
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 70, NO. 10, OCTOBER 2022 8833

A Novel Realistic Approach of Adaptive
Beamforming Based on Deep

Neural Networks
Ioannis Mallioras , Student Member, IEEE, Zaharias D. Zaharis , Senior Member, IEEE,

Pavlos I. Lazaridis , Senior Member, IEEE, and Stelios Pantelopoulos

Abstract— A new deep neural network (NN) approach applied
to antenna array adaptive beamforming is presented in this
article. A recurrent NN (RNN) based on the gated recurrent
unit (GRU) architecture is used as a beamformer in order to
produce proper complex weights for the feeding of the antenna
array. The proposed RNN utilizes four hidden GRU layers and
one extra layer for linear transformation. The produced weights
are subsequently compared with respective weights derived by a
null steering beamforming (NSB) technique in order to measure
the accuracy of the RNN. The RNN training is performed by
using a large dataset derived from an NSB technique applied to
a realistic microstrip linear antenna array, in order to consider
real-world effects, such as the nonisotropic radiation pattern of
an array element and the mutual coupling between the array
elements. The RNN performance is examined by using the root-
mean-square error metric, whereas its beamforming performance
is evaluated by estimating the mean value and the standard
deviation of the divergences of the main lobe and nulls directions
from their respective desired directions. A comparison between
various NN structures and an overall study of the proposed RNN-
based beamformer are also presented.

Index Terms— Adaptive beamforming (ABF), antenna beam-
forming, deep learning, neural networks (NNs), recurrent neural
networks (RNNs), smart antennas.

I. INTRODUCTION

THE demand of the modern wireless communications
landscape for faster and more reliable networks is con-

stantly increasing. Smart antennas can potentially be a solution
to these demands by employing self-regulating algorithms

Manuscript received 5 October 2021; revised 9 January 2022; accepted
27 March 2022. Date of publication 25 April 2022; date of current version
9 November 2022. This work was supported by the European Union through
the Horizon 2020 Marie Skłodowska-Curie Innovative Training Networks
Programme “Mobility and Training for beyond 5G Ecosystems (MOTOR5G)”
under Grant 861219 and through the Horizon 2020 Marie Skłodowska-Curie
Research and Innovation Staff Exchange Programme “Research Collaboration
and Mobility for Beyond 5G Future Wireless Networks (RECOMBINE)”
under Grant 872857. (Corresponding author: Ioannis Mallioras.)

Ioannis Mallioras and Stelios Pantelopoulos are with Maggioli S.p.A.,
47822 Santarcangelo di Romagna, Italy (e-mail: mallioras@auth.gr;
stelios.pantelopoulos@maggioli.it).

Zaharias D. Zaharis is with the School of Electrical and Computer Engineer-
ing, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece (e-mail:
zaharis@auth.gr).

Pavlos I. Lazaridis is with the Department of Engineering and Tech-
nology, University of Huddersfield, Huddersfield HD1 3DH, U.K. (e-mail:
p.lazaridis@hud.ac.uk).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TAP.2022.3168708.

Digital Object Identifier 10.1109/TAP.2022.3168708

to control the transmission and reception of signals. From
estimating the direction of arrival (DoA) of incoming signals,
to producing the desired radiation pattern, and to finally estab-
lishing low-level communication noise, intelligent algorithms
have become an effective solution because they significantly
decrease the latency of the beamforming process. In this way,
an antenna array can dynamically steer the main lobe of its
radiation pattern toward the direction of a desired incoming
signal [i.e., signal of interest (SoI)], while placing nulls
toward the directions of respective interfering signals [i.e.,
signals of avoidance (SoAs)], to finally maximize the signal-
to-interference-plus-noise ratio (SINR). This process must be
repeated every time a change occurs either in DoA of SoI
or in DoA of any SoA and is called “adaptive beamforming”
(ABF). ABF is the principal real-time process performed by
smart antennas. It plays a vital role in ensuring the quality
and stability of wireless communications in an ever-changing
environment.

An antenna array consists of many small radiating elements,
which work together as a single antenna. The radiation of each
element is added to form the total radiation pattern, which
determines the direction of the main lobe, the sidelobes, and
the nulls. The array elements are often nonisotropic, meaning
that they do not always behave as ideal signal sources because
they are influenced by their individual radiation patterns (due
to their geometry) and mutual coupling phenomena. To force
an element radiate, a feeding weight must be applied to it.
When the antenna operates as a transmitter, these weights
represent either input currents or input voltages (including
amplitudes and phases), which are applied to the elements by
using a proper active electronic circuit driven by the process-
ing unit, which has calculated the appropriate weights [1].
By controlling the amplitude and phase of the feeding weight
of each element, we can control the radiation pattern of the
antenna array. This allows the main lobe to be steered toward
the desired direction while placing nulls to the directions of
interfering signals.

A lot of beamforming applications can be found in the
literature [2]–[10]. A four-arm spiral antenna with a monolithic
integration of a modified Butler matrix beamforming network
is implemented in [2] for operation from 50 to 75 GHz. A min-
imum variance beamforming method with linear constraints
is presented in [3] to improve the calibration efficiency of

0018-926X © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0003-1015-2537
https://orcid.org/0000-0002-4548-282X
https://orcid.org/0000-0001-5091-2567

8834 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 70, NO. 10, OCTOBER 2022

an array-fed reflector antenna. In [4], various beamforming
strategies are applied to a quad-mode antenna utilizing four
available excitation modes to maximize the gain, the signal-
to-noise ratio (SNR), and the polarization discrimination while
retaining minimum noise over the field of view. New digital
beamforming techniques aiming at improving the performance
of microwave radiometers used in ocean observation missions
are presented in [5]. A miniaturized reconfigurable antenna,
operating from 3.5 to 5.5 GHz, is proposed in [6] to perform
beamsteering, by properly controlling eight p-i-n diodes.

Furthermore, some studies demonstrate the ability of smaller
antennas to easily manipulate their radiation. This abil-
ity allows beamforming to be applied to smaller devices
[11]–[13]. An effective implementation in [11] shows that the
mutual coupling problem can be avoided in compact antennas
using spiral resonators. In [12], a compact antenna array oper-
ating in the 2.45 GHz band achieves reasonable gain values
and high directivity despite its small size. In [13], a novel
implementation using metamaterials significantly improves the
directive radiation of a dipole antenna.

So far, several deterministic algorithms have been used as
ABF techniques [14]–[21]. One of these is the null steer-
ing beamforming (NSB) technique, which produces feeding
weights to steer the main lobe and place nulls with high
accuracy. Despite their near-optimal performance, determin-
istic ABF algorithms suffer from a downgraded temporal
response, due to high-complexity calculations required for
the extraction of the feeding weights. Moreover, if such an
algorithm operates in an iterative manner, then its temporal
response becomes a major issue [22]–[24]. Therefore, the
future of wireless networks relies on the implementation of
ABF techniques that provide not only accuracy but also instant
response.

The fields of machine learning and deep learning have
made enormous leaps in the past two decades providing
solutions to problems in a wide range of scientific fields [25].
Neural networks (NNs) are known to be able to mimic high-
complexity functions by implementing simple calculations,
such as addition, multiplication, division, and some nonlinear
thresholding operations. Their fast temporal response makes
them not only attractive in the field of signal processing but
also a good alternative for DoA estimation and ABF (see
Fig. 1). In addition, their outputs depend exclusively on the
input values, so they do not rely on the temporal stability of
other antenna characteristics. Despite that the training process
of NNs is time-consuming, the great advantage of NNs as
beamformers lies in the fact that their training may be either
an offline process or a process that runs as a concurrent
thread during their actual operation, and therefore, the training
phase neither affects the performance nor delays the actual
NN operation. To avoid degradation either in performance
or in temporal response in a fast-changing environment, the
processing units of the NNs can be updated continuously,
based on new data, by applying training as a parallel thread
during the actual NN operation, as previously mentioned.

NNs have not yet demonstrated optimal accuracy when
it comes to main lobe and nulls placement. In this article,
we attempt to overcome this issue by using particular deep NN

Fig. 1. ABF implemented by using an NN.

structures and by training NNs using a large dataset produced
by very precise ABF techniques, such as the NSB algorithm.
To further improve the quality of the training samples, we have
filtered out samples of low accuracy and low SINR. More
details are mentioned in Section V.

This research focuses on the use of NNs as a low-complexity
beamforming technique and compares different structures of
deep NNs in terms of accuracy and temporal response while
proposing a new beamformer implementation based on deep
recurrent neural networks (RNNs), which are built using the
gated recurrent unit (GRU). The NNs presented here are
trained by using large datasets produced by an NSB algorithm,
which has properly been modified for realistic antenna arrays,
as presented in [18]. In Sections VI and VII, we demonstrate
the process behind the feedforward neural network (FFNN)
and RNN implementations, show the procedure of finding the
best architecture for each NN type, and finally train and test
each NN type. In Section VIII, we compare all the derived NN
models together with the NSB technique in terms of accuracy
and temporal response, to find the most promising NN model.
Section IX examines the performance of the chosen NN model
as a beamformer in comparison to the NSB technique for
various numbers of incoming signals. Finally, the conclusions
are presented in Section X.

II. PRIOR ART ON NN-BASED BEAMFORMING

Already, a lot of similar studies have been conducted on
the subject [14], [16], [17], [26]–[35], while the use of NNs
in beamforming and other applications of smart antennas is
constantly increasing [36]. Most of the NNs have been trained
using various ABF techniques, such as the minimum variance
distortionless response (MVDR) algorithm [16], [29], [35],
an invasive weed optimization (IWO) variant [28], and the
least mean square (LMS) method [37]. When compared
in [18], the MVDR and NSB techniques demonstrate similar
performance, with both having an excellent ability to place

MALLIORAS et al.: NOVEL REALISTIC APPROACH OF ADAPTIVE BEAMFORMING BASED ON DEEP NEURAL NETWORKS 8835

nulls extremely close to DoAs of respective SoAs. We have
chosen to use the NSB algorithm here because it requires only
the knowledge of angles of arrival (AoAs) of incoming signals,
while the MVDR technique additionally demands the autocor-
relation matrix of the signals induced at the inputs of the array
elements. Some researchers have just used the autocorrelation
matrix as input for their NNs [14], [17], [26], [31], thus
implementing a “blind beamforming” approach, where an NN
performs beamforming without being aware of the directions
of the signals. As explained in [27], the autocorrelation matrix
has a highly nonlinear relation with the element weights,
and thus, it makes training more difficult, so in this article,
we have preferred to directly use AoAs of incoming signals,
as in [26] and [28].

An interesting single neuron NN for a dipole antenna array
is presented in [37] portraying the simplest application of NNs
as beamformers, thus proving their efficiency and accuracy.
In [17], a three-layer radial basis function FFNN is used
to provide robustness against uncertainty in the signal AoA,
thus improving the SINR. Another shallow FFNN is utilized
in [31] to steer the radiation power toward the directions
of the desired users and suppress interfering sources. The
presented radiation patterns exhibit great main lobe accuracy
and sidelobe suppression, but without any information about
the accuracy of the interference directions. A convolutional
NN (CNN) approach with three types of hidden layers is also
studied in [33] to improve the SINR values at the beam-
former output and suppress both narrowband and wideband
interferences. Unfortunately, the model’s statistical accuracy
in finding the proper directions of the main lobe and the nulls
is not presented numerically for comparison. Some studies
focus solely on the main lobe steering without placing nulls
at the exact directions of interference signals [35] or by
simply nulling a wider area of the radiation pattern [30], [32].
In [28], an FFNN implementation is studied on low noise
level conditions in comparison to the IWO technique, thus
demonstrating the efficiency and capabilities of the NN as a
beamformer. A CNN-inspired model [29] shows better per-
formance than a conventional FFNN with a mean divergence
of the main lobe from the desired direction of less than
0.6◦. Applications of RNNs in the field of beamforming have
already shown improvements in the behavior of millimeter-
wave beamforming transmitters [34]. In [35], a long short-
term memory (LSTM) and a nonlinear autoregressive (NAR)
NN are implemented for signal prediction, thus showing the
great potential of recurrent networks as beamformers. In [30],
an RNN is used to steer the main lobe toward DoA of SoI
while suppressing the sidelobe level. This implementation
considers an antenna array composed of ideal isotropic ele-
ments, which are not realistic as previously explained. Also,
the beamformer’s accuracy is measured in terms of the main
lobe direction and sidelobe level, but not in terms of the nulls
directions.

Judging from all this research, the NN-based beamform-
ing is very promising and justifies further study. However,
previous NN implementations either focused exclusively on
the main lobe steering or created unsatisfactory main lobe
and nulls divergences from the respective desired directions.

Also, several NN implementations considered ideal antenna
arrays and not realistic ones. Of course, an important reason
for their inefficiencies was evidently the lack of training
samples. The present study does not directly make compar-
isons with the ones previously mentioned, except for the case
mentioned in [29] where divergences from the desired DoAs
were measured. The proposed model provides a satisfactory
answer to the real-world ABF problem by using a GRU-RNN
architecture that offers great accuracy both in the main lobe
direction and in the placement of nulls. For this purpose,
a sufficient training set was produced by a realistic antenna
array ABF algorithm, which gave our NNs the diversity and
abundance of data they needed to reach higher levels of
accuracy.

III. ABF FUNDAMENTALS

Let us consider an array composed of M elements, which
are located in space at positions defined by respective position
vectors �rm , m = 1, . . . , M . The array receives N + 1 mono-
chromatic signals (where N < M) at wavelength λ. Each one
of the incoming signals sn(k) (where k is the time sample
and n = 0, 1, . . . , N) reaches the antenna array from a DoA
defined by a respective direction unit vector ûn . We identify
s0(k) as SoI and the rest of sn(k), n = 1, . . . , N, as SoAs.
It is considered that all DoAs have been derived by a DoA
estimation algorithm, and then, they are used as information to
feed the beamformer. Thus, the beamformer is responsible for
producing M proper complex weights wm(m = 1, . . . , M),
which are consequently multiplied by signals xm(k)(m =
1, . . . , M) induced at the inputs of the respective array ele-
ments to produce the array output y(k).

As shown in [29], all input signals xm(k)(m = 1, . . . , M)
can be represented as a column vector x(k), which can be
expressed by the following equation:

x(k) = a0s0(k) + Ai si (k) + n(k) (1)

where

x(k) = [x1(k) x2(k) · · · xM(k)]T (2)

si(k) = [s1(k) s2(k) · · · sN (k)]T (3)

Ai = [a1 a2 · · · aN] (4)

and

an =

⎡
⎢⎢⎢⎣

ex p(jβ�r1 · ûn)
ex p(jβ�r2 · ûn)

...
ex p(jβ�rM · ûn)

⎤
⎥⎥⎥⎦, n = 0, 1, . . . , N (5)

are, respectively, the input vector, the SoA vector, the array
steering matrix of SoAs, and the array steering vector that
corresponds to DoA defined by unit vector ûn , while β is
the free-space wavenumber (β = 2π/λ) and superscript T
indicates the transpose operation. It has to be noted that the
form of an given by (5) applies to the case of an ideal array,
i.e., an array composed of M isotropic point sources, with
no coupling between them. In the case of a realistic array,
where the array elements are not omnidirectional and there is
coupling between them, a modified form of an replaces (5),

8836 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 70, NO. 10, OCTOBER 2022

as shown in the following. Regardless of the type of the array
(ideal or realistic), the output is calculated as

y(k) =
M∑

m=1

w∗
m xm(k). (6)

Equation (6) can also be written in the form

y(k) = wH x(k) (7)

where

w = [w1 w2 · · ·wM]T (8)

is the excitation weight vector, while superscript H indicates
the Hermitian transpose operation. The autocorrelation matrix
of the input signals, which was mentioned in Section II,
is calculated as

Rxx = E
[
x(k)xH (k)

]
(9)

where E[.] denotes the mean value. This definition also applies
to any type of array, either ideal or realistic.

IV. NULL STEERING BEAMFORMING

A. Theoretical Model Applied to Ideal Antenna Arrays

The theoretical NSB algorithm considers an ideal array,
i.e., an array composed of M isotropic point sources, with no
coupling between them. The array is considered here to be a
linear one, so the sources are considered to be placed along the
z-axis. As also presented in [18], DoAs of incoming signals
sn(n = 0, 1, . . . , N) can be identified by respective AoAs
θn(n = 0, 1, . . . , N), which are defined as angles between
DoAs of these signals and the z-axis (i.e., polar angles).
If Im, m = 1, . . . , M , are the currents used to feed the sources
(array elements), then the radiation pattern is expressed by the
array factor as follows:

AF(θ) =
M∑

m=1

Ime jβzmcosθ (10)

where zm, m = 1, . . . , M , are the positions of the point sources
along the z-axis. When the array is in reception mode, the
currents Im become multipliers of the input signals xm(m =
1, . . . , M). We may consider that Im = w∗

m , where wm is a
weight that expresses the conjugate value of the mth current.
Then, we can write (10) as

AF(θ) =
M∑

m=1

w∗
me jβzm cosθ = wH a(θ) (11)

where

a(θ) = [
e jβz1cosθe jβz2cosθ · · · e jβzM cosθ

]T
(12)

is the steering vector for any observation angle θ . The NSB
algorithm is very accurate when it comes to null placement
toward the interference directions, thus achieving near-zero
angular divergences from these directions as shown in [18].
In addition, it serves as a precise beamsteering technique
presenting negligible errors on the positioning of the main
lobe. To achieve all the above, the NSB algorithm calculates

Fig. 2. Linear microstrip antenna array geometry.

the weights of the antenna elements based on the following
expression:

wN SB = A
(
AH A

)−1
v1 (13)

where

A = [a(θ0) a(θ1) · · · a(θN)] (14)

and

v1 = [1 0 · · · 0]T (15)

are, respectively, the array steering matrix of all the incoming
signals (M × (N + 1) matrix) and a unit vector of size N + 1.

B. Modified Model Applied to Realistic Antenna Arrays

In practice, the NSB algorithm is applied to realistic antenna
arrays, i.e., arrays composed of M nonisotropic elements, with
mutual coupling between them. Therefore, some modifications
must be applied to this algorithm, to be able to calculate the
proper feeding weights even in the case of a realistic array.
The main change concerns the total radiation pattern, which
now cannot be expressed just by the array factor.

The array considered in this article has the same geometry
with the one studied in [18]. It is a linear array composed
of 16 microstrip rectangular patches (M = 16) designed
according to the inset-feed method to easily achieve impedance
matching. The patches are developed on a Rogers RT/duroid
5880 substrate and are uniformly spaced at fixed distance
d = λ/2. The CST software package is used to model and
optimize the array geometry under constraint that S-parameters
Smm ≤ −20 dB, m = 1, . . . , 16, at the input points of the
microstrip elements. Given that the input of every element is
located in the middle of the element side, which is parallel
to the z-axis (see Fig. 2), the total electric theta-component
Eθ produced on the xz plane by the whole array is at least
20 dB less than the value of the total electric phi-component
Eϕ on the same plane (Eθ � Eϕ) for values of θ within the
angular sector [30◦, 150◦], as explained in [18]. Thus, the total
radiation pattern within this sector on the xz plane can be
represented only by Eϕ . In addition, Eϕ can be expressed in
the form of a linear combination as follows:

Eϕ(θ) =
M∑

m=1

Imeϕm(θ) (16)

MALLIORAS et al.: NOVEL REALISTIC APPROACH OF ADAPTIVE BEAMFORMING BASED ON DEEP NEURAL NETWORKS 8837

where eϕm(θ) is the electric phi-component of the whole array
when only the mth element is fed by a unitary current source,
while the rest of the elements are not fed by any source
(parasitic elements). These components are mentioned in the
literature as the “embedded element patterns” of the array, and
they can be extracted by performing a full-wave analysis on
the array using the CST.

By considering again that Im = w∗
m , the above expression

can be written as follows:

Eϕ(θ) =
M∑

m=1

w∗
meϕm(θ) = wH eϕ(θ) (17)

where

eϕ(θ) = [
eϕ1(θ) eϕ2(θ) · · · eϕM(θ)

]T
(18)

is a vector containing all the electric phi-components that
correspond to observation angle θ . Equations (11) and (17)
express the radiation patterns produced, respectively, by an
ideal and a realistic antenna array. It is obvious that (11) is
converted to (17) by replacing a(θ) with eϕ(θ). Since a(θ)
represents the steering vector of an ideal array (i.e., the theo-
retical steering vector), we can consider that eϕ(θ) represents
the steering vector of a realistic array, and therefore, it can
be called the “realistic steering vector.” Furthermore, if eϕ(θ)
replaces a(θ) in any equation that applies to an ideal array,
then the derived equation will apply to the respective realistic
array. By applying such a replacement to (14), we derive the
form of the realistic steering matrix of all the incoming signals
as follows:

Eϕ = [
eϕ(θ0) eϕ(θ1) · · · eϕ(θN)

]
. (19)

Finally, by replacing A with Eϕ in (13), we derive the weight
calculation formula of the NSB algorithm that applies to
realistic arrays:

wN SB = Eϕ

(
EH

ϕ Eϕ

)−1
v1. (20)

V. TRAINING DATASET PRODUCTION—
PROBLEM CONDITIONS

Using (20), we are able to produce any dataset for NN
training. Since the array of this study consists of 16 elements
and each element is excited with a complex feeding weight,
we need 32 weight numbers (i.e., 16 real and 16 imaginary
parts of the complex feeding weights) to produce the radiation
pattern of the array. To produce a proper dataset, some
restrictions concerning the desired AoAs and their divergences
from the respective actual AoAs are applied. First, all the
desired AoAs must lie within the angular sector [30◦, 150◦]
in order to be able to express the total radiation pattern only
through Eϕ (Eθ � Eϕ), as explained in Section IV. Second,
all the desired AoAs have a minimum distance �θ , which
is defined here equal to 6◦. The value of �θ determines the
difficulty of the beamforming problem because it is actually
the minimum distance between two adjacent nulls or between
the main lobe peak and its nearest null. The lower the value of
�θ , the more difficult the problem because the beamformer is

forced to produce a radiation pattern where a null is generated
at a small angular distance from another null or from the
main lobe peak. Third, the SNR is defined to be equal to
0 dB, thus considering high noise conditions. Finally, we set
some constraints on the accuracy of the NSB results that will
be included in the training dataset. In order to make an NN
produce highly accurate results, the data we use for its training
must be highly accurate as well. Thus, we only keep cases
where the weights derived by the NSB algorithm produce
a radiation pattern that has main lobe divergence less than
0.5◦ from AoA of SoI and null placement divergences less
than 0.1◦ from AoAs of SoAs, while we discard the rest.
Correspondingly, we expect the outputs of our final NN model
to perform similarly, with a small margin of error, in order to
consider the NN implementation successful.

Every record of the dataset consists of the following:

1) N + 1 inputs, which are the polar angles θn(n =
0, 1, . . . , N), with the first one (θ0) representing AoA
of SoI and the rest of the angles representing AoAs of
SoAs.

2) 2M outputs, which are 32 weight numbers extracted by
the NSB algorithm, i.e., 16 real and 16 imaginary parts
of the complex weights used to feed the 16-element
array.

In order to perform more effective NN training, a sufficient
number of records are produced. In particular, 1.1 × 104

records are used in the process of searching for the best model
architecture, while 5 × 106 records are used for the training of
the final model. The time needed for the production of these
datasets is 42 s and 5.3 h (using an Intel Core i7-7700HQ
@2.80 GHz and 8 GB of DDR4 RAM). In this way, we ensure
that we will not face overfitting issues (i.e., situations where
the training error is much lower than test error) and create a
well-generalized model.

VI. FEEDFORWARD NN APPROACH

In the case of FFNNs, the process of input loading and
output production is simple and easy to comprehend. AoAs
are loaded at the input layer of the FFNN in parallel and are
consequently processed by the neurons of the hidden layers.
The NN produces 32 output values, which represent the real
and imaginary parts of the complex feeding weights, as shown
in Fig. 3.

In order to find out which architecture is the best for this
type of NN, we apply grid search with k-fold cross validation
to figure out the best combination regarding the number of
hidden layers and their respective sizes. Later on, another
grid search is applied to figure out the best hyperparameter
tuning concerning the batch size and the learning rate. The
variations tested below refer to ABF for three incoming
signals, i.e., one SoI and two SoAs, as shown in Fig. 3. If L
is the number of hidden layers, then the first L – 1 layers
will be using the hyperbolic tangent (tanh) as an activation
function, whereas the last layer (Lth) will be using the sigmoid
activation function. To calculate the cost for each NN weight
update, we use a quadratic cost function variant, also known as

8838 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 70, NO. 10, OCTOBER 2022

Fig. 3. L-layer FFNN implementation.

root-mean-square error (RMSE), which is calculated as
follows:

RMSE =
√√√√ 1

p

p∑
i=1

(
fi − f̂i

)2
(21)

where p is the number of neurons on the output layer of the
NN (p = 32), f̂i is the actual value of the i th output neuron,
and fi is the respective desired value of this neuron.

We also choose Adam as the optimization method and
normalize both inputs and outputs of the dataset in the range
[0, 1] to improve the optimization algorithm’s performance and
the overall training process [38]. These choices are proved to
be more efficient than other alternatives after a lot of different
trials. During the search process, we choose a slow learning
rate, e.g., 0.001, and a batch size equal to 256, which both
remain the same for all our trials. Due to high complexity
and nonlinearity of the ABF problem, the case of one hidden
layer is rejected. Instead, we test FFNN architectures with two,
three, and four hidden layers. The sizes of these layers are
purposely chosen to be multiples of the output size (32). Due
to the size difference between input and output, it is considered
good practice to select hidden layers much larger in size than
the output layer, to emulate the computational complexity
required to transform 3 input angles into 32 output numbers.
Thus, we choose hidden layer sizes between 128 and 1024.

For this grid search, we use 104 records as a training set and
103 records as a test set. We apply a fivefold cross validation
to ensure the validity and accuracy of our results and train
each model for 500 epochs. Using this grid search, we intend
to find which variation provides the lowest training and test
RMSEs to choose as most promising. Each FFNN architecture
is described by using the notation: [Input Layer Size, 1st
Hidden Layer Size, 2nd Hidden Layer Size, . . . , Lth Hidden
Layer Size, Output Layer Size].

The results are given in Tables I–III. By comparing these
three tables, we notice a test RMSE drop when we move from
a two-layer FFNN to a four-layer FFNN. This is expected as
an increase of an NN’s depth increases its ability to model
functions of high complexity [39]. Despite the increasing

TABLE I

COMPARISON OF FFNNS WITH TWO HIDDEN
LAYERS (FIVEFOLD CROSS VALIDATION)

TABLE II

COMPARISON OF FFNNS WITH THREE HIDDEN

LAYERS (FIVEFOLD CROSS VALIDATION)

TABLE III

COMPARISON OF FFNNS WITH FOUR HIDDEN
LAYERS (FIVEFOLD CROSS VALIDATION)

TABLE IV

BATCH SIZE COMPARISON OF FFNNS FOR VARIOUS LEARNING

RATES (FIVEFOLD CROSS VALIDATION)

overfitting risk, NN models that use layers of larger size tend to
achieve lower errors. This is the answer to the question why we
mainly focused on using larger layer sizes when testing a four-
layer FFNN. We also observe that, while layers with size equal
to 512 contribute to the models’ performances, layers with size
equal to 1024 simply increase the risk of overfitting. The best
architecture is the one that provides the lowest training and
test RMSEs and is highlighted in bold.

Next, we look for the best hyperparameter combination by
comparing different batch sizes and different learning rates.
From Table IV, it seems that the best initial values of the
batch size and the learning rate are 256 and 0.001, respectively.

MALLIORAS et al.: NOVEL REALISTIC APPROACH OF ADAPTIVE BEAMFORMING BASED ON DEEP NEURAL NETWORKS 8839

Fig. 4. Learning curves of the FFNN.

TABLE V

FFNN TRAINING AND TEST RESULTS

TABLE VI

COMPARISON BETWEEN NSB AND FFNN

This table also shows that testing for values of learning
rate greater than 0.005 is redundant as the results become
increasingly worse.

After we have found the best settings for FFNNs applied
to the ABF problem, we proceed to train and test the final
model using the big dataset (5 × 106 records). The major part
of this set, i.e., 4.9 × 106 records, is used for training, and
the remainder, i.e., 105 records, is used for testing. During
training, we use the Pytorch function ReduceLRonPlateau,
which reduces the current learning rate by a factor of 0.8,
if the training RMSE stops decreasing or it decreases very
slowly. This learning rate regulation increases the training
performance by a factor between 2 and 10 because it helps the
NN training process to escape sharp local minima [40]. The
results are presented in Fig. 4 and Table V. The training curve
of Fig. 4 suggests that the training presents no overfitting. The
sudden RMSE drops represent the times where ReduceLRon-
Plateau decided to decrease the learning rate, and it is evident
that this reduction has a positive impact on the training.

Next, the FFNN is tested in terms of accuracy in the
produced radiation patterns. The test is applied on 105 triads
of AoAs (every triad corresponds to one SoI and two SoAs),
on which the FFNN has no prior “experience.” A statistical
analysis of the results derived from this test is given in

Fig. 5. Radiation patterns produced by NSB and FFNN for one SoI received
at 100◦ and two SoAs received at respective AoAs equal to 60◦ and 140◦ .

Table VI. It seems that the FFNN implementation is very
good regarding the main lobe steering because the mean value
of the main lobe divergence derived by the FFNN satisfies
the respective requirement (i.e., main lobe divergence < 0.5◦
as defined in Section V), and it is also very close to the
respective divergence derived by the NSB algorithm. However,
the mean value of the nulls divergence does not satisfy the
respective requirement defined in Section V (i.e., nulls diver-
gence < 0.1◦), which means that the FFNN faces difficulty in
placing nulls at the desired directions. This inaccuracy is also
observed in the reduced mean value of the SINR by 0.67 dB
compared to the respective SINR value achieved by the NSB
algorithm.

Finally, an example of radiation patterns produced by the
NSB algorithm and the FFNN for one SoI and two SoAs is
given in Fig. 5. Although the radiation patterns seem to be
almost identical, the above statistical analysis shows that the
FFNN is slightly inferior to the NSB algorithm in terms of
nulls placement accuracy.

VII. RNN APPROACH

RNNs belong to another type of NNs, which are mostly
used for processing sequential data. The applications of RNNs
vary from speech recognition and translation to sentiment
classification and music generation. They diverge from FFNNs
due to their ability to exploit their “memory” to influence their
outputs. Information from prior inputs can affect the outcome
of the current input since data enter the RNN in sequence.
RNNs can be further distinguished into categories depending
on the way they produce output data. Different applications
require different types of RNNs.

For the purpose of ABF, we choose the “many-to-one”
approach, where AoAs enter the RNN one after another, and
only the final output of the RNN is kept. When working on
sentiment classification (another many-to-one approach), the
input of the RNN, at each time step, is a new word not
directly linked to or necessarily related to the words that
came at the previous steps. However, the model is able to

8840 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 70, NO. 10, OCTOBER 2022

Fig. 6. L-layer LSTM-RNN.

output a new sentiment each time we add a different word
to the sentence. The new information influences the general
outcome of the RNN, but at the same time, all previous inputs
are taken into consideration. Although these inputs do not
relate to each other, the ability of the RNN to “remember”
and “combine” all the inputs is what dictates the sentiment
of a sentence. We have chosen this structure of NNs not
because of their potential to find a relationship between the
data we provide as input to the NN but because of their
ability to adapt their output depending on the new incoming
information. During the prediction process of the RNN as a
beamformer, the hidden states of the units travel along the
different time steps. In this way, the RNN-beamformer adjusts
the excitation weights progressively, in order to produce the
most suitable radiation pattern for each new situation. The
“progressive adaptation” of weights can be well understood in
Section VIII by comparing the radiation patterns produced by
the beamformer in consecutive steps.

The process followed here can also be explained by looking
at the RNN structure shown in Fig. 6. For each time step
(t = 1, 2, 3), the current input xt is processed by the RNN’s
processing units to influence their hidden states, which are
consequently passed on to the next time step’s units to use.
In this way, each input affects the outcome of the RNN. Once
all inputs are processed and the output o3 has been produced,
the next input values enter the input layer to continue the
training process. The basic idea is to have the weight vector
initially configured by taking into account only AoA of SoI
(input x1 of Fig. 6), and then, AoAs of SoAs (inputs x2 and
x3 of Fig. 6) enter the RNN to shape the final form of the
weight vector at the RNN’s output.

As in the case of the FFNN, input data are fed to the RNN
in batches, and the Adam optimization algorithm is used to

TABLE VII

LSTM-RNN GRID SEARCH (FIVEFOLD CROSS VALIDATION)

update the hidden states, while the RMSE metric shown in
(21) is used as a cost function. Given that every hidden state,
and consequently the output of the RNN, will have a different
size than 32, an extra linear transformation layer is placed after
the output layer to ensure that the final outcome is a vector of
32 numbers (see Fig. 6).

Two RNN approaches based on different processing units,
i.e., LSTM and GRU, are tested. Once again, we perform grid
search in both approaches for the most efficient architecture
and also for hyperparameter tuning, to finally find out the
most promising models. During the search process, we choose
a slow learning rate, e.g., 0.001, and a batch size equal to
256, while a fivefold and later a threefold cross validation are
applied using, respectively, 104 records as a training set and
103 records as a test set. For the same reasons as in the FFNN
case, we choose hidden layer sizes between 64 and 1024 and
a number of hidden layers between 2 and 4.

In order to have a fair comparison, the preferred sizes and
training parameters of the LSTM and GRU implementations
must be similar.

A. Use of LSTM Units

LSTM units are known for their ability to overcome the
vanishing gradient problem of RNNs. These units employ two
vectors, i.e., a “hidden state” vector, which carries information
from immediately previous events, and a “cell state” vector,
which provides “long-term” memory capabilities as it can
carry information from past events (see Fig. 6). Using a variety
of gates, the LSTM units can choose which information is
valuable to keep and update their hidden states and which
can be tossed. The results of the grid search for two, three,
and four hidden layers are presented in Table VII. It seems
that the most promising architectures are those with four
hidden layers. The lowest RMSE is observed for hidden
layer sizes equal to 512 and 1024, with the latter achieving
better accuracy. However, since the RMSE improvement is
insignificant compared to the size increase from 512 to 1024,
we decided to choose an architecture with four hidden layers
and a hidden layer size equal to 512.

Next, we look for the best hyperparameter combination by
comparing different batch sizes and different learning rates, but
this time we check for learning rates between 0.001 and 0.005.
The results are shown in Table VIII. It seems that the best
performance is achieved when using low learning rates and low
batch sizes, but in such cases, the risk of overfitting increases.

MALLIORAS et al.: NOVEL REALISTIC APPROACH OF ADAPTIVE BEAMFORMING BASED ON DEEP NEURAL NETWORKS 8841

TABLE VIII

BATCH SIZE COMPARISON OF LSTM-RNNS FOR VARIOUS
LEARNING RATES (THREEFOLD CROSS VALIDATION)

TABLE IX

LSTM-RNN TRAINING AND TEST RESULTS

Fig. 7. Learning curves of the LSTM-RNN.

In addition, we need significantly more time for training,
which makes such choices a hard compromise. By considering
other alternatives that provide good performance and are less
time consuming, we finally decided to choose a learning rate
equal to 0.001 and a batch size equal to 256 as the best
compromise between time consumption, training performance,
and generalization ability.

After we have found the best settings for the LSTM-RNN,
we proceed to train and test the final model using the big
dataset (5 × 106 records). The major part of this set, i.e.,
4.9 × 106 records, is used for training, and the remainder,
i.e., 105 records, is used for testing. In comparison to the
FFNN, training time is significantly increased, as shown in
Table IX. The learning curves shown in Fig. 7 indicate that
the training presents no overfitting, while the sudden RMSE
drops are again due to a decrease in the learning rate caused
by the ReduceLRonPlateau function. At the end of the training
process after 180 epochs, the test RMSE has significantly been

TABLE X

COMPARISON BETWEEN NSB AND LSTM-RNN

Fig. 8. Radiation patterns produced by NSB and LSTM-RNN for one
SoI received at 100◦ and two SoAs received at respective AoAs equal to
60◦ and 140◦.

reduced, as shown in Fig. 7 and Table IX, thus proving the
superiority of the RNNs over the FFNNs in ABF. It should
be noted that the training process could continue for more
than 180 epochs, but since the learning rate has already been
drastically decreased and the training time is already very high,
a further reduction in RMSE is considered unworthy.

Next, the LSTM-RNN is tested in terms of accuracy in the
produced radiation patterns. The test is applied on 105 triads
of AoAs (every triad corresponds to one SoI and two SoAs),
on which the LSTM-RNN has no prior “experience.” A sta-
tistical analysis of the results derived from this test is given
in Table X. It seems that the LSTM-RNN implementation
provides high accuracy regarding both the main lobe steering
and the nulls placement. In particular, the mean value of the
main lobe divergence derived by the LSTM-RNN satisfies the
respective requirement (i.e., main lobe divergence < 0.5◦ as
defined in Section V), and it is also very close to the respective
divergence derived by the NSB algorithm. In addition, the
mean value of the nulls divergence is very low and satisfies
the respective requirement defined in Section V (i.e., nulls
divergence < 0.1◦). The accuracy provided by the LSTM-
RNN is also verified by the mean value of the SINR, which
is almost identical to the respective SINR value achieved by
the NSB algorithm.

Finally, an example of radiation patterns produced by the
NSB algorithm and the LSTM-RNN for one SoI and two SoAs
is given in Fig. 8. The radiation patterns seem to be almost
identical, and they simply verify the above statistical analysis
given in Table X.

8842 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 70, NO. 10, OCTOBER 2022

Fig. 9. L-layer GRU-RNN.

TABLE XI

GRU-RNN GRID SEARCH (FIVEFOLD CROSS VALIDATION)

B. Use of GRUs

GRUs are known to be a “lighter” version of LSTM units
because they use fewer gates and only a hidden state vector,
as shown in Fig. 9. Their simpler architecture enables easier
training and faster response than the LSTM units. Some studies
have shown that this faster response does not affect their
performance, while in some cases, they are able to outperform
the LSTM units [41].

Due to their similar architecture, the same types of grid
search are applied to find the most efficient GRU-RNN model.
As shown in Table XI, the most promising architectures are
those with four hidden layers and hidden layer sizes equal to
512 and 1024. We choose a size equal to 512 for the same
reason as in the case of LSTM units.

Then, we look for the best hyperparameter combination by
comparing different batch sizes and different learning rates.
The results are shown in Table XII. Once again, as in the case
of LSTM-RNNs, we avoid choosing low learning rates and
low batch sizes to stay away from the same overfitting and
increased training time problems. Therefore, we have chosen
a learning rate equal to 0.001 and a batch size equal to 256.

TABLE XII

BATCH SIZE COMPARISON OF GRU-RNNS FOR VARIOUS
LEARNING RATES (THREEFOLD CROSS VALIDATION)

Fig. 10. Learning curves of the GRU-RNN.

TABLE XIII

GRU-RNN TRAINING AND TEST RESULTS

After we have found the best settings for the GRU-RNN,
we proceed to train and test the final model using the big
dataset (5 × 106 records). The major part of this set, i.e.,
4.9 × 106 records, is used for training, and the remainder,
i.e., 105 records, is used for testing. The results are shown in
Fig. 10 and Table XIII. First of all, it can be observed that
the training and test RMSEs achieved by the GRU-RNN are
approximately the same as those achieved by the LSTM-RNN.
The main difference is that the training of the GRU-RNN takes
much less time than that of the LSTM-RNN, proving that
the GRUs are as efficient as the LSTM units but with lower
complexity, thus resulting in lower training time.

Next, the GRU-RNN is tested in terms of accuracy in the
produced radiation patterns. The test is applied on 105 tri-
ads of AoAs (every triad corresponds to one SoI and two
SoAs), on which the GRU-RNN has no prior “experience.”
A statistical analysis of the results derived from this test is
given in Table XIV. It seems that the GRU-RNN provides high

MALLIORAS et al.: NOVEL REALISTIC APPROACH OF ADAPTIVE BEAMFORMING BASED ON DEEP NEURAL NETWORKS 8843

Fig. 11. Radiation patterns produced by NSB and GRU-RNN for one SoI
received at 100◦ and two SoAs received at respective AoAs equal to 60◦
and 140◦ .

TABLE XIV

COMPARISON BETWEEN NSB AND GRU-RNN

TABLE XV

COMPARISON BETWEEN ALL NN MODELS AND NSB

accuracy regarding both the main lobe steering and the nulls
placement. This accuracy is also verified by the mean value
of the SINR, which is almost identical to the respective SINR
value achieved by the NSB algorithm. In addition, the mean
values of the main lobe divergence and the nulls divergence
derived by the GRU-RNN satisfy the respective requirements
(i.e., main lobe divergence < 0.5◦ and nulls divergence < 0.1◦
as defined in Section V).

Finally, an example of radiation patterns produced by the
NSB algorithm and the GRU-RNN for one SoI and two SoAs
is given in Fig. 11. The radiation patterns seem to be identical,
and they simply verify the above statistical analysis given
in Table XIV.

VIII. COMPARISON BETWEEN NSB AND NN MODELS

All the previous results are presented in summary in
Table XV, to make it easier to compare and choose the
best NN model. Algorithm complexity is a key indicator

for demonstrating the computational advantage of the NN
approach over the NSB model. By considering the number
N of the incoming SoAs as the main complexity parameter,
we calculated the complexity of each algorithm for a single
input sample. The Eϕ components needed by the NSB algo-
rithm and the RNN parameters have already been imported
and thus are not involved in the weight calculation process.
Thus, the complexity of the NSB algorithm turns out to be
O(N3) + O(N2) + O(N) + O(1). On the other hand, the
complexity of the FFNN and both RNN models turns out to
be to O(N) + O(1).

The mathematical simplicity of all NNs compared to the
computationally expensive calculations performed by the NSB
algorithm is reflected in the lower mean response time of
all NN-based beamformers compared to that of the NSB
algorithm. The mean response time is the mean value of
the time required by each beamformer to extract the proper
feeding weights. The same triads of incoming AoAs are used
for all the beamformers.

The measurements were made in the Google Colabora-
tory environment, using an Intel Xeon CPU @2.30 GHz
with 12 GB of RAM (assigned by the Google Colaboratory
environment), and they prove that all NN models are much
faster than the NSB algorithm. The FFNN has the lowest
response time but the highest divergence in terms of nulls
placement. Therefore, the final choice has to be made between
the LSTM-RNN and the GRU-RNN. As beamformers, both
the LSTM-RNN and GRU-RNN models perform similarly
with very high accuracy and much lower response time than
that of the NSB algorithm. However, due to its significantly
shorter training time, the GRU-RNN model is selected as the
best possible solution.

The “progressive adaptation” of the excitation weights at the
output of the RNN model (discussed in the second paragraph
of Section VII) can be verified by observing the radiation
pattern produced by the RNN model at each time step. For the
sake of simplicity, we consider again the case of Fig. 11 with
one SoI received at 100◦ and two SoAs received at respective
AoAs equal to 60◦ and 140◦. This time, we store the model
output for every time step (i.e., for every one of AoAs 100◦,
60◦, or 140◦ entering the RNN input), and we pass every
output through the same linear transformation layer (shown
in Fig. 9) to derive the excitation weights for every time
step. Using these excitation weights, we produce respective
radiation patterns (shown in Figs. 12–14) for every time
step. The correct output is only derived at the end of the
third time step, i.e., when all three AoAs are considered
(see Fig. 14).

As we move from one time step to the next, the radiation
pattern improves and looks more like that of the NSB algo-
rithm. However, there is no correlation between a certain input
value and an improvement in the radiation pattern. If such
a correlation existed, the radiation pattern generated by the
output at the second time step (Fig. 13) should have placed a
null at 60◦ (AoA of the first SoA), thus verifying the intuition
that the output is “adapting” its value by placing respective

8844 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 70, NO. 10, OCTOBER 2022

Fig. 12. Radiation pattern generated from the output of the GRU-RNN at
the first time step.

Fig. 13. Radiation pattern generated from the output of the GRU-RNN at
the second time step.

Fig. 14. Radiation pattern generated from the output of the GRU-RNN at
the third time step.

nulls at AoAs of the new incoming SoAs. Nevertheless, this
does not happen.

The important thing to notice here is that all these out-
puts are “interpreted” and transformed into weight vectors of

TABLE XVI

NSB PERFORMANCE FOR VARIOUS NUMBERS OF SOAS

TABLE XVII

GRU-RNN PERFORMANCE FOR VARIOUS NUMBERS OF SOAS

Fig. 15. Radiation patterns produced by NSB and GRU-RNN for one SoI
received at 100◦ and three SoAs received at respective AoAs equal to 60◦,
80◦, and 140◦ .

size 32 as they pass through the linear transformation layer.
This layer has been trained to transform the 512 numbers of
the output at the last time step to a vector of size 32. There
is no way to know which parts of the 512 output numbers
correspond to the placement of the main lobe or a certain null,
and it is unknown whether these parts are located in the same
position for all the outputs of previous time steps. For these

MALLIORAS et al.: NOVEL REALISTIC APPROACH OF ADAPTIVE BEAMFORMING BASED ON DEEP NEURAL NETWORKS 8845

Fig. 16. Radiation patterns produced by NSB and GRU-RNN for one SoI
received at 100◦ and four SoAs received at respective AoAs equal to 60◦ ,
80◦, 120◦ , and 140◦ .

Fig. 17. Radiation patterns produced by NSB and GRU-RNN for one SoI
received at 100◦ and five SoAs received at respective AoAs equal to 40◦ , 60◦ ,
80◦, 120◦ , and 140◦ .

Fig. 18. Radiation patterns produced by NSB and GRU-RNN for one SoI
received at 100◦ and six SoAs received at respective AoAs equal to 40◦, 60◦ ,
80◦, 120◦ , 140◦ , and 150◦.

reasons, the radiation patterns of Figs. 12–14 only portray
the fact that the RNN output improves as the model receives
new information at each time step, thus verifying the initial
motivation for the use of RNNs, as described in Section VII.

Fig. 19. Radiation patterns produced by NSB and GRU-RNN for one SoI
received at 100◦ and seven SoAs received at respective AoAs equal to 30◦,
40◦, 60◦ , 80◦ , 120◦, 140◦ , and 150◦ .

Fig. 20. Radiation patterns produced by NSB and GRU-RNN for one SoI
received at 100◦ and eight SoAs received at respective AoAs equal to 30◦,
40◦, 60◦ , 80◦ , 110◦, 120◦ , 140◦ , and 150◦.

IX. EVALUATION OF THE GRU-RNN BEAMFORMER

In this section, we evaluate the performance of the GRU-
RNN beamformer in comparison with the NSB algorithm for
various numbers of SoAs. For this purpose, the NSB algorithm
has been employed to produce datasets for cases of 2–10 SoAs,
and then, we use these datasets to train the GRU-RNN. Next,
the GRU-RNN is tested in terms of accuracy in the produced
radiation patterns. The test is applied on 105 combinations
of AoAs (every combination corresponds to one SoI and N
SoAs, where N = 2, 3, . . . , 10), on which the GRU-RNN
has no prior “experience.” These combinations of AoAs are
also applied to the NSB algorithm. The statistical analyses of
the results derived by the NSB algorithm and the GRU-RNN
beamformer are, respectively, given in Tables XVI and XVII.

A simple comparison between Tables XVI and XVII proves
that the GRU-RNN beamformer is capable of providing high
accuracy even when increasing the number of SoAs. This
is also verified by the radiation patterns of Figs. 15–22.

8846 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 70, NO. 10, OCTOBER 2022

Fig. 21. Radiation patterns produced by NSB and GRU-RNN for one SoI
received at 100◦ and nine SoAs received at respective AoAs equal to 30◦ ,
40◦, 50◦ , 60◦, 80◦, 110◦ , 120◦ , 140◦ , and 150◦ .

Fig. 22. Radiation patterns produced by NSB and GRU-RNN for one SoI
received at 100◦ and ten SoAs received at respective AoAs equal to 30◦, 40◦ ,
50◦, 60◦ , 80◦, 110◦ , 120◦, 130◦ , 140◦, and 150◦ .

The patterns have been produced by the NSB algorithm and
the GRU-RNN beamformer for one SoI and various numbers
of SoAs.

X. CONCLUSION

The comparative results have shown that the GRU-RNN
architecture, with four hidden layers, is the most optimal
solution to the ABF problem and has a similar performance
compared to the LSTM-RNN architecture, but with less train-
ing time. The GRU-RNN model is capable of producing
radiation patterns with an accuracy similar to that of radiation
patterns produced by the NSB technique, thus meeting all
the requirements defined in an environment with high noise
conditions. To further demonstrate the capabilities of the
GRU-RNN model as a beamformer, scenarios with different
numbers of interference signals, from two to ten SoAs, have
been implemented. After its training in all these different
scenarios, the GRU-RNN model produces results with an
accuracy similar to that of the NSB technique.

The improvement of the training process with different con-
figurations, the exploitation of modified or even new optimiza-
tion techniques, and, generally, the investigation for a better
and more efficient way of training could be the next steps in
the current implementation of the GRU-RNN model, in order
to reduce the time cost of training. In this article, we aimed
exclusively at finding the NN model that meets the accuracy
criteria of the produced radiation patterns. The reduction of the
overall size of the model came second as a priority, although
when we had to decide on the size of the hidden layers
(i.e., 512 or 1024), we deliberately chose the computationally
cheaper solution in terms of training time. However, smaller in
size NN models could potentially achieve similar performance
with less training time and less response time. Therefore,
since the ABF is a real-time process performed in a real
environment, the investigation of the most efficient NN model
should aim not only at optimal performance but also at shorter
training time and shorter response time.

This research focuses on finding the most appropriate NN
type as an alternative ABF method. For this reason, it was
considered good practice to approach the ABF problem in its
simplest form. Of course, the simplest form of this problem
is the application of the beamformer to a linear (1-D) antenna
array, as was done in this article. Now that we are more
confident about the NN type for the problem in question,
we can extend this research to realistic 2-D antenna arrays in
the future. Since the proposed GRU-RNN model is capable
of accurately mapping the incoming AoAs to appropriate
excitation weights for 1-D arrays, the usability of this model
in 2-D arrays is very high.

Finally, the ABF is just one of the two processes performed
by a smart antenna to control the reception of incoming
signals. The integration of a DoA estimation process into
the current GRU-RNN model will significantly enhance the
operation of smart antennas in practice.

REFERENCES

[1] I. P. Gravas, Z. D. Zaharis, T. V. Yioultsis, P. I. Lazaridis, and
T. D. Xenos, “Adaptive beamforming with sidelobe suppression by
placing extra radiation pattern nulls,” IEEE Trans. Antennas Propag.,
vol. 67, no. 6, pp. 3853–3862, Jun. 2019.

[2] N. A. Sutton and D. S. Filipovic, “V-band monolithically integrated
four-arm spiral antenna and beamforming network,” in Proc. IEEE Int.
Symp. Antennas Propag., Jul. 2012, pp. 1–2.

[3] A. Young, M. V. Ivashina, R. Maaskant, O. A. Iupikov, and
D. B. Davidson, “Improving the calibration efficiency of an array
fed reflector antenna through constrained beamforming,” IEEE Trans.
Antennas Propag., vol. 61, no. 7, pp. 3538–3545, Jul. 2013.

[4] D. S. Prinsloo, M. V. Ivashina, R. Maaskant, and P. Meyer, “Beamform-
ing strategies for active multi-mode antennas: Maximum gain, signal-to-
noise ratio, and polarization discrimination,” presented at the Int. Conf.
Electromagn. Adv. Appl. (ICEAA), Palm Beach, Aruba, Aug. 2014.

[5] O. A. Iupikov, M. V. Ivashina, C. Cappellin, and N. Skou, “Digital-
beamforming array antenna technologies for future ocean-observing
satellite missions,” in Proc. IEEE Int. Symp. Antennas Propag.
(APSURSI), Jun. 2016, pp. 1377–1378.

[6] O. Manoochehri, D. Erricolo, A. Darvazehban, and F. Monticone,
“Design of compact beam-steering active slot antennas with a metasur-
face reflector,” in Proc. United States Nat. Committee URSI Nat. Radio
Sci. Meeting (USNC-URSI NRSM), Jan. 2019, pp. 1–2.

[7] P. Rocca, N. Anselmi, M. Salucci, G. Gottardi, L. Poli, and A. Massa,
“A novel analytic beam steering approach for clustered phased
array architectures,” in Proc. IEEE Int. Symp. Antennas Propag.
USNC/URSI Nat. Radio Sci. Meeting, San Diego, CA, USA, Jul. 2017,
pp. 2013–2014.

MALLIORAS et al.: NOVEL REALISTIC APPROACH OF ADAPTIVE BEAMFORMING BASED ON DEEP NEURAL NETWORKS 8847

[8] S. Zhou, F. Yang, S. Xu, and M. Li, “Beam nulling designs of reflectarray
antenna using alternating projection method,” in Proc. Cross Strait Radio
Sci. Wireless Technol. Conf. (CSRSWTC), Fuzhou, China, Dec. 2020,
pp. 1–3.

[9] C. Constantinides et al., “Leaky-wave antenna with beam steering
capability based on a meandered metallic waveguide,” in Proc. 15th
Eur. Conf. Antennas Propag. (EuCAP), Dusseldorf, Germany, Mar. 2021,
pp. 1–5.

[10] F. Vidal, H. Legay, G. Goussetis, and J.-P. Fraysse, “Joint precoding and
resource allocation strategies applied to a large direct radiating array for
GEO telecom satellite applications,” in Proc. 15th Eur. Conf. Antennas
Propag. (EuCAP), Dusseldorf, Germany, Mar. 2021, pp. 1–5.

[11] O. Isik and K. P. Esselle, “Backward wave microstrip lines with com-
plementary spiral resonators,” IEEE Trans. Antennas Propag., vol. 56,
no. 10, pp. 3173–3178, Oct. 2008.

[12] T. Kokkinos and A. P. Feresidis, “Electrically small superdirective
endfire arrays of metamaterial-inspired low-profile monopoles,” IEEE
Antennas Wireless Propag. Lett., vol. 11, pp. 568–571, 2012.

[13] T. Negishi, D. Erricolo, and P. L. E. Uslenghi, “Metamaterial spheroidal
cavity to enhance dipole radiation,” IEEE Trans. Antennas Propag.,
vol. 63, no. 6, pp. 2802–2807, Jun. 2015.

[14] A. H. E. Zooghby, C. G. Christodoulou, and M. Georgiopoulos, “Neural
network-based adaptive beamforming for one- and two-dimensional
antenna arrays,” IEEE Trans. Antennas Propag., vol. 46, no. 12,
pp. 1891–1893, Dec. 1998.

[15] M. Abualhayja’a and M. Hussein, “Comparative study of adaptive beam-
forming algorithms for smart antenna applications,” in Proc. Int. Conf.
Commun., Signal Process., Appl. (ICCSPA), Sharjah, UAE, Mar. 2021,
pp. 1–5.

[16] Z. D. Zaharis, K. A. Gotsis, and J. N. Sahalos, “Comparative study
of neural network training applied to adaptive beamforming of antenna
arrays,” Progr. Electromagn. Res., vol. 126, pp. 269–283, Mar. 2012.

[17] X. Song, J. Wang, and X. Niu, “Robust adaptive beamforming algorithm
based on neural network,” in Proc. IEEE Int. Conf. Autom. Logistics,
Qingdao, China, Sep. 2008, pp. 1844–1849.

[18] Z. D. Zaharis, I. P. Gravas, P. I. Lazaridis, T. V. Yioultsis,
C. S. Antonopoulos, and T. D. Xenos, “An effective modification of
conventional beamforming methods suitable for realistic linear antenna
arrays,” IEEE Trans. Antennas Propag., vol. 68, no. 7, pp. 5269–5279,
Jul. 2020.

[19] P. Kasemir, N. Sutton, M. Radway, B. Jeong, T. Brown, and
D. S. Filipovic, “Wideband analog and digital beamforming,” presented
at the 9th Int. Conf. Telecommun. Mod. Satell., Cable, Broadcast.
Services, Nis, Serbia, Oct. 2009.

[20] G. Gottardi, L. Poli, P. Rocca, A. Montanari, A. Aprile, and A. Massa,
“Optimal monopulse beamforming for side-looking airborne radars,”
IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 1221–1224, 2017.

[21] G. Gottardi, N. Ebrahimi, P. Rocca, and A. Massa, “Optimal synthesis
of monopulse beamforming weights for airborne radars through convex
optimization,” presented at the Int. Appl. Comput. Electromagn. Soc.
Symp.-Italy (ACES), Firenze, Italy, Mar. 2017.

[22] L. Poli, P. Rocca, G. Oliveri, and A. Massa, “Harmonic beamforming in
time-modulated linear arrays,” IEEE Trans. Antennas Propag., vol. 59,
no. 7, pp. 2538–2545, Jul. 2011.

[23] N. Anselmi, P. Rocca, A. Massa, and E. Giaccari, “Synthesis of robust
beamforming weights in linear antenna arrays,” presented at the IEEE
Conf. Antenna Meas. Appl. (CAMA), Antibes, France, Nov. 2014.

[24] N. Anselmi, P. Rocca, M. Salucci, and A. Massa, “Optimisation of
excitation tolerances for robust beamforming in linear arrays,” IET
Microw., Antennas Propag., vol. 10, no. 2, pp. 208–214, Jan. 2016.

[25] T. Shan, X. Pan, M. Li, S. Xu, and F. Yang, “Coding programmable
metasurfaces based on deep learning techniques,” IEEE J. Emerg. Sel.
Topics Circuits Syst., vol. 10, no. 1, pp. 114–125, Mar. 2020.

[26] A. H. E. Zooghby, C. G. Christodoulou, and M. Georgiopoulos,
“A neural network-based smart antenna for multiple source tracking,”
IEEE Trans. Antennas Propag., vol. 48, no. 5, pp. 768–776, May 2000.

[27] M. Sarevska and A.-B. M. Salem, “Antenna array beamforming using
neural network,” in Proc. World Acad. Sci., Eng. Technol., vol. 24,
Jan. 2006, pp. 324–328.

[28] Z. D. Zaharis, C. Skeberis, T. D. Xenos, P. I. Lazaridis, and J. Cosmas,
“Design of a novel antenna array beamformer using neural networks
trained by modified adaptive dispersion invasive weed optimization
based data,” IEEE Trans. Broadcast., vol. 59, no. 3, pp. 455–460,
Sep. 2013.

[29] Z. D. Zaharis et al., “Implementation of antenna array beamform-
ing by using a novel neural network structure,” in Proc. Int. Conf.
Telecommun. Multimedia (TEMU), Heraklion, Greece, Jul. 2016,
pp. 1–5.

[30] H. Che, C. Li, X. He, and T. Huang, “A recurrent neural network
for adaptive beamforming and array correction,” Neural Netw., vol. 80,
pp. 110–117, Aug. 2016.

[31] A. H. Sallomi and S. Ahmed, “Multi-layer feed forward neural network
application in adaptive beamforming of smart antenna system,” in Proc.
Al-Sadeq Int. Conf. Multidisciplinary IT Commun. Sci. Appl. (AIC-
MITCSA), Baghdad, Iraq, May 2016, pp. 1–6.

[32] X. Xiao and Y. Lu, “Data-based model for wide nulling problem in
adaptive digital beamforming antenna array,” IEEE Antennas Wireless
Propag. Lett., vol. 18, no. 11, pp. 2249–2253, Nov. 2019.

[33] P. Ramezanpour, M. J. Rezaei, and M. R. Mosavi, “Deep-learning-
based beamforming for rejecting interferences,” Signal Process., vol. 14,
pp. 467–473, Sep. 2020.

[34] Y. Yu, H. Yin, J. Zhai, and C. Yu, “Behavioral modeling of millimeter
wave beamforming transmitters with vector decomposition time delay
recurrent neural network,” in Proc. Int. Conf. Microw. Millim. Wave
Technol. (ICMMT), Shanghai, China, Sep. 2020, pp. 1–3.

[35] P. Bhadauria, R. Kumar, and S. Sharma, “Performance dependency of
LSTM and NAR beamformers with respect to sensor array properties in
V2I scenario,” 2021, arXiv:2102.08680.

[36] D. Erricolo et al., “Machine learning in electromagnetics: A review
and some perspectives for future research,” in Proc. Int. Conf.
Electromagn. Adv. Appl. (ICEAA), Granada, Spain, Sep. 2019,
pp. 1377–1380.

[37] K. S. Senthilkumar, K. Pirapaharan, P. R. P. Hoole, and H. R. H. Hoole,
“Single perceptron model for smart beam forming in array anten-
nas,” Int. J. Electr. Comput. Eng., vol. 6, no. 5, pp. 2300–2309,
Oct. 2016.

[38] J. Sola and J. Sevilla, “Importance of input data normalization for the
application of neural networks to complex industrial problems,” IEEE
Trans. Nucl. Sci., vol. 44, no. 3, pp. 1464–1468, Jun. 1997.

[39] M. Bianchini and F. Scarselli, “On the complexity of neural network
classifiers: A comparison between shallow and deep architectures,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 8, pp. 1553–1565,
Aug. 2014.

[40] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and
Y. Bengio, “Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization,” Adv. Neural Inf. Process. Syst.,
vol. 27, pp. 2933–2941, Jun. 2014.

[41] S. Yang, X. Yu, and Y. Zhou, “LSTM and GRU neural network perfor-
mance comparison study: Taking yelp review dataset as an example,”
in Proc. Int. Workshop Electron. Commun. Artif. Intell. (IWECAI),
Shanghai, China, Jun. 2020, pp. 98–101.

Ioannis Mallioras (Student Member, IEEE)
received the integrated master’s degree in electrical
and computer engineering from the Aristotle
University of Thessaloniki, Thessaloniki, Greece,
in 2021, where he is currently pursuing the Ph.D.
degree. The subject of his doctoral dissertation is
machine learning algorithms for network prediction.

Since 2021, he has been an early-stage Researcher
funded by Maggioli S.p.A. within the context of a
Horizon 2020 Marie Skłodowska-Curie Innovative
Training Networks Program entitled “Mobility and

Training for beyond 5G Ecosystems (MOTOR5G).” His research interests
include machine learning techniques, deep neural networks, beamforming
and massive MIMO techniques, network traffic prediction, and optimization
of network operations.

8848 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 70, NO. 10, OCTOBER 2022

Zaharias D. Zaharis (Senior Member, IEEE)
received the B.Sc. degree in physics, the M.Sc.
degree in electronics, the Ph.D. degree in antennas
and propagation modeling for mobile communica-
tions, and the Diploma degree in electrical and com-
puter engineering from the Aristotle University of
Thessaloniki, Thessaloniki, Greece, in 1987, 1994,
2000, and 2011, respectively.

From 2002 to 2013, he was with the Administra-
tion of the Telecommunications Network, Aristotle
University of Thessaloniki. Since 2013, he has been

with the School of Electrical and Computer Engineering, Aristotle University
of Thessaloniki. He has been involved in several international research
projects, such as EU Horizon 2020 MOTOR5G and RECOMBINE. He is
the author of 73 scientific journal articles, 55 international conference papers,
five book chapters, and one book. His current research interests include the
design and optimization of antennas and microwave circuits, signal processing
on smart antennas, development of evolutionary optimization algorithms, and
neural networks.

Dr. Zaharis is a member of the Technical Chamber of Greece and is currently
serving as an Associate Editor for IEEE ACCESS. Recently, he was elected
Chair of the Electron Devices/Microwave Theory and Techniques/Antennas
and Propagation Joint Chapter of the IEEE Greece Section.

Pavlos I. Lazaridis (Senior Member, IEEE)
received the Diploma degree in electrical engineer-
ing from the Aristotle University of Thessaloniki,
Thessaloniki, Greece, in 1990, the M.Sc. degree in
electronics from Université Pierre and Marie Curie
(Paris 6), Paris, France, in 1992, and the Ph.D.
degree from the École Nationale Supérieure des
Télécommunications (ENST), Paris and Université
Paris 6, Paris, in 1996.

From 1991 to 1996, he was involved in research at
France Télécom, Paris, and was teaching at ENST.

In 1997, he became the Head of the Antennas and Propagation Laboratory,
Télédiffusion de France/France Télécom Research Center (TDF–C2R Metz).
From 1998 to 2002, he was a Senior Examiner with the European Patent Office
(EPO), The Hague, The Netherlands. From 2002 to 2014, he was involved
in teaching and research with the ATEI of Thessaloniki, Thessaloniki, and
Brunel University, London, U.K. He is currently a Professor of electronics
and telecommunications with the University of Huddersfield, Huddersfield,
U.K. He has been involved in several international research projects, such as
EU Horizon 2020 projects MOTOR5G and RECOMBINE, and NATO-SfP
ORCA. He has published over 150 research articles and several national and
European patents.

Dr. Lazaridis is a member of the Institution of Engineering and Technology
(IET), a Senior Member of URSI, and a fellow of the Higher Education
Academy. He is currently serving as an Associate Editor for IEEE ACCESS.

Stelios Pantelopoulos received the Diploma degree
in electrical engineering from the University of
Patras, Patras, Greece, in 1990, and the M.Sc. degree
in robotics (D.E.A. de robotique) from Univer-
sité Pierre et Marie Curie–Paris VI, Paris, France,
in 1992.

From 1994 to 1997, he was with the Athens
Technology Center, Athens, Greece, first as a
Software Developer and later as a Researcher
and Analyst while participating in commercial
projects, and research and development projects.

From 1997 to 1999, he was with Intrasoft, Athens, as a Researcher and
Analyst. From 1999 to 2020, he was with SingularLogic, Athens, as the
Director of European projects. Since 2021, he has been the Director of the
Greece branch of the Italian company Maggioli S.p.A., Santarcangelo di
Romagna, Italy. The branch belongs to the International Development Unit
and acts as the Innovation Center of Maggioli Group participating in European
research and development projects while at the same time dealing with the
group’s commercial activities in Greece and southeastern Europe.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

