Green function, and ko =
w./1oeo is the wavenumber in the background medium. Inserting (1)
into
A(r) x V x A(r) = A(r) x V x A4(r) + A(r) x V x A"(r)
Ar) x A(r) = A(r) x A%4(r) + A(r) x A"(r) =0
A®) - A(r) = A(r) - AA(r) + A(r) - A"(r)
V-A(r) = V-A%%(r) + V. A () = 0
for r € T yields four VPIEs in unknowns J(r) and fi(r) - A(r) [27]
woJ() —hi(r) x V x S[ueJ1(r)

= A(r) x V x A(r) (2)
i(r) x S[uodl(r) —fi(r) x VS - Al(r)

= —A(r) x A"(r) 3)

1

—5 () - A®) +A() - S[uedI(r) — i(r) - VST - AL(r)

= —h(r) - A"(r) ©)
V - S[uodI(r) + kg ST - Al(r)

= —V. A, 5)

Note that in (5), V - VS[ - A](r) = VZS[A - A](r) is replaced by
—k(%S [0 - A](r) using the Helmholtz equation [26].

To solve for two unknowns, J(r) and n(r) - A(r), one has to
choose one equation from (2) and (3) and another equation from (4)
and (5) [27]. Note that (2) is MFIE [in only one unknown J(r)]
and decoupled from (3)—(5), and it is clear that any equation set that
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includes (2) suffers from the inaccuracy problems that MFIE has at
low frequencies [4], [5], [6], [7]. In this work, two equation sets that
do not include (2) are studied. The first equation set includes (3)
and (4) and is termed as “VPIE-1" [25]. VPIE-1 does not have
any explicit dependence on the frequency, but its solution becomes
inaccurate at low frequencies with an RWG-based discretization.
The second equation set includes (3) and (5) and is termed as
“VPIE-2” [26]. VPIE-2 depends explicitly on frequency via k(%,
but its RWG-based discretization yields an accurate solution at low
frequencies.

B. Discretization

To numerically solve VPIE-1 and VPIE-2, first, I' is discretized
into a mesh of triangles denoted by '™, The unknowns J(r) and
n(r) - A(r) belong to the Sobolev spaces Hgi‘l/z(l") and H_l/z(l"),
respectively [5], [6], [7], [14], [31]. Therefore, they are expanded
using the RWG basis functions f,§ (r) [1] [that reside in Hc;ill 2(l“h)]

\Y%

and pulse basis functions f,f) (r) [29] [that reside in H—1/2(TM)),
respectively,
Nr
1od(®) = D" (IR}, ER () ©6)
n=1
Np
i) - Ar) = > {Ip}, £ (). (7)
n=1

Here, NR and Np are the numbers of edges and triangular patches,
respectively, and Ir and Ip are the vectors that store the unknown
expansion coefficients of f,}f (r) and fnP (r), respectively. As explained
in [5], [6], [7], [31], and [14], the testing function should reside
in the dual space of the range of the integral operator. Considering
the mapping properties of the integral operators in (3)—(5) [31] and
the basis functions used in (6) and (7), it can be shown that the
range spaces for (3)—(5) are H&i/z(l“), H‘l/z(l“), and Hl/z(l"),
respectively. Therefore, the functions used for testing (3)—(5) should
reside in their dual spaces, namely, H;llrl/z(l"h), Hl/z(l"h), and
H1/2(rhy, respectively [31]. This means that to obtain a conform-
ing discretization, the rotated RWG function fi(r) X f}; (r), scalar BC
function fn]? (r) [14], [31], and pulse function fnlz (r) can be used to
test (3)—(5), respectively.

Inserting (6) and (7) into (3) and (4) (VPIE-1) and (3)—(5)
(VPIE-2) and testing the resulting equations with n(r) x f,%(r),
m = 1,2,....,Ng, fB@), m = 1,2,...,Np, and fP(r), m =
1,2, ..., Np yield the matrix system

ER O
Zpr Zpp | |Ip Ve |’

Here, the entries of the matrix blocks Zrgr, Zrp, Zpr, and Zpp

are given by

(ZRR)mn = (BE) x £ (). (1) x S[E])
- /r . Rr)- /F ‘ G(r, X)) R (' )ds' ds ©)
(Zrphnn = () x 3 (), =2 (1) x VS £ ] )
= /r ’%v.fﬁ(r) /P . G(r,v)fP(ds'ds  (10)
VPIE-L: (ZpR )y = £ (), (1) - S[E ] 1)
= / B / G(r,v)a(r) - £R(r")ds'ds
re I}
VPIE2: (ZpR)yn = (i (®). V- S[E]@))

= /P f};(r)/RG(r, )V R ()ds'ds (1)
I, X
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VPIE-1: {Zpp},un

(2. =570~ i) - 95 o

1 B, /P
S LT
B - / N P /
+/1_2fm(r)/r5n(r) -V'G(r, ) f, (x)ds'ds
VPIE2: (Zpp)n = (). S ](0)

=i} / frm / G, v)fF(hds'ds (12
1§ T
and the entries of the vectors VR and Vp are given by
(VRbn = (R0 x £(0), () x A" (@)

=— / R (r) - Al (r)ds (13)
R
VPIE-1: {Vp}y = < 7B@), —a) - Ainc(r)>
= - / B i) - ArC(r)ds
re
VPIE2: (Veln = (00, =V - A" (r)
= joupeg /r ) P )@ (r)ds. (14)

Here, TR, TB and TP denote the support of fR(r), £B(r),
and fnrl) (r), respectively. Note that in (14), the Lorenz gauge
VAR = —jougeo®(r) is used [23], [24]. Two kinds
of vector and scalar potential representations of the plane-wave
excitation are considered in this work. For the first representation,
AP(r) = 1/(—jo)E™(r) and ®}'°(r) = 0 [26]. This representation
does not lead to a stable uncoupling of the potentials since Ailnc(r)
is unbounded as w — 0 [23]. For the second representation,
élznc(r) = —\/Mlzmc[r-Emc(r)] and ©5'°(r) = —r-E"°(r), where
k'™ represents the direction of propagation [23]. This representation
yields potentials that satisfy the Lorenz gauge and are bounded as
o — 0 [23].

C. Comments

For VPIE-2, the matrix system (8) has a saddle point problem
at low frequencies [26], [33]. Therefore, for its efficient iterative
solution, one has to use a special preconditioner [26], [33]. Note
that even though it is not discussed in [26], the construction of
this preconditioner is not trivial at very low frequencies: One of
its diagonal blocks behaves like a (discretized) Laplacian operator
and has an isolated zero eigenvalue [20], [21], [34]. Since this work
focuses on the accuracy of VPIE-1 and VPIE-2 at low frequencies
(rather than their efficient solution), matrix system (8) is solved
using LU decomposition. However, as @ — 0, the VPIE-2’s matrix
system has one isolated eigenvalue that approaches zero (due to
charge neutrality/redundancy [20], [21]). Therefore, a matrix deflation
method is applied [20] before LU decomposition is used.

D. Low-Frequency Analysis

To investigate the accuracy of VPIE-1 and VPIE-2 as w — 0, J(r)
is separated into its solenoidal and non-solenoidal components using
loop—star decomposition as [8]

NL Ns
roJ®) = D {IL}fy (0) + D {Ishufy (). (15)
n=1 n=1

Here, Ny = Np — 1 = NR — N, f,I;(r) and f,f (r) are the loop
and the star basis functions, respectively, and I} and Ig are the
vectors that store their coefficients, respectively. Inserting (15) and (7)
into (3)—(5) and testing the resulting equations with f(r) x fh (r),

12413

= 1,2,...,N., @) x £5(r), m = 1,2,...,Ns, fB(r),

m

m=1,2,...,Np,and fP(r), m=1,2,..., Np yield
7y, Zis Zyp||IL VL
Zsy, Zss Zsp||Is|=|Vs (16)
Zpy, Zps Zpp ||Ip Vp

Here, the entries of the matrix blocks Zyn, M, N € {S, L, P} are
given by

(ZiLhmn = () x £, 5@) x S[E]@)

= /r , £l (r) - /P . G(r, t)f-(t)ds' ds (17)
(ZLshnn = (@) x £, 8(x) x S[E7] )
_ /r . £ (r) - /r EG(r, )3 (1 )ds'ds (18)

(Ziphyn = (@) x £;1), @) x VS[£7]@)

- /r LV.fL;(r) /r . G@r,v)fY(ds'ds (19

m

(ZsLhmn = () x £5, (), i(x) x S[E] )

= / £5 (r) - / G(r,v)tL (r))ds'ds (20)
ry rr
(Zss)n = (A0) x 05,0, 80) x S[3]x))
_ /r . £ (r) - /r EG(r, )3 (1 )ds'ds @1)

sl = () x 1561, @) x S[F]0)

N /r,%, V£ @) /r;; G, x) fy ()ds'ds  (22)
VPIE-1: {Zpp}ypn = (fn]? (r), A(r) - S[ty ](r)>

N /r,‘g f (@) /r;; G(r, ¥)a(r) - £ (')ds'ds
VPIE-2: {ZpLln = (/i (0, V- S[E7] @)

- / fn (@) / G, )V £ ()ds'ds  (23)

re rt

VPIE-1: {Zps}ym = (f,,]f’ (r), A(r) - S[fy ](r)>

- /r;g fRm) /rs G(r, x)i(r) - £5 (x')ds'ds
VPIE-2: {Zps}ym = (f,f; (), V- S[ty ](r)>

= / £ / G(r, ¥ )V -£5()ds'ds  (24)
134 03
and the entries of the vectors Vi, and Vg are given by
(Vb = () x £;@), (@) x A" @)

= _ / £l (r) - A" (r)ds (25)
s
(Vs = () x £5, 00, =) x A" (@)
=— / £ (r) - A"(r)ds (26)
rs

where F,I; and F,SZ denote the support of loop and star functions,
respectively. Note that the entries of Zpp and Vp are already provided
in (12) and (14), respectively. In (19) and (23), V - f,% (r) =0 and
V- £-(') = 0, respectively [8]. This ensures that Zj p = 0 for both
VPIE-1 and VPIE-2, and Zpy, = 0 for VPIE-2.

The frequency scaling of Iy, Is, and Ip as @ — 0 can be derived
from the scaling of all the matrix blocks and excitation vectors
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in (16). Note that the Green function and its gradient present in the
expressions of the entries of these matrix blocks scale with O(1) as
w — 0 [4], [18]. This means that the blocks of the matrix in (16)
scale as

7y, Zis Zyp om o) 0
VPIE-1: | Zs1, Zss Zsp o1y o1y o
Zpy, Zps Zpp o) o) o)
7y 7Zis Zpp o) o) 0
VPIE-2: |Zsy. Zss Zsp| = |O1) O1) 0OQ1) 27)
Zpy, Zps Zpp 0 01 0@

Consequently, the scaling of the inverses of these matrices can be

found using the Schur complement [35]
-1

Zyy, Zis Zpp o oy o)
VPIE-1: | Zs;, Zss Zsp =10 0Oa) o0Q
Zpy, Zps Zpp ol oy o)
Zu Zis Zip] ' [O() 0w o)
VPIE-2: | Zsi. Zss Zsp = | 0W@? 0w 0Q)
Zpy Zps Zpp om o o

(28)
On the other hand, the scaling of the right-hand side vectors Vp,
Vs, and Vp depends on the selection of A™(r) and ®M°(r). Assume
that the electric field of the plane-wave excitation is expressed
as EN°(r) = Epe ™/ kok™r \yhere Eq is the polarization vector.
As frequency approaches zero, E"°(r) scales as O(1) [4]. Using
this, one can easily see from (26) that Vg scales as O(a)il) and
O(1) with the first and second kinds of potential representations,
respectively. The scaling of Vp depends not only on the kind of
potential representations but also on the choice of VPIE. It can be
seen from (14) that Vp scales as O(w~!) and O(1) for VPIE-1
with the first and second potential representations, respectively, and
as O(w) for VPIE-2 with the second potential representation. Note
that (I)ilnc (r) = 0 ensures Vp = 0 for VPIE-2 with the first potential
representation. On the other hand, derivation of the scaling of Vi,
calls for a more involved investigation as described next. The loop
basis function f,,Iq (r) can be expressed as [36]
£ (£) = () x Vsom (1) (29)
where ¢;,(r) is a pyramid-shaped function defined at r € 1",1,“1, and
Vi denotes the surface gradient. Inserting (29) into (25) with two
kinds of potential representations and using the chain rule and the
divergence theorem in the resulting expressions yield [7]

Vi, = ]_—w {—jko /r,g om (DA - K" x E"(r)]ds
+ jé F,% m(r) - [p, (DR(r) x EiHC(r)]dz}
= JHoeo /r | om(DA() - k" % E°(r)]ds (30)
{VL}, = —vmozo { /r . om (O)R(r) - [V x (lEi“C(r~Ei“C(r)))] ds

+f e - [on(ie)

m

x (K"(r - Ei“C(r)))]dz}

—VHog0 /F,'; om (£)N(r)
[ MR rg o (i e Bg))

— (K" (r - Eg)) x Ve_jkokinc'r]ds
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= JH0%0 /r om@®A@) - [e‘fkof‘i"“’(l?“ x Eo)]ds 31)

for (Ailnc, (I)ilnc) and (Aiznc, (I)iznc), respectively. Here, m(r) denotes
the unit normal vector pointing outward on 61",1;,, the boundary of
F,],;. Since ¢ (r) = 0 on Aar,% [36], the contour integrals in (30)
and (31) are zero. Since EM¢(r) scales as O(1) [4], one can show
that V| scales as O(1) for both the representations of the incident
plane wave. In summary, one obtains
Vi [0M) 0@ ™) 0@ ], (A, virc)

VPIE-1: | Vg | =

Vp [om) o) o], (i, (Diznc)
Vi o) 0@ 0", (Aine, gine
VPIE-2: | Vs | = [0 0@ 0] ( ne, pine) )

Vo [0(1) 0() O@)]”, (A;m, cpian) .
Finally, multiplying (28) with (32) yields the frequency scaling of
It, Is, and Ip in (16) as
I, [0 0@ 0@ H]", (AilnC, <1>ilnC)
VPIE-1: |Ig | = T . .
[00) o) o], (A, oirc)
I, [O0(1) O@) 0@ )], (AilnC, @ilnC)
VPIE-2: |Ig | = T ) )
[0() O@) oM]", (Agw, cpgw) ,
(33)
One can expect that the scaling of Ip (which stores expansion coef-
ficients of n- A) should be different under different representations of
the excitation. But this should not be the case for Iy, and Ig (which
store the expansion coefficients of J) since the field representation
of the excitation is unique. Having said that, the correct frequency
scaling of Iy and Ig has been discussed in [4] and [21] and is shown
to be O(1) and O(w), respectively. These results are obtained from
the asymptotic solution of EFIE or MFIE as w — 0. The latter can
also be seen easily from the current continuity equation [4], [21].
Looking at (33), one can see that the scaling of Iy and Ig obtained
by solving VPIE-2 is correct but the same cannot be said for those
obtained by solving VPIE-1. Indeed, this conclusion is supported
by the numerical results presented in Section III. Note that since
(the scaling of) Ip depends on the potential representation of the

excitation, one has to be careful while computing the scattered fields
from the solution of VPIE-2 as w — 0 [28].

III. NUMERICAL RESULTS

In this section, low-frequency behavior of VPIE-1 and VPIE-2
is investigated via numerical experiments. In all the simulations,
the scatterer is a PEC unit sphere that resides in free space and is
centered at the origin. The excitation is a plane wave with electric
field Ei"°(r) = fe—/k02, The surface of the sphere is discretized
using Np = 2560 triangular patches resulting in Nr = 3840 edges.
The deflation method [20] is applied to the VPIE-2 matrix system
when the frequency is smaller than 1 KHz. The LU decomposition
is used to solve the matrix systems in (8) (for VPIE-1 and VPIE-2)
and the matrix system is modified by deflation (for VPIE-2) to ensure
that the error in the matrix solution is at the machine precision level.

A. Accuracy of VPIE-1 and VPIE-2

In this section, the accuracy of VPIE-1 and VPIE-2 is investigated
by comparing the radar cross section (RCS) of the unit sphere
computed using IR after solving VPIE-1 and VPIE-2 (for two kinds
of potential representations of the incident plane wave) to RCS
computed using the Mie series solution [37]. Fig. 1(a) and (b) show
plots of RCS for & = [0°, 180°] and ¢ = 0° at 300 MHz and 0.1 Hz,
respectively. Fig. 1(a) shows that RCS computed using VPIE-1 and
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Fig. 1. RCS computed using VPIE-1 and VPIE-2 solutions with two potential
representations of the incident plane wave and the Mie series solution for
6 =1[0°,180°] and ¢ = 0° at (a) 300 MHz and (b) 0.1 Hz.

VPIE-2 solutions at 300 MHz matches very well to RCS computed
using the Mie series solution (for both the representations of the
excitation). However, as shown in Fig. 1(b), at 0.1 Hz, only RCS
computed using the VPIE-2 solution agrees well with RCS computed
using the Mie series solution. The Lp-norm RCS error values of
VPIE-2 are 8.24 x 1073 and 8.52 x 1073 for the first and second
representations of the excitation, respectively. VPIE-1 solution is
not accurate for neither representation of the excitation. This result
agrees with the conclusion of the analysis carried out in Section II-D:
the electric current obtained by solving VPIE-1 is not accurate at
low frequencies while that obtained by solving VPIE-2 maintains
its accuracy. Fig. 1(b) also shows that the Ly-norm RCS error of
VPIE-1 with the first representation of the excitation (1.96 x 1027)
is larger than that of VPIE-1 with the second representation of the
excitation (1.54 x 108). This might be explained by the fact that the
vector potential used in the first representation becomes unbounded
as w — 0. Indeed, as shown in Section III-B, both Ij, and Ig obtained
from the solution of VPIE-1 with the first representation follow the
behavior of the vector potential of the excitation and also become
unbounded. This increases the RCS error [4].

B. Frequency Scaling of VPIE-1 and VPIE-2 Solutions

In this section, the frequency scaling of Iy, Ig, and Ip
obtained from the VPIE-1 and VPIE-2 solutions as @ — O is
numerically investigated. The frequency is swept in the interval
[0.01 Hz, 300 MHz]. Note that I}, and Ig are not obtained by directly
solving (16). First (8) (for VPIE-1 and VPIE-2) and the matrix system
modified by deflation (for VPIE-2) are solved for IR, and then I and
Is are obtained from IR via postprocessing [11]. Fig. 2(a)—(c) show
the plots of the Lp-norm of Iy, Ig, and Ip versus the frequency
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Fig. 2. Lp-norm of (a) Iy, (b) Ig, and (c) Ip versus the frequency for VPIE-1
and VPIE-2 with two different potential representations of the incident plane
wave.

for VPIE-1 and VPIE-2 with both the potential representations
of the incident plane wave, respectively. Fig. 2(a) clearly shows
that ||I1 || obtained from the solution of VPIE-1 with the first and
second representations scales as O(w ') and O(1) as w — 0,
respectively. ||Ip || obtained from the solution of VPIE-2 with both
the representations scales as O(1) as w — 0. As shown in Fig. 2(b),
|IIs] obtained from the solution of VPIE-1 with the first and second
representations scales as O(w™ 1) and O(1), respectively, and |Ig||
obtained from the solution of VPIE-2 with both the representations
scales as O(w). Fig. 2(c) shows that || Ip|| obtained from the solutions
of VPIE-1 and VPIE-2 with the first representation scales as O(w 1),
while ||Ip|| obtained with the second representation scales as O(1).
The results presented in Fig. 2 support the conclusions of the analysis
carried out in Section II-D: the scaling of the electric current solution
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of VPIE-2 follows the theoretical prediction, while that of VPIE-1
does not, and this applies to both the representations of the incident
plane wave. In addition, the scaling of the solution for the normal
component of the vector potential depends only on the representation
of the incident plane wave.

IV. CONCLUSION

The low-frequency behavior of VPIEs for PEC scatterers is
investigated. Two equation sets are considered: VPIE-1 enforces
the tangential component of the vector potential on the scatterer
surface to be zero and also uses the fundamental field relationship
on its normal component, and VPIE-2 uses the same condition as
VPIE-1 for the tangential component of the vector potential but
enforces its divergence to be zero. To numerically solve VPIE-1
and VPIE-2, the electric current and the normal component of the
vector potential on the surface of the scatterer are expanded using
the RWG and pulse basis functions, respectively. VPIE-1 is tested
using the RWG and scalar BC functions, while VPIE-2 is tested
using the RWG and pulse functions. Theoretical analysis carried out
using loop—star decomposition on the resulting matrix equations, and
numerical experiments show that the electric current obtained by
solving VPIE-1 has the wrong frequency scaling and is inaccurate
at low frequencies.

This work considers only simply connected scatterers. The
low-frequency behavior of VPIEs enforced on nonsimply connected
surfaces will be theoretically and numerically analyzed in future
work.

REFERENCES

[1] S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scat-
tering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag.,
vol. AP-30, no. 3, pp. 409418, Mar. 1982.

[2] F. P. Andriulli, A. Tabacco, and G. Vecchi, “Solving the EFIE at low
frequencies with a conditioning that grows only logarithmically with the
number of unknowns,” IEEE Trans. Antennas Propag., vol. 58, no. 5,
pp. 1614-1624, May 2010.

[3] Z. G. Qian and W. C. Chew, “A quantitative study on the low frequency

breakdown of EFIE,)” Microw. Opt. Technol. Lett., vol. 50, no. 5,

pp. 1159-1162, May 2008.

Y. Zhang, T. J. Cui, W. C. Chew, and J.-S. Zhao, “Magnetic field integral

equation at very low frequencies,” IEEE Trans. Antennas Propag.,

vol. 51, no. 8, pp. 1864-1871, Aug. 2003.

K. Cools, F. P. Andriulli, D. D. Zutter, and E. Michielssen, “Accurate and

conforming mixed discretization of the MFIE,” I[EEE Antennas Wireless

Propag. Lett., vol. 10, pp. 528-531, 2011.

I. Bogaert, K. Cools, F. P. Andriulli, and H. Bagci, “Low-frequency

scaling of the standard and mixed magnetic field and Miiller integral

equations,” IEEE Trans. Antennas Propag., vol. 62, no. 2, pp. 822-831,

Feb. 2014.

[7]1 H. A. Ulku, L. Bogaert, K. Cools, F. P. Andriulli, and H. Bagci, “Mixed

discretization of the time-domain MFIE at low frequencies,” IEEE

Antennas Wireless Propag. Lett., vol. 16, pp. 1565-1568, 2017.

G. Vecchi, “Loop-star decomposition of basis functions in the dis-

cretization of the EFIE,” IEEE Trans. Antennas Propag., vol. 47, no. 2,

pp. 339-346, Feb. 1999.

[9] J.-S. Zhao and W. C. Chew, “Integral equation solution of Maxwell’s

equations from zero frequency to microwave frequencies,” IEEE Trans.

Antennas Propag., vol. 48, no. 10, pp. 1635-1645, Oct. 2000.

S. Yan, J.-M. Jin, and Z. Nie, “EFIE analysis of low-frequency problems

with loop-star decomposition and Calderén multiplicative precondi-

tioner,” IEEE Trans. Antennas Propag., vol. 58, no. 3, pp. 857-867,

Mar. 2010.

F. P. Andriulli, “Loop-star and loop-tree decompositions: Analysis and

efficient algorithms,” IEEE Trans. Antennas Propag., vol. 60, no. 5,

pp. 2347-2356, May 2012.

J. Cheng and R. J. Adams, “Electric field-based surface integral con-

straints for Helmholtz decompositions of the current on a conductor,”

IEEE Trans. Antennas Propag., vol. 61, no. 9, pp. 46324640, Sep. 2013.

[4

=

[5

—

[6

—

[8

—_

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 70, NO. 12, DECEMBER 2022

S. H. Christiansen and J.-C. Nédélec, “A preconditioner for the electric
field integral equation based on Calderon formulas,” SIAM J. Numer.
Anal., vol. 40, no. 3, pp. 1100-1135, 2001.

A. Buffa and S. Christiansen, “A dual finite element complex
on the barycentric refinement,” Math. Comput., vol. 76, no. 260,
pp. 1743-1769, May 2007.

M. A. E. Bautista, M. A. Francavilla, F. Vipiana, and G. Vecchi, “A hier-
archical fast solver for EFIE-MoM analysis of multiscale structures at
very low frequencies,” IEEE Trans. Antennas Propag., vol. 62, no. 2,
pp. 1523-1528, Mar. 2014.

F. P. Andriulli et al., “A multiplicative Calderén preconditioner for the
electric field integral equation,” IEEE Trans. Antennas Propag., vol. 56,
no. 8, pp. 2398-2412, Aug. 2008.

M. B. Stephanson and J.-F. Lee, “Preconditioned electric field integral
equation using Calderén identities and dual loop/star basis functions,”
IEEE Trans. Antennas Propag., vol. 57, no. 4, pp. 1274-1279, Apr. 2009.
S. Sun, Y. G. Liu, W. C. Chew, and Z. Ma, “Calderén multiplicative
preconditioned EFIE with perturbation method,” IEEE Trans. Antennas
Propag., vol. 61, no. 1, pp. 247-255, Jan. 2013.

M. Taskinen and P. Yld-Oijala, “Current and charge integral equation
formulation,” IEEE Trans. Antennas Propag., vol. 54, no. 1, pp. 58-67,
Jan. 2006.

Z.-G. Qian and W. C. Chew, “Fast full-wave surface integral equa-
tion solver for multiscale structure modeling,” IEEE Trans. Antennas
Propag., vol. 57, no. 11, pp. 3594-3601, Nov. 2009.

Z.-G. Qian and W. C. Chew, “Enhanced A-EFIE with perturbation
method,” IEEE Trans. Antennas Propag., vol. 58, no. 10, pp. 3256-3264,
Oct. 2010.

J. Cheng, R. J. Adams, J. C. Young, and M. A. Khayat, “Augmented
EFIE with normally constrained magnetic field and static charge extrac-
tion,” IEEE Trans. Antennas Propag., vol. 63, no. 11, pp. 4952-4963,
Nov. 2015.

F. Vico, L. Greengard, M. Ferrando, and Z. Gimbutas, “The decoupled
potential integral equation for time-harmonic electromagnetic scatter-
ing,” Commun. Pure Appl. Math., vol. 69, no. 4, pp. 771-812, Apr. 2016.
W. C. Chew, “Vector potential electromagnetics with generalized gauge
for inhomogeneous media: Formulation (invited paper),” Prog. Electro-
magn. Res., vol. 149, pp. 69-84, 2014.

Q. S. Liu, S. Sun, and W. C. Chew, “A vector potential integral equation
method for electromagnetic scattering,” in Proc. Int. Rev. Prog. Appl.
Comput. Electromagn. (ACES), Williamsburg, VA, USA, Mar. 2015,
pp. 1-2.

Q. S. Liu, S. Sun, and W. C. Chew, “A potential-based integral equa-
tion method for low-frequency electromagnetic problems,” IEEE Trans.
Antennas Propag., vol. 66, no. 3, pp. 1413-1426, Mar. 2018.

J. Li, X. Fu, and B. Shanker, “Decoupled potential integral equations
for electromagnetic scattering from dielectric objects,” IEEE Trans.
Antennas Propag., vol. 67, no. 3, pp. 1729-1739, Mar. 2019.

U. M. Giir and O. Ergiil, “Accuracy of sources and near-zone fields when
using potential integral equations at low frequencies,” IEEE Antennas
Wireless Propag. Lett., vol. 16, pp. 2783-2786, 2017.

T. E. Roth and W. C. Chew, “Development of stable A-® time domain
integral equations for multiscale electromagnetics,” IEEE J. Multiscale
Multiphys. Comput. Tech., vol. 3, pp. 255-265, 2018.

T. E. Roth and W. C. Chew, “Stability analysis and discretization of
A-® time domain integral equations for multiscale electromagnetics,”
J. Comput. Phys., vol. 408, May 2020, Art. no. 109102.

T. E. Roth and W. C. Chew, “Lorenz gauge potential-based time domain
integral equations for analyzing subwavelength penetrable regions,”
IEEE J. Multiscale Multiphys. Comput. Techn., vol. 6, pp. 24-34, 2021.
R. Chen and H. Bagci, “On the low-frequency scaling of vector potential
integral equation solutions,” in Proc. IEEE Int. Symp. Antennas Propag.
USNC-URSI Radio Sci. Meeting (APS/URSI), Singapore, Dec. 2021,
pp. 431-432.

M. Benzi, G. H. Golub, and J. Liesen, “Numerical solution of saddle
point problems,” Acta Numer., vol. 14, pp. 1-137, Apr. 2005.

R. Mitharwal and F. P. Andriulli, “On the multiplicative regularization
of graph Laplacians on closed and open structures with applications to
spectral partitioning,” IEEE Access, vol. 2, pp. 788-796, 2014.

F. Zhang, The Schur Complement and Its Applications. Berlin, Germany:
Springer, 2006, pp. 1-295.

S. Y. Chen, W. C. Chew, J. M. Song, and J.-S. Zhao, “Analysis of low
frequency scattering from penetrable scatterers,” IEEE Trans. Geosci.
Remote Sens., vol. 39, no. 4, pp. 726-735, Apr. 2001.

J.-M. Jin, Theory and Computation of Electromagnetic Fields. Hoboken,
NJ, USA: Wiley, 2010, pp. 1-572.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


