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Abstract— Here, we propose a low-profile polarizing technique
integrated in a parallel plate waveguide (PPW) configuration,
compatible with fully metallic geodesic lens antennas. The geo-
desic shape of the antenna is chosen to resemble the operation
of a Luneburg lens. The lens is fed with 11 waveguide ports
with 10◦ separation producing 11 switchable beams in an angular
range of ±50◦. Two metallic polarizing screens are loaded into the
aperture of the antenna to rotate the electric field from a vertical
linear polarization, which is the polarization of the transverse
electromagnetic (TEM) mode supported in the lens, to a +45◦
linear polarization. Since the polarizing unit cells are integrated
into the aperture of the antenna, the final design is compact.
In addition, the size of the polarizing unit cells is about 0.55λ at
the central frequency of operation making the antenna suitable
to produce an array formed of stacked lenses. A prototype of the
antenna in the Ka-band was manufactured and tested, verifying
the performance obtained in simulations.

Index Terms— Beam scanning, fully metallic, geodesic lens,
Luneburg lens antenna, polarization transformation.

I. INTRODUCTION

THE demands for high data rates, capacity, and low latency
in future generations of mobile networks (5G and 6G) can

be fulfilled by moving toward higher operating frequencies [1],
more specifically within the millimeter-wave range and sub-
THz bands [2], [3], [4]. However, using higher frequencies,
both path loss and material losses increase creating a need
for high-gain and efficient antennas [5], [6]. Consequently,
beam switching is an essential feature to achieve acceptable
angular coverage [7]. Antenna arrays are one popular option
when highly directive beams are needed in a wide angular
range. The beam steering in arrays can be achieved electron-
ically, mechanically [8], or as a combination of the two [9].
However, at high frequencies, the required feeding network for
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electronically scanned arrays becomes complex and lossy [10].
Losses in the feeding network can be avoided by having a fully
mechanically scanned array; this, however, results in a slower
scanning speed and a bulky design [8].

Lens antennas have received attention due to their wideband
behavior and their ability to produce high-gain switchable
beams over a wide angular range without requiring a complex
feeding network [11]. Lens antennas were broadly studied in
the 1940s–1960s [12], [13] but deemed unpractical at low
frequencies due to their large size and high manufacturing cost.
Nevertheless, when the frequency increases, the physical size
of the lenses is reasonably small while being large in terms of
wavelength meaning they can provide high-gain beams [14].
The Luneburg lens [15] is an interesting case for antenna
designs since it can be used to produce multiple beams in
a large angular range and a wide frequency bandwidth. The
planar version of the Luneburg lens is a compact device with
a wide scanning range in one plane [16]. The required graded
refractive index of the Luneburg lens can be achieved using
dielectrics [17], metasurfaces [18], [19], [20], [21] or geodesic
surfaces [22], [23], [24], [25], [26].

Geodesic surfaces can mimic the refractive index of rota-
tional symmetric lenses using a profiled surface [22], [27],
[28]. By making use of the direction orthogonal to the beam-
forming plane, a parallel plate region can be deformed into a
geodesic surface [29]. The resulting surface is a device that
can be easily manufactured and eliminates the need for inho-
mogeneous materials to achieve the required refractive index
of the lens. However, this is done at a cost of an increased
height of the lens, hence sacrificing compactness. Solutions to
this problem have been addressed in [23], [24], and [30].

Investigating ways to implement dual-polarized lens anten-
nas is of special interest for both the satellite and terrestrial
communication systems, where it is needed to transmit or
receive dual-polarized signals to or from the antennas [31],
[32]. Polarization manipulation is indeed a challenge in fully
metallic parallel plate waveguide (PPW) beamformers due to
the supported fundamental modes. This is less challenging in
3-D lenses since the polarization can be readily implemented
in the feed or before the lens [33], [34]. The typical solution in
PPW beamformers is to have an array of polarizing unit cells
at some distance away from the beamformer. One such designs
is proposed in [35] where the polarizer array transformed
the linear polarization of the PPW beamformer to circular
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polarization. In addition, the polarizer array acted as a reflector
which could be mechanically steered. However, for some
antenna applications it is not suitable to use big reflectors for
polarization transformation, and hence compact solutions are
needed [36].

Using septum polarizers integrated within a square
waveguide is one method to achieve circular polarization
for a PPW beamformer in a compact way [37]. In septum
polarizers, a square waveguide is fed by two rectangular
waveguides, each of which supports one propagating mode.
The square waveguide, on the other hand, supports two
orthogonal propagating modes. The polarization of the incident
signal is converted by adjusting the phase between these
two orthogonal propagating modes. In [38], septum polarizers
integrated within a square waveguide were used to generate
circular polarization in a PPW multiple beam quasi-optical
beamformer operating in Ka-band. This was done by dis-
cretizing the aperture of the beamformer which results in a
reduced scanning range. In [39], a modification of the standard
septum is used where the vertical walls added to create square
waveguides are removed, and the stepped septum is replaced
with a saw-like design based on periodic teeth. This results
in a continuous aperture avoiding the problem of the limited
scanning range in [38]. However, this concept comes at a cost
of limited bandwidth because the TEM mode is maintained
in the teeth area, while the orthogonal mode is a TE mode.
The two modes have very different propagation characteristics,
meaning the required phase shift between both the modes will
only be obtained at the design central frequency.

In this article, we propose a low-profile solution to obtain a
linear-to-linear polarization transformation in a fully metallic
geodesic Luneburg lens operating at the Ka-band. The concept
is based on a PPW polarizer with wideband matching to free
space and polarization conversion. The implementation of the
presented solution relies on thin polarizing sheets that may be
bent to adapt to the curvature of the aperture (e.g., combination
with a Luneburg or geodesic lens), hence supporting wide
scanning. The polarizing screen provides linear polarization
rotation (±45◦) to enable polarization diversity from a stack
of PPW beamformers. Even though this concept is being
demonstrated using a geodesic Luneburg lens, this method can
be applied to any kind of PPW beamformer such as a shaped
parallel plate delay lens [40] or a pillbox antenna [11], [41].

This article is organized as follows. In Section II, the
geodesic surface of the lens antenna is introduced, and a
flare and feeding design are presented. This section also
reports the simulation results of the whole lens antenna.
Section III is dedicated to the polarizing unit cell design and
a discussion on how to integrate the polarizer together with
the antenna. Section IV includes the experimental results of
the integrated antenna, and finally, the main conclusions are
drawn in Section V.

II. WATER DROP LENS ANTENNA DESIGN

A. Geodesic Lens Design

The Luneburg lens is a rotationally symmetric graded index
lens [15]. The refractive index of the lens varies from (2)1/2 in

Fig. 1. Surface profile of the water drop lens. Red dashed lines show the
normalized profile of the water drop lens, and the blue solid line shows the
modified water drop profile which is used in this work.

the center to 1 at the border of the lens. When the Luneburg
lens is excited with a cylindrical source on its boundary, it pro-
duces a wave with a planar phase front in the diametrically
opposite direction of the lens. Due to the rotational symmetry,
when this lens is integrated in an antenna, the scan losses are
low and scanning is readily achieved by feeding the lens at
different locations along its boundary, eliminating the need for
a complex feeding network.

In [29], a surface equivalence of the Luneburg lens is
proposed and implemented with a PPW which is deformed
to mimic the gradient refractive index of the Luneburg lens.
The resulting PPW lens is referred to as a geodesic Luneburg
lens. The main advantage of the geodesic lens is that it can be
realized using a homogeneous material, such as vacuum or air.

One disadvantage of the geodesic lens is the required height
of the equivalent surface which is a third of its diameter.
This issue is addressed in [30] where it was proposed to
fold the geodesic surface to achieve a more compact device
while preserving the optical characteristics of the lens. Such
structure was not studied again in the literature until the recent
implementation presented in [23], where a height reduction of
2.5 from the conventional geodesic Luneburg lens is reported.

In [24], a rigorous design procedure for implementing a
compact geodesic lens is described. The resulting lens is
referred to as a water drop lens. We have followed such a
design procedure in the current investigation. The shape of
the designed water drop lens used in this work is shown in
Fig. 1. The dashed red lines show the surface profile of the
water drop lens. The distance between parallel plates is 2 mm,
which is about 0.2λ at the central frequency. This distance
was chosen so only the TEM mode can propagate within the
frequency range of interest. In Fig. 1, the solid blue lines
show modifications applied to the initial profile, in terms of
cuts, to improve the matching at the folding points. These cuts
are C1 = 0.5 mm and C2 = 0.35 mm. Since they are small,
the beamforming capability of the lens is not affected. This
lens is designed to operate from 25 to 31 GHz. The diameter
of the lens is chosen as 107 mm, which is approximately 10λ
at the center frequency. The inset of Fig. 1 shows how the lens
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Fig. 2. Stepped waveguide for the transition from WR28 to the PPW lens.

Fig. 3. Flare and feeding design. (a) Simulation model of the stepped
waveguide, including the initial part of the lens’s profile. Dimensions for
the stepped waveguide are d1 = 10 mm, d2 = 4.6 mm, d3 = 11.2 mm,
h1 = 3.56 mm, h2 = 3.3 mm, h3 = 2.5 mm, and h4 = 2 mm. (b) Flare
design with exponential tapering. Dimensions of the flare are a = 10 mm and
b = 14.5 mm. (c) Reflection coefficients of the designed feeding and flare.

transforms a cylindrical wave excited at its border to a planar
wavefront in the opposite direction.

B. Flare and Feeding Design

To feed the water drop lens, we use a standard WR28
waveguide. Since the distance between parallel plates in the
water drop lens does not match the height of a WR28,
a stepped waveguide transition is needed, as illustrated in
Fig. 2. To reduce the computational time of the simulations,
only a portion of the lens is included in the optimization of
the stepped waveguide, as shown in Fig. 3(a).

On the other side of the lens, a flare design is required
to allow efficient radiation to free space. The flare has an
exponential tapering from the height of the parallel plate
of the lens, 2 mm, to a final aperture height of 10 mm
which is approximately one wavelength at the central fre-
quency. The reflection coefficients for the designed feed-
ing and flare are depicted in Fig. 3(c). The flare has
a reflection coefficient below −20 dB in the frequency
band of interest, and the feeding reflection coefficient is
below −18 dB.

Fig. 4. Designed water drop lens antenna. (a) Top view of the bottom plate
showing the 11 waveguide feeds. (b) Exploded view of the top and bottom
plates of the antenna. (c) Assembled top and bottom plates of the antenna.

C. Water Drop Lens Antenna

Fig. 4(a) shows a top view of the bottom plate of the lens
antenna integrated with the feeding and flare described in
Section II-B. Eleven waveguide feeds are placed with 10◦
spacing allowing for a scanning range of ±50◦. The flare
covers all the radiating aperture up to the walls of ports 1
and 11. Fig. 4(a) and (c) shows how the two beamforming
plates, when combined, form the geodesic lens.

The simulated results for some selected ports with the time-
domain solver of CST Microwave Studio are represented in
Fig. 5. The S-parameters are shown in Fig. 5(a), demonstrating
that all the reflection coefficients are below −16 dB and port-
to-port coupling is below −19 dB in the frequency band of
interest. The simulated 2-D radiation patterns for ports 1,
6, and 11 at 25, 28, and 31 GHz, respectively, are shown
in Fig. 5(b). The antenna produces directive beams, and
the performance is stable over the scanning range and the
frequency band. The sidelobe levels are as low as −20 dB at
the highest frequency, 31 GHz, and never higher than −14 dB
at the lowest frequency, 25 GHz. Fig. 5(c) shows the maximum
directivity of all 11 feeding ports at 25, 28, and 31 GHz. A low
directivity variation is observed between pointing directions
with a maximum of 0.2 dB.

III. PARALLEL PLATE INTEGRATED POLARIZER

A. Polarization Diversity in PPW Beamformers

Polarization transformation in fully metallic PPW beam-
formers introduces challenges, mainly due to the fundamental
modes supported in such devices. The height of the PPW used
to form the required geodesic surface must be chosen so that
only the TEM mode is allowed. Introducing the second mode,
the TE01 mode, would not result in the desired performance
of the lens due to the dispersive relationship between the two
modes. This means that any polarization transformation must
be done after the beamforming stage of the antenna. Tech-
niques to achieve dual-polarized PPW antennas are of special
interest for both the satellite and terrestrial communication
systems as polarization diversity doubles the link capacity for
a given frequency bandwidth allocation. Here, we want to
investigate a way to transform the nominal vertical polarization
of the TEM mode supported in the geodesic Luneburg lens to
a +45◦ linear polarization, so polarization diversity may be
achieved stacking two lenses with polarization transformation
of +45◦ and −45◦.
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Fig. 5. Simulation results for the conventional water drop lens. (a) Selected
S-parameters. (b) Radiation pattern for ports 1, 6, and 11 at 25, 28,
and 31 GHz. (c) Maximum directivity of all the ports at 25, 28, and 31 GHz.

In this article, we propose a compact polarizer that does not
limit the bandwidth or the beam scanning capabilities of the
antenna.

B. Complementary Split-Ring Resonators

In [42], it is shown that twist-symmetric complementary
split-ring resonators (CSRRs), perforated from a sheet of

Fig. 6. CSRR. (a) Front view of one unit cell when the center bar has been
rotated by an angle δn . (b) CSRR in a layered configuration.

aluminum, can be used to construct a flat fully metallic
lens. This type of perforated sheets with CSRRs can also be
used to generate polarization transformation with a wideband
performance as demonstrated in [43]. In the aforementioned
studies, the CSRRs were used in a 2-D array configuration.
In this work, we load the CSRRs in a PPW with a 1-D design
for polarization transformation in a geodesic Luneburg lens.

The CSRR unit cell is shown in Fig. 6(a). The unit cell is
characterized with a rectangular section with dimensions Pz

and Px , a center bar of width g, and a slot of width w made
by two concentric circles with radii S and S–w. The center
bar is rotated by an angle δn , so the electric field traveling
through the CSRR rotates as well. This rotation of the electric
field is smoothly achieved in steps as illustrated in Fig. 6(b),
where the center bar of every consequent unit cell is rotated
by an incremental value. This polarization conversion in steps
improves the matching between screens when rotating the
center bar. This means that the fewer the screens, the larger
the reflections. A study to determine the minimum required
number of polarizing screens to achieve a good matching to
free space must be carried out.

C. Design Procedure for the Polarizer

In [42] and [43], the CSRRs were studied at a unit cell level,
as commonly done when designing a 2-D transmit array. That
design environment does not fit the purpose of this work since
the polarizer will not be used in a planar configuration but
rather in a PPW environment. The CSRRs will be repeated
in the x-direction but there is only one CSRR unit cell in
the z-direction. To mimic this environment, the polarizer is
analyzed directly in its PPW environment as shown in Fig. 7,
where a PPW is loaded with n = 4 polarizer screens. For each
screen, the unit cell is repeated 16 times in the x-direction.
In this way, when the PPW is excited at the waveguide port
with a TE10 mode, the excited wave will behave like a quasi-
TEM wave. Furthermore, with 16 unit cells, the width of this
simulation model is roughly the same as the lens diameter.
The PPW height is tapered from the height of the PPW of the
lens to the height of the CSRR unit cells. As can be seen in
the cross-sectional view of the loaded PPW in Fig. 7(b), the
polarizer screens are placed in grooves for assembly purposes.

Two, three, and four polarizer screens are considered for
the study, as shown in Fig. 8(a). In all the cases, the outer
radius and the slot width are kept constant as S = 2.65 mm
and w = 1 mm, respectively. The lateral dimensions are Px =
Pz = 5.7 mm, roughly 0.55λ at the central frequency. These
lateral dimensions were chosen to be small enough so the final
design is suitable for a vertical stacked antenna array. It must
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Fig. 7. PPW loaded with CSRRs. (a) PPW with tapering from the height of
the lens to the height of the CSRRs. (b) Cross-sectional view of the loaded
PPW showing the placement grooves that will be milled into the flare of the
antenna to hold the screens with CSRRs.

Fig. 8. Study of the required number of polarizer screens. (a) Case study
when the PPW is loaded with four polarizer screens. (b) Reflection coefficient
of the four case studies.

be noted that with this lateral dimension, the cutoff of the TE01

PPW mode is around 26 GHz, which means that this mode
(horizontal polarization) is operating below cutoff. Therefore,
in order not to suppress this mode in the PPW region between
the screens, they must be closely spaced.

Fig. 9. Directivity of the co-pol (solid lines) and x-pol (dashed lines) of the
radiating PPW loaded with two polarizer screens when varying δ2.

The thickness of the perforated metal sheets, t , is chosen as
0.3 mm since at this thickness aluminum is still quite pliable
and the sheets can, thereby, be bent into a circular shape
without damage. For n = 2, 3, and 4, the rotation of the last
polarizing screen is set to 45◦. The rest of the parameters are
then tuned to get the best matching over the frequency range.
The reflection coefficients for the different numbers of screens
are shown in Fig. 8(b). The best result is achieved with the
highest number of screens, n = 4. However, decreasing the
number of screens down to two still yields acceptable results,
with a reflection coefficient which is below −15 dB over the
frequency band of interest. Therefore, we continue with the
design process using only two polarizer screens.

To estimate the performance of the polarizer screens,
we study the far-field using Ludwig’s third definition for
co-polarization (co-pol) and cross-polarization (x-pol), which
is suitable for a linear directional radiation pattern [44]. The
inset of Fig. 9 defines the co-pol and x-pol. The parameters
of the unit cell and screens were optimized, and their values
are given in Table I. Fig. 9 shows a parametric sweep of the
rotation angle of δ2 at 45◦, 47◦, 49◦, and 50◦ while keeping
δ1 = 29◦. The bar needs to be rotated more than 45◦ since
the metallic plates in the z-direction suppress the TE01 mode,
especially at the lowest frequency where this mode is in cutoff.
By rotating δ2 beyond 45◦, it is possible to get a lower level
of x-pol. Therefore, the chosen δ2 is 50◦.

The numerical results clearly indicate that the performance
of the polarizer improves as the frequency increases. This is
because the modal response becomes less dispersive when we
move further away from the cutoff of the TE01 PPW mode.
The overall x-pol level over the design frequency band could
therefore be improved by increasing the unit cell height so
that the TE01 PPW mode operates further away from cutoff.
However, this would result in increased spacing between the
antenna elements if the design is implemented in a vertically
stacked antenna array, limiting beam steering in elevation.

D. Polarizer Under Oblique Incidence

The polarizer is intended to be installed conformally in the
aperture of the PPW beamformer. As a result, the performance
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TABLE I

FINAL DESIGN PARAMETERS OF CSSR POLARIZER SCREENS

Fig. 10. (a) Rotated PPW model with loaded CSRRs. (b) Comparison
between the polarization isolation of the rotated PPW model under different
incident angles.

of the polarizer is not dependent on the scanning angle and is
maintained when scanning to any direction. On the other hand,
this implies that the polarizer partially operates under oblique
incidence for all the scan angles, which may lead to reduced
performance [45], [46]. To evaluate the performance under
oblique incidence, we simulate the truncated planar polarizer
that is rotated relative to the waveguide feed. The model
used for the study is illustrated in Fig. 10(a). Specifically,
we evaluate how rotation affects the polarization isolation
under incident angles, β, from 0◦ to 40◦ in 10◦ steps. The
polarization isolation is defined as the difference between the
peak gains of the co-pol and x-pol in the −3 dB beamwidth
of the main beam. The results of the study are shown in
Fig. 10(b). We observe that the polarizer maintains the perfor-
mance under incident angles up to β = 20◦. At β = 30◦, the
performance at higher frequencies deteriorates as we observe
that the polarization isolation is above −15 dB. At β = 40◦,
the polarizer is no longer performing as intended, with the
polarization isolation above −15 dB over the whole frequency

Fig. 11. (a) Electric field distribution on the lens designed in Section II.
(b) Normalized power density on the dashed line indicated in Fig. 11(a).

Fig. 12. Cross-sectional view of (a) lens antenna with an exponential flare
and (b) lens antenna with polarizer screens loaded in the aperture.

range. With this study, we conclude that the angular stability
of the polarizer is approximately ±30◦.

Fig. 11 illustrates the electric field distribution in the lens
designed in Section II when fed with port 6 at 28 GHz.
We sample the power density on the dashed line as shown in
Fig. 11(a). The dashed line corresponds to the position where
the polarizer screens will be integrated in the final antenna
design. We plot the result in Fig. 11(b). It is interesting to note
that approximately 85% of the total power is confined within
the ±30◦ range, corresponding to the shaded area in Fig. 11(b).
This means that the majority of the power is incident at the
polarizer with angles lower than 30◦. This analysis provides
further confidence in the operation of the conformal polarizer
design prior to integration with the lens.

E. Comparison Between Antenna With a Flare and Polarizer
Screens

In this section, we compare the simulation results of the
antenna with a flare and the antenna with the polarizer in
the aperture. As noted above, the vertical aperture size in
the lens with the polarizer is smaller than that in the lens
without the polarizer. To provide a fair comparison of the
two antennas, we therefore compare the normalized radiation
patterns. Fig. 12 shows a cross-sectional view of the two
lenses, and Fig. 13 shows the simulation model and integration
of the polarizer in the lens antenna. As illustrated in Fig. 13,
the polarizer screens are bent to the shape of the lens and then
placed between the top and bottom plates of the antenna.

Fig. 14(a) presents normalized radiation patterns for port
6 in the beamforming plane (H-plane) and the plane orthogonal
to the beamforming plane (E-plane) at 28 GHz. As can be
observed, the beamwidth in the H-plane is roughly the same
for both the antennas. However, since the antenna with the
radiating flare has a larger aperture in the E-plane than the
antenna with polarizer screens, it has a narrower radiation
pattern in this plane. In Fig. 14(b), it can be seen that the
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Fig. 13. Integration of the polarizer screens and the geodesic Luneburg lens.
(a) Exploded view of the lens and polarizer. (b) Integrated device with the
polarizer screens inserted into the flare of the antenna.

radiation efficiency for both the antennas is above 95%. In the
same figure, we plot the 3 dB beamwidth in the H-plane of the
two antennas when exciting the center port. The beamwidth of
the two lenses is similar up to 30 GHz where we observe an
increase in beamwidth for the antenna with polarizer screens.
This is most likely due to phase aberrations caused by the
polarizer screens.

IV. EXPERIMENTAL RESULTS OF THE FULLY METALLIC

INTEGRATED ANTENNA AND POLARIZER

In this section, we present the simulations and experimental
verification of the integrated lens antenna. The antenna is
simulated using the time-domain solver of CST Microwave
Studio. The polarizing screens are curved into a circular shape
with a radius that matches the placement grooves allocated in
the flare of the antenna. The manufactured prototype is shown
in Fig. 15. Fig. 15(a) shows the top and bottom plates of
the geodesic lens antenna before assembly with the polarizer
screens placed in the bottom plate. The two plates that form the
geodesic surface were manufactured using CNC milling, and
the polarizing screens were manufactured by water-jet cutting
aluminum sheets. Fig. 15(b) illustrates the assembled antenna
during measurements in the anechoic chamber at KTH Royal
Institute of Technology.

The measured and simulated reflection coefficients are rep-
resented in Fig. 16(a). The measured reflection coefficients
are below −10 dB in the frequency band of interest, but
are a bit higher than the simulated results, below −15 dB.
The measured and simulated port-to-port coupling between
selected ports are depicted in Fig. 16(b). Similar levels of port-
to-port coupling are obtained from the measurement and sim-
ulation with most of the values below −20 dB. The measured
and simulated normalized radiation patterns of the co-pol,
in the scanning plane at 25, 28, and 31 GHz are depicted

Fig. 14. (a) Normalized radiation pattern in the E- and H-planes of port
6 for the antenna with an exponential flare (solid lines) and the antenna with
polarizers loaded in the aperture (dashed lines) at 28 GHz. (b) Comparison
between the simulated radiation efficiency and 3 dB beamwidth of the two
antenna designs when exciting port 6.

Fig. 15. (a) Bottom and top plates of the manufactured antenna. (b) Assem-
bled antenna during measurements in the anechoic chamber at KTH.

in Fig. 17. There is a good agreement between the simulated
and measured results, especially at 25 and 28 GHz. In the
measurements, the beamwidth at 31 GHz slightly increases.
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Fig. 16. Simulated (solid lines) and measured (dashed lines) of (a) reflection
coefficients for ports 1–6 and (b) selected port-to-port coupling.

The sidelobe levels in both the simulations and measurements
are below −15 dB for all the ports at 25 and 28 GHz. Slightly
higher side lobes are observed at 31 GHz but always below
−13 dB.

The measured and simulated peak gains of ports 5, 6, 8, and
11 are shown in Fig. 18(a). Although omitted here, the other
ports had a similar performance. The gain is stable between
ports although some differences are noticeable between the
measured and simulated results. This discrepancy is due to
the surface roughness of the materials. A simulation with
a root mean square (Rq) surface roughness of 5 μm is
illustrated in Fig. 18(a), demonstrating a good agreement with
the measurements.

Port 6 experienced more losses than port 1, especially
at 31 GHz. The main difference between these two ports is in
the waveguide length, which for port 6 is substantially longer.
The longer the waveguide, the higher the undesired leakage
and material losses due to surface roughness. It is important
to note that the waveguides are only for testing purposes. In a
real implementation, these waveguides are not necessary since
the lens will be directly connected to the PCB.

Fig. 18(b) presents the polarization isolation of the inte-
grated antenna. The isolation obtained with the truncated pla-
nar polarizer (Fig. 9) is included as reference. The polarization

Fig. 17. Normalized radiation pattern for the simulated antenna (solid lines)
and measured prototype (dashed lines) of the 11 ports at (a) 25, (b) 28, and
(c) 31 GHz.

isolation of the antenna is defined in the same manner as in
Section III. Good agreement is observed between the x-pol of
the truncated planar polarizer and the simulated and measured
x-pol levels in the integrated lens antenna. The polarization
isolation is below −18 dB over the whole frequency range
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Fig. 18. (a) Simulated and measured peak gains. (b) Simulated and measured
polarization isolation.

and mostly below −20 dB in both the simulations and
measurements.

V. CONCLUSION

A fully metallic and low-profile method to achieve
polarization transformation in a geodesic Luneburg lens
antenna has been proposed and validated experimentally.
The polarization transformation is achieved by placing two
metallic screens of CSRRs in the aperture of the antenna.
The polarizing screens rotate the electric field from a vertical
linear polarization to a linear +45◦ polarization while
providing a good impedance matching to free space. Since
the screens are placed conformally in the aperture of the
antenna, the antenna performance is unaffected when the
beam is steered in the angular range of ±50◦.

The proposed concept can be extended to design PPW
antennas that generate circular polarization by replacing the
linear-to-linear polarizer with a linear-to-circular polarizer
similar to the designs in [32], [47], and [48]. To the authors’
best knowledge, no polarizer design, applicable for a PPW
beamformer, has been reported that transforms the polarization
while providing impedance matching to free space. In addition,
the reported designs on low-profile polarization transformation
in PPW beamformer suffer from either limited bandwidth or
limited scanning range [38], [39] which is not the case for the
proposed design.

The integrated antenna operates at a center frequency
of 28 GHz with over 20% bandwidth having measured

reflection coefficients below −10 dB, a port-to-port coupling
below −18 dB, and a measured peak gain of 17.6 dBi. Good
agreement is achieved between the measured and simulated
radiation patterns, apart from slightly lower gain observed
in measurements. The lower gain is attributed to the surface
roughness of the metal, which was not considered in the simu-
lations. The antenna supports a beam scanning of ±50◦, which
is demonstrated with 11 discrete beams with 10◦ separation.

By vertically stacking the proposed integrated antenna,
polarization diversity can be exploited by mirroring the polar-
izing screens in the antennas. One of the antennas would
then radiate a +45◦ polarized wave, while the other one a
−45◦ polarized wave. Furthermore, the presented design has
an aperture height of 0.55λ, and as a result, 2-D beam steering
(switching in azimuth and scanning in elevation) is enabled
by stacking antennas with the same polarization. For the 2-
D beam steering antenna stack, the polarization diversity can
be exploited using two independent systems, one for each
polarization. Although the polarization technique proposed in
this article was only applied to a geodesic Luneburg lens, it is
general and it can be applied to both flat PPW lenses and other
versions of conformal beamformers.
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