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Abstract— In a previous work, we derived optimum condi-1

tions for the design of finite-size 1-D unidirectional leaky-wave2

antennas (LWAs) in the general case. The bandwidth and the3

gain–bandwidth figure of merit are, however, structure-specific4

and have not been discussed yet. A practical case that is widely5

investigated in the literature is that of 1-D unidirectional LWAs6

based on partially reflecting surfaces (PRSs). In this work, we not7

only evaluate these features for this specific class of antennas, but8

we also derive design rules for optimizing the PRS impedance9

and cavity height to get maximum gain. Numerical results and10

full-wave simulations are finally proposed for a realistic example11

based on a metal strip-grating structure, to validate the theoret-12

ical findings.13

Index Terms— Bandwidth, gain, leaky-wave antennas, leaky14

waves, partially reflecting surfaces, radiation patterns.15

I. INTRODUCTION16

MANY modern antenna applications require low-cost17

solutions capable of providing high directivity with18

low fabrication complexity. In this context, leaky-wave anten-19

nas (LWAs) have so far represented a reference solution in20

the microwave frequency range [1], [2], and more recently in21

the optical [3] and terahertz (THz) regimes [4]. In particular,22

unidirectional 1-D LWAs provide a simple means to achieve23

a highly directive beam with a continuous beamscanning over24

frequency. These features are of great interest at microwaves25

for 5G applications where spatial frequency multiplexing [5] is26

required, and for optical and THz applications [3], [6], where27

the design of highly directive antennas with controlled beam28

radiation still represents a challenging task.29

In previous work [7], we derived conditions for minimizing30

the beamwidth or maximizing the gain of finite-size 1-D31

unidirectional LWAs. In order to evaluate the gain with a32

fully analytical procedure, a “correction function” has been33
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Fig. 1. Schematic representation of a PRS-based 1-D unidirectional LWA
radiating a conical beam at θ0 (θ being the elevation angle of observation).
The PRS is represented with a single scalar sheet impedance Zs.

defined, which allows for accurately estimating the gain from 34

the knowledge of the beamwidth. 35

In [7], the normalized phase β̂ = β/k0 and attenuation 36

α̂ = α/k0 constants (k0 = 2π/λ0 and λ0 being the free-space 37

wavenumber and wavelength, respectively) are varied freely; 38

thus, the optimization procedure applies, in principle, to any 39

1-D unidirectional LWA. However, for the general case dis- 40

cussed there, it was not possible to determine either the 41

bandwidth performance or the gain–bandwidth figure of 42

merit (FoM) as these features are structure-specific. 43

A practical example that we discuss here is that of 1-D 44

unidirectional LWAs based on a partially reflecting surface 45

(PRS) (see Fig. 1). Examples of such antennas include (but 46

are not limited to) substrate–superstrate LWAs [8], multi- 47

layered LWAs [9], and metasurface LWAs [4], as all these 48

types of antennas can be interpreted through the PRS concept 49

(e.g., [10]–[12] for a rigorous analysis). In practice, most 50

uniform and quasi-uniform LWAs [1] allow for a PRS inter- 51

pretation, thus making the results of this work applicable to a 52

broad extent. 53

Another relevant advantage of the PRS concept is the 54

existence of an approximate analytical expression for the 55

frequency dispersion of the leaky wavenumber which does 56

not depend on the TE/TM nature of the leaky wavenumber 57

nor on the inductive/capacitive character of the PRS (however, 58

the PRS has to be highly reflective for these relations to hold 59

true). As a result, it is possible to derive simple analytical 60

formulas for determining the bandwidth performance and the 61
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gain–bandwidth FoM. It is worthwhile to stress here that the62

bandwidth performance of a PRS-based 1-D unidirectional63

LWA considerably differs from that of PRS-based 1-D bidi-64

rectional LWAs or 2-D LWAs, which have been investigated65

in the literature with specific reference to broadside radiation66

[13]–[21]. This is definitely not the case for 1-D unidirectional67

LWAs that usually radiate far from broadside, and for which an68

accurate bandwidth analysis was so far lacking. Interestingly,69

we demonstrate here that the gain–bandwidth FoM decreases70

slightly with the antenna length and increases with the scan71

angle. This last result was not emphasized in previous investi-72

gations on 1-D bidirectional or 2-D LWAs [16], [21] for which73

the gain–bandwidth FoM is evaluated at broadside only, and74

thus is constant.75

Another typical feature of PRS-based structures is that β̂ and76

α̂ can no longer be varied freely, but are constrained to obey77

a particular relationship that depends on the PRS reflectivity.78

In this regard, we recall that leaky modes in PRS-based LWAs79

are often assumed to obey the hyperbolic relation β̂α̂ = C ,80

where C is a constant [13]. The first important result derived81

in this article is that this relation happens to be approximately82

true only for TM modes. For TE modes, the value of C83

considerably changes with frequency. Another important result84

of this article is the derivation of design formulas to properly85

set the cavity height and the PRS reactance in order to have86

a given β̂ and α̂ at the design frequency for both the TM87

and TE cases. Therefore, the optimum α̂ for any given β̂ and88

L provided in [7] translates into criteria to find the optimum89

PRS reactance and cavity height. Interestingly, it turns out that90

for each optimum set of β̂ and α̂ values, we have a fourfold91

choice: an inductive/capacitive PRS for a TE/TM leaky mode.92

All these findings are finally validated through numerical93

and full-wave simulations. We first consider a simplified, ideal94

model that matches well with the theory and then show that95

no relevant differences are obtained for a more realistic model96

that takes into account several practical aspects.97

The manuscript is thus organized as follows. Section II98

briefly reviews the main results obtained in [7] that are99

exploited here. In Section III, formulas for evaluating the band-100

width performance and the gain–bandwidth FoM are derived,101

whereas in Section IV, it is shown that there exist four possible102

ways to optimize the gain of a PRS-based 1-D unidirectional103

LWA depending on whether an inductive/capacitive PRS and104

a TE/TM mode are used. In Section IV, design criteria to105

maximize the gain in each of these cases are reported, whereas106

a full-wave validation is presented in Section V for a specific,107

yet practical case: a rectangular waveguide based on a metal108

strip grating (MSG). Concluding remarks are finally drawn in109

Section VI.110

II. FORMULAS FOR 1-D UNIDIRECTIONAL LWAS111

We report here the main formulas of [7] that apply to any112

1-D unidirectional LWA and that will prove to be useful113

to derive the optimum conditions for those based on PRSs.114

Namely: 1) the radiation pattern; 2) the half-power beamwidth;115

and 3) the gain. According to the discussion in [7, Sec. II],116

we limit our analysis to beams radiating not too close to117

endfire.118

TABLE I

FITTING COEFFICIENTS FOR THE CORRECTION FUNCTION CF

The normalized radiation pattern P(θ) is given by 119

P(θ) = sinh2 a + sin2 t(θ)

a2 + t(θ)2 (1) 120

where θ is the elevation angle measured from the vertical 121

z-axis and t (θ) = b − l sin θ , with l = k0 L/2, b = β̂l, and 122

a = α̂l are normalized variables. It is worthwhile to recall here 123

that a is intimately related to the radiation efficiency through 124

er = 1 − exp (−4a), and β̂ to the beam angle θ0 (defined as 125

the angle of maximum radiated power, P(θ0) = max[P(θ)]) 126

through the well-known relation β̂ = sin θ0; this relation has 127

been proved to remain exact even for truncated structures (as 128

shown in Fig. 1) [22]. 129

The double-sided beamwidth is given by 130

�h = arcsin
(
β̂ + th(a)/ l

) − arcsin
(
β̂ − th(a)/ l

)
(2) 131

where th(a) is the value of t at the (left) half-power angle and 132

is accurately expressed by the following formula [22]: 133

th(a) = t0[1 − tanh(u1a)] + a tanh(u2a) (3) 134

with t0 = 1.39156, u1 = 0.021, and u2 = 0.210. (Henceforth, 135

th(a) is referred to as th.) We also recall that (2) holds for 136

β̂ < 1 − th/ l, that is, for beams not too close to endfire [7]. 137

For scanned directive beams (2) is well approximated by 138

�h � 2 sec θ0th(a)/ l ∼ 2α̂ sec θ0 (4) 139

where the last expression is obtained asymptotically for 140

L → ∞, keeping α̂ fixed. Finally, the gain is given by 141

G = 4erCF sec θ0

�h
= 2erCF

th(a)/ l
(5) 142

where CF is a correction function that improves the 143

otherwise inaccurate directivity-beamwidth relation, viz., 144

D � 4 sec θ0/�h [7]. An accurate analytical expression for 145

CF has been obtained through numerical fitting in [7] and 146

is reported here for the sake of completeness as 147

CF = c0 + c1[sech(c2a) − 1] (6) 148

where ci for i = 0, 1, 2 are fitting functions of 149

L/λ0 and β̂ given by the interpolation scheme 150

ci = ci0 + (ci1 + ci2β̂)e−ci3 L/λ0 , where ci j for j = 0, . . . , 3 are 151

fitting parameters and are reported in Table I. The combination 152

of (3), (5), and (6) yields a compact formula for the gain as 153

a function of a, β̂, and L/λ0 as 154

G � k0 L
(
1 − e−4a

){c0 + c1[sech(c2a) − 1]}
t0[1 − tanh(0.021a)] + a tanh(0.21a)

(7) 155

where the dependence on β̂ and L/λ0 is implicit in the 156

definition of ci , i = 0, 1, 2. (Note that the factor k0 L was 157
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mistakenly missing in [7, eq. (17)].) As L → ∞, with α̂ fixed,158

(7) further simplifies, yielding the convenient formula [7]159

G∞ � 1.2/α̂. (8)160

We recall that, if material losses have to be accounted for, one161

should replace (7) with [7, eq. (25)]. As extensively discussed162

in [7], material losses will only lead to a slightly different value163

of the optimum attenuation constant (or leakage rate), and in164

turn to a different choice of the optimum design parameters.165

However, the procedure described in Section IV-B will remain166

the same. For this reason, in this work, we only discuss the167

lossless case; the reader can find in [7] the modifications168

needed for the lossy case.169

III. BANDWIDTH, GAIN, AND GAIN–BANDWIDTH170

FIGURE OF MERIT FOR PRS-BASED LWAS171

As briefly commented in Section I, results from [7], which172

we also have summarized in Section II, have general validity173

and can be applied to any 1-D unidirectional LWAs. How-174

ever, the bandwidth performance of a 1-D unidirectional LWA175

designed to maximize gain is structure-specific, as the defin-176

ition of bandwidth requires knowledge of the leaky complex177

wavenumber dispersion over frequency f . In Section III-A,178

we derive approximate analytical expressions for both the179

fractional bandwidth (FBW) and the gain–bandwidth FoM for180

PRS-based LWAs, whereas in Section III-B, we comment on181

the overall performance that one can expect from the wide182

class of PRS-based 1-D unidirectional LWAs.183

A. Analytical Formulas184

The reference structure consists of a PRS-based 1-D unidi-185

rectional LWA of length L fed at one end and terminated with186

an ideal absorber (see Fig. 1).187

In this regard, we recall that for LWAs based on a PRS, the188

optimum pair of β̂ and α̂ values determines the optimum cavity189

height and PRS to have maximum gain at a given angle. In par-190

ticular, for a highly reflective PRS, the cavity height mainly191

determines β̂, whereas the PRS properties mainly determine192

α̂. In general, the PRS may affect both β̂ and α̂, and the193

optimization procedure needs to account for this interdepen-194

dence. The entire design flow for optimizing PRS-based 1-D195

unidirectional LWAs will be discussed in detail in Section IV.196

Conversely, in Section III, we are interested in obtain-197

ing simple formulas for the FBW and the gain–bandwidth198

FoM. In this regard, the equivalent loss tangent introduced199

in [11]–[13] represents a simple, yet effective model to obtain200

an analytical dispersion equation of leaky modes propagat-201

ing in PRS-based LWAs (which, otherwise, would require202

the numerical solution of a transcendental equation [23]).203

Indeed, an LWA can be thought as a lossy parallel-plate204

waveguide (PPW) where an equivalent loss tangent tan δeq is205

conveniently defined to model all kinds of losses (including206

radiation losses) [11]–[13].207

In particular, for a lossy PPW of height h and dielectric208

filling εrc = εr(1 − j tan δ), we have209

k̂x =
√

εr
(
1 − j tan δeq

) − (π/k0h)2 (9)210

where a nonmagnetic material μr = 1 is tacitly assumed.211

In order to have the beam radiating at a given design 212

scan angle θ0d ≡ θ0( f = f0) at the design frequency f0, the 213

cavity height can be set, at a first approximation (more accu- 214

rate formulas are not needed here, but will be discussed in 215

Section IV), equal to [8], [24] 216

hppw = λ0

2
√

εr − sin2 θ0d

(10) 217

where the free-space wavelength λ0 is here fixed at the design 218

frequency f0. In addition, as can be inferred from Table II, 219

in almost all cases, α̂ is more than an order of magnitude 220

lower than β̂ = sin θ0 (as long as we consider beams far from 221

broadside); thus by squaring both sides of (9) [using h = hppw 222

as given by (10)] and taking the real part, we get 223

β̂ = sin θ0 �
√

εr − εr − sin2 θ0d

f̄ 2
(11) 224

where f̄ = f/ f0 is a normalized frequency. From (11), 225

an expression for f̄ as a function of θ0 is easily found as 226

f̄ (θ0) �
√

εr − sin2 θ0d

εr − sin2 θ0
. (12) 227

Equation (12) will turn out to be useful to find an expression 228

for the fractional bandwidth FBW as we will readily show. 229

Interestingly, an expression for the scan rate, expressed as 230

the derivative of the beam angle with respect to the normalized 231

frequency, can also be derived from (11) and reads 232

dθ0

d f̄
= εr − sin2 θ0d

sin θ0d cos θ0d
(13) 233

which for an air substrate simplifies to 234

dθ0

d f̄
= cot θ0d. (14) 235

Both (13) and (14) clearly reveal that as the beam angle 236

goes from broadside to endfire the scan rate decreases and 237

in turn the −3 dB gain FBW is expected to increase. Interest- 238

ingly, (13) and (14) also provide the angular range 
θ0 over 239

which the beam scans within its FBW through the rela- 240

tion 
θ0 = FBW cot θ0d in the air-filled case (a similar 241

formula is obtained from (13) for the dielectric-filled 242

case), according to the frequency-scanning behavior com- 243

mon to all LWAs. We recall that FBW is defined as 244

FBW = f̄ (θ0d + 
θh,l) − f̄ (θ0d − 
θh,r), where 
θh,l(
θh,r) 245

represent the left(right)-sided −3 dB beamwidth. From the 246

previous definition and (12), an analytic expression for FBW 247

is obtained as 248

FBW 249

�
√

εr − sin2 θ0d 250

×
⎡
⎣ 1√

εr − sin2
(
θ0d + 
θh,l

) − 1√
εr − sin2

(
θ0d − 
θh,r

)
⎤
⎦ 251

�
⎡
⎣

√
εr − β̂2

0d√
εr − (

β̂0d + th/ l
)2

−
√

εr − β̂2
0d√

εr − (
β̂0d − th/ l

)2

⎤
⎦ (15) 252
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TABLE II

OPTIMUM NORMALIZED ATTENUATION CONSTANT α̂opt , GAIN G , FBW, AND GAIN–BANDWIDTH FOM FOR AN OPTIMIZED AIR-FILLED PRS-BASED
1-D UNIDIRECTIONAL LWA FOR DIFFERENT DESIGN SCAN ANGLES θ0d AND ANTENNA LENGTHS L/λ0

where β̂0d = sin θ0d. In the last step, we used the fact that253

t = ±th is found at the lower and upper frequency edges,254

respectively, and also assumed that the beam has a negligible255

variation in shape as the beam scans with frequency over the256

bandwidth. (Note that the first term on the right-hand side257

of (15) might be singular. This singularity is related to the258

discontinuity angle discussed in [7] and thus care must be259

taken in using this formula for scan angles that approach260

endfire.) This expression (15) further simplifies for some261

particular cases of practical interest. Indeed, for directive,262

scanned, symmetric beams (i.e., 
θh,r = 
θh,l � θ0d), a first-263

order Taylor approximation allows for writing (15) as264

FBW � �h sin θ0d cos θ0d

εr − sin2 θ0d
� 2β̂0d(th/ l)

εr − β̂2
0d

(16)265

which, for the infinite case, L → ∞, simplifies to266

FBWinf � 2β̂0dα̂

εr − β̂2
0d

. (17)267

Moreover, for air-filled LWAs (i.e., εr = 1), a very simple268

expression is found from (16), which reads269

FBWair � �h tan θ0d. (18)270

As a result, the gain–bandwidth FoM, which is defined as271

FoM = G · FBW, is accurately obtained by multiplying (15)272

and (5). For directive 1-D unidirectional LWAs based on PRSs,273

an even simpler expression for FoM is found by combin-274

ing (16) and (5) to obtain275

FoM = 4erCF
sin θ0d

εr − sin2 θ0d
(19)276

which, in the air-filled case reduces to277

FoMair = 4erCF tan θ0d sec θ0d. (20)278

We recall that the previous expressions (16)–(20) do not hold279

for θ0d → 0◦. However, broadside radiation is rather impracti-280

cal for most of 1-D unidirectional LWAs (Dirac LWAs [6]281

represent a peculiar case), and thus this aspect is of little282

consequence here.283

A remark is also needed about the definition of bandwidth 284

employed here. Indeed, FBW is meant here as a fractional 285

pattern bandwidth. Nonetheless, the bandwidth performance 286

of an antenna is established as the minimum between the 287

impedance bandwidth and the pattern bandwidth. Usually, 288

the latter is narrower than the former for an LWA, and thus 289

the bandwidth of an LWA is mostly determined by its pattern 290

bandwidth. However, as revealed by the analysis reported in 291

Section III-B (see Table II), there exist operating conditions 292

for which the pattern bandwidth can even attain an octave. 293

Over such a large bandwidth, it could be difficult to achieve 294

a good impedance matching, and a more detailed analysis of 295

the feeding techniques of 1-D unidirectional LWAs would be 296

required. This aspect, although important, requires a case-by- 297

case analysis that goes beyond the scope of this work and is 298

thus not treated here. As a result, the bandwidth performance 299

reported in the following results is related only to the pattern 300

bandwidth. 301

B. Optimization of LWA Performance 302

In Table II, we have reported the values of G, FBW, and 303

FoM for different antenna lengths and design scan angles 304

under the conditions of optimum gain derived in [7]. The val- 305

ues of G are obtained numerically, whereas those of FBW and 306

FoM result from a straight implementation of (15) and (19), 307

respectively; we will soon comment on the expected accuracy 308

of these formulas. 309

The values of G reported in Table II are a consequence of 310

the optimization carried out in [7]. This result further confirms 311

that the gain of a 1-D unidirectional LWA increases almost 312

linearly with the antenna length and is almost independent of 313

the design scan angle [as expected from (5)]. 314

As concerns FBW and FoM, Table II shows that the FBW 315

decreases in the optimum design (optimized for maximum 316

gain) as the aperture length (and hence the maximum gain) 317

increases. The FoM approaches a limit as the aperture length 318

increases in the optimum design. This limit only depends on 319

the design scan angle and increases as the design scan angle 320

increases. 321
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Fig. 2. (a) FBW and (b) gain–bandwidth FoM as functions of the normalized attenuation constant α̂ for θ0d = 30◦ for different values of L/λ0 = 5, 10, 20, 50
(in black, blue, green, and red, respectively). In (a), FBW as calculated through (15) is compared with numerical results (in squares) from the evaluation of
the exact −3 dB points of the gain pattern. In (b), the FoM is calculated through the product of equations (5) and (15) and reported in solid lines. In (b),
colored circles identify the condition for maximum gain, which is apparently close to a local maximum for the FoM. In (c), numerical evaluations of G ,
FBW, and FoM versus α/k0 are reported on the same plot for θ0d = 30◦ and L = 10λ0.

If we regard the normalized attenuation constant α̂ to be a322

free variable and not constrained to optimize the gain, then323

Fig. 2(a)–(c) shows the variation of FBW, FoM, and G versus324

α̂ for various aperture lengths. We also note that both FBW and325

FoM increase with α̂ [see Fig. 2(a) and (b)], and this result can326

also be inferred from the formulas reported in Section III-A,327

for FBW and FoM. Indeed, as concerns the FBW, for electri-328

cally large apertures, we have th/ l → α̂, thus FBW in (16) is329

asymptotically proportional to α̂. On the other hand, the FoM,330

for a fixed beam angle, only depends on CF and er; the former331

mildly depends on α̂, while the latter increases with α̂.332

We should now comment on the accuracy of (15), which333

is confirmed by the numerical evaluations of FBW from334

the −3 dB gain pattern for L/λ0 = 5, 10, 20, 50 and335

α̂ = 0.01, 0.05, 0.1, 0.15, 0.2 [see the colored squares336

in 2(a)]. Numerical results are obtained by determining the337

−3 dB points from the evaluation of the gain [calculated338

through the numerical integration of (1)] over a suitable339

frequency range, over which we assume the leakage rate to340

be constant and the normalized phase constant to change341

according to the dispersion relation in (11). These assumptions342

will be demonstrated to agree well with full-wave simulations343

in Section V.344

As expected, the absolute error is negligible for lower values345

of α̂ and larger values of L/λ0, whereas it slightly increases346

for opposite conditions, where, however, absolute differences347

between the numerical values and those provided by (15)348

remain lower than approximately 1%, and the percent error349

is always lower than 10%. (Note that the percent error of the350

FoM is the same as the FBW, since the gain is evaluated351

numerically.)352

Similar results are found for different beam angles and353

more numerical and full-wave validations (not shown for354

brevity) have been performed for different operating condi-355

tions, confirming the consistency among all results. We can356

also confirm that the approximate expression in (18) agrees357

very well with that in (15) under the hypothesis of small358

beamwidth, that is, for small α̂, namely α̂ < 0.05. The error359

in (18) is larger for larger values of α̂, but it is still small360

for those values of α̂ that would be used to maximize the361

gain, viz., α̂opt . In this regard, we should comment that the362

numerical evaluation of the FBW performed here assumes 363

that the frequency dispersion of the normalized phase constant 364

(or, equivalently, the scan angle) is given by (11). In prac- 365

tice, the dispersion curve of a leaky mode propagating in 366

a PRS-based 1-D unidirectional LWA may differ from that 367

approximate equation, viz. (11), especially when the leak- 368

age rate is not small (namely for α̂ > 0.05). This aspect 369

requires specific attention and thus will be treated in detail 370

in Sections IV-A and V-A. 371

Incidentally, we note that the condition for maximum gain 372

is very close to a local maximum for the FoM. This is clearly 373

manifest in Fig. 2(c), where G, FBW, and FoM versus α̂ 374

are reported on a single plot for the representative case of 375

θ0d = 30◦ and L/λ0 = 10. The gain and the FBW have 376

opposite trends except for low values of α̂, where they both 377

increase. This behavior determines the almost constant charac- 378

ter of the FoM for intermediate values of α̂. For low values of 379

α̂, the FBW is rather flat and the FoM behavior is substantially 380

determined by G, thus showing a mild local maximum. For 381

high values of α̂, G decreases (this is consistent with the 382

quasi-linear dependence of the beamwidth on α̂), but the 383

higher growth rate of FBW determines the slightly increasing 384

character of the FoM. 385

As a result, while there exists α̂opt that maximizes the gain 386

(see Table II), there is no optimum attenuation constant to 387

maximize the FBW: the larger the attenuation constant, the 388

larger the FBW. However, LWAs do not work properly for 389

large values of α̂ (in practice, for α̂ > 0.2k0, the leaky-wave 390

contribution to the total aperture field might no longer be 391

dominant, see [25]) where they also exhibit poor gain. In addi- 392

tion, as we discussed at the end of Section III-A, the actual 393

bandwidth is also limited by the impedance bandwidth, thus 394

making ineffective the pattern bandwidth enhancement for 395

large values of α̂. 396

Another calculation of interest is to determine the maximum 397

FBW that can be achieved given a minimum gain constraint 398

and vice versa, that is, what is the maximum gain that can be 399

achieved given a minimum FBW. For this purpose, we show 400

in Fig. 3(a) the maximum FBW as a function of a minimum 401

gain constraint, and in Fig. 3(b) the maximum gain as a 402

function of a minimum FBW constraint for an air-filled 1-D 403



7858 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 70, NO. 9, SEPTEMBER 2022

unidirectional of length L = 10λ0 and different design scan404

angles. These plots were obtained by sweeping α̂ and finding405

the optimum value that maximized the quantity of interest406

while satisfying the constraint. The results are compared for407

the infinite case (colored dashed lines) and show that both408

the maximum FBW and the maximum gain are monotonically409

decreasing functions of the minimum gain and minimum FBW410

constraints, respectively.411

In Fig. 3(a), the curves for L = 10λ0 are correctly412

interrupted when the minimum gain is about 15 dB: this413

is indeed the maximum gain that one can get out of a414

1-D unidirectional LWA of length L = 10λ0 for any scan415

angle (see Table II). Accordingly, in Fig. 3(b), the curves for416

L = 10λ0 remain constant and equal to about 15 dB, as long417

as the minimum FBW constraint is lower than the maximum418

FBW obtained for the corresponding minimum gain constraint419

of 15 dB [cf. Fig. 3(a)].420

On the other hand, for an infinite 1-D unidirectional LWA421

[dashed lines in Fig. 3(a) and (b)], the maximum FBW slowly422

decreases to zero as the minimum gain constraint increases.423

In both the infinite and finite cases, however, for a low424

minimum gain constraint, the maximum FBW asymptotically425

increases, but this usually requires unpractical values of α̂426

as commented above. Correspondingly, for a large minimum427

FBW constraint, the maximum gain slowly decreases and428

eventually drops to 0 (not shown), but again this usually429

requires unpractical values of α̂ for which a leaky-wave analy-430

sis is no longer appropriate. We finally note that the simple431

relations between G (8) and FBW (16) for an infinite, air-filled432

1-D unidirectional LWA allow for a simple analytic formula433

to recover the dashed colored curves reported in Fig. 3(a) and434

(b), and that reads435

FBWair,∞ � 2.4

G
tan θ0d sec θ0d. (21)436

IV. DESIGN FORMULAS FOR THE CAVITY437

HEIGHT AND THE PRS REACTANCE438

Section IV aims at providing analytic expressions for cor-439

rectly setting the cavity height and the PRS sheet reactance440

to support the required leaky wavenumber to have maximum441

gain at a given frequency, and to evaluate the scan performance442

over a certain frequency range.443

To this aim, and without loss of generality, we first consider444

a dielectric-filled PPW of height h where the upper metallic445

plate is replaced by a lossless, thin PRS characterized by a446

single, scalar, purely imaginary sheet impedance Zs = j Xs447

(see Fig. 4, left). (Note that the transverse equivalent network448

model in Fig. 4, right, assumes an infinite “baffle”; more449

comments on this are given in Section V.) Typical subresonant450

gratings of fishnet/cermet-like unit-cells fulfill this hypothesis451

(viz., Zs = j Xs) and for certain elementary topologies analyti-452

cal expressions are available (e.g., [26], [27]). Nonetheless, the453

results of Section IV can easily be extended to account for the454

more general case of a thick PRS (as shown in Appendix A).455

The results apply directly to common 1-D LWAs that456

implicitly make use of the PRS concept, such as the holey and457

the slitted waveguides [7], [28]. For these structures, expres-458

sions are available for the complex surface impedance that459

Fig. 3. (a) Maximum FBW versus minimum gain constraint, and (b) maxi-
mum gain versus minimum FBW constraint for an air-filled 1-D unidirectional
LWA of length L = 10λ0 (solid colored lines) and infinite length (dashed
colored lines) and different design scan angles.

accounts for both the internal and external impedances char- 460

acterizing the discontinuity. Therefore, one has to de-embed 461

the contribution due to radiation in free space to recover a 462

purely imaginary PRS sheet impedance: the optimum design 463

rules provided in Section IV-B apply to this quantity. 464

We first comment on the different dispersive behaviors 465

of TE and TM leaky modes in PRS-based unidirectional 466

LWAs and their effect on the bandwidth performance (see 467

Section IV-A). As a result, design equations for both the 468

PRS and the cavity height (see Section IV-B) are different 469

for TE and TM leaky modes. The inductive/capacitive 470

character of the PRS is also accounted for, and thus it is 471

seen that for each optimum condition, we have a four-fold 472

choice: inductive/capacitive PRS and TE/TM leaky mode (see 473

Section IV-A). The results of Sections IV-A and IV-B find 474

immediate application in Section IV-C where they are used to 475

determine the scan performance of PRS-based unidirectional 476

LWAs. 477

A. PRS Properties 478

In Section I, we commented that for a PRS-based LWA β̂ 479

and α̂ are constrained to obey a particular relation. In the 480
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Fig. 4. Cross-sectional view of a dielectric-filled PPW of thickness h, where
the upper plate is replaced by a PRS with sheet impedance Zs (left) and its
transverse equivalent network (right).

literature (see [11], [13], [16] and related works), it is assumed481

that the fundamental TE/TM leaky mode pair propagating in482

a PRS-based LWA obeys a hyperbolic relation of the type483

β̂α̂ = C , where C is a constant that depends on the PRS484

reflectivity. We now show that this assumption turns out to485

be accurate only close to broadside where the TE/TM leaky486

wavenumbers are very similar to each other; as the scan angle487

increases, C remains remarkably constant in the TM case, but488

not anymore in the TE case. This aspect plays a key role in489

the correct design of PRS-based LWAs as we will discuss in490

more detail in Section IV-B.491

Since the dispersive properties of the leaky modes are not492

affected by the antenna truncation, a simple way to obtain493

an approximate expression of the PRS constant as a function494

of the scan angle in the TM and the TE cases comes from495

retrieving an expression for α̂ from (4) in the infinite case496

and by exploiting the expressions for the beamwidths of an497

infinite-length PRS-based LWA [29, eqs. (23) and (25)]. With498

these expressions at hand, one finds that the PRS constant C499

takes the following two different expressions in the TE or TM500

case:501

CTE = Cb cos θ0

√(
1 − sin2 θ0/εr

)3 εr=1= Cb cos4 θ0 (22a)502

CTM = Cb sec θ0

√
1 − sin2 θ0/εr

εr=1= Cb (22b)503

where Cb = CTE|θ0=0 = CTM|θ0=0 is the value of the PRS504

constant at broadside and reads505

Cb ≡ X2
s

√
ε3

r

πη2
0

(23)506

with η0 � 120π � being the free-space impedance. It is507

clear from (22a) and (22b) that CTE strongly depends on508

the scan angle, whereas CTM is almost independent for small509

permittivities. This is even more evident in the air-filled case,510

where CTE ∝ cos4 θ0 and CTM is indeed constant. Moreover,511

(22a)–(22b) also reveal that close to broadside CTE and CTM
512

are both approximately constant and equal to Cb. It is worth-513

while noting here that Cb only depends on Xs and εr, that is,514

the physical properties of the structure. Thus, Cb is associated515

with the PRS only.516

We also note that the expression for Cb in (23) coincides517

with that in [11, eq. (18)] in the lossless case (i.e., Zs = j Xs518

and tan δ = 0) and in the limit of a highly reflective thin519

PRS, that is, |Xs| � η0. The original expression, viz., [11,520

eq. (18)], holds even for the lossy case and moderately521

reflective thin PRS; this more general expression will turn522

to be useful to deal with thick PRSs [19], [20] as discussed 523

in Appendix A. 524

We should comment that in LWAs, the scan angle typically 525

changes with frequency, thus the dependence of the PRS 526

constant on the scan angle implies a dependence on frequency, 527

which may affect somehow the bandwidth properties of the 528

antenna. However, the PRS itself, by virtue of Foster’s reac- 529

tance theorem [30]–[32] will also exhibit a sheet impedance 530

that depends on frequency. The sheet impedance may also 531

exhibit spatial dispersion, that is, the dependence from the 532

scan angle [4], [27], [33]. Including a frequency-dispersive and 533

spatially dispersive model for the sheet impedance, even for 534

the simplest type of inductive/capacitive-like behaviors, does 535

not allow for straightforward analytical treatment. Neverthe- 536

less, we will show in Section V with full-wave results that 537

the formulas derived so far work remarkably well in practical 538

cases, since the bandwidth is fairly small when the beam is 539

narrow. 540

B. Design Formulas 541

Table II provides the optimum values of α̂ to get maximum 542

gain at different scan angles (thus for different values of β̂) 543

from a PRS-based 1-D unidirectional LWA, as derived in [7]. 544

However, we have not yet discussed how to obtain a given 545

pair of β̂ and α̂ at a given frequency from this class of LWAs. 546

This task requires an accurate leaky-wave dispersion analysis. 547

With reference to the structure depicted in Fig. 4 along with 548

its transverse equivalent network, the dispersion equations for 549

the TE and TM modes are given, as is customary, through the 550

application of the transverse resonance technique [34] to the 551

TEN, and read 552

(TE) : j k̂z0 + η0/Xs + k̂zd cot
(
k0k̂zdh

) = 0 (24a) 553

(TE) : j k̂−1
z0 + η0/Xs + εr k̂

−1
zd cot

(
k0k̂zdh

) = 0 (24b) 554

where k̂z0 = (1 − k̂2
x)

1/2 and k̂zd = (εr − k̂2
x)

1/2 are the 555

normalized vertical wavenumbers in the air and in the dielec- 556

tric, respectively. A remark is needed here about the choice 557

of the principal square root in the definition of the vertical 558

wavenumbers. As is well known, the square root for k̂z0 559

introduces a pair of branch points at k̂x = ±1 (the dispersion 560

equations (24a), (24b) are even functions of k̂zd, and thus the 561

corresponding choice of the square root is immaterial). The 562

functions on the left-hand side of (24a) and (24b) are analytic 563

and single-valued over a two-sheeted Riemann surface whose 564

proper (Im[k̂z0] < 0) and improper (Im[k̂z0] > 0) sheets are 565

typically connected through the Sommerfeld branch cuts [25], 566

[35]. It can be shown that, when kx is in the fourth quadrant 567

(as we assume here), the principal square root choice that we 568

tacitly made for kz0 always gives the improper choice, and 569

thus a leaky mode [25], [35]. 570

In most works dealing with LWAs, the dispersion equa- 571

tions (24a) and (24b) are typically solved for a fixed Xs and 572

h. Therefore, the wavenumber dispersion, that is, β̂ and α̂ 573

versus f , of the fundamental TE–TM leaky mode pair has to 574

be found numerically, searching for the complex roots of (24a) 575

and (24b). Here, we are interested in solving the other way 576

around: for a fixed pair of β̂ and α̂ at the design frequency f0, 577
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TABLE III

OPTIMUM α̂ , Xs , AND h/hppw FOR BOTH THE TE AND THE TM MODES (UPPER BOX: INDUCTIVE CHOICE, LOWER BOX: CAPACITIVE CHOICE), FOR AN
OPTIMIZED AIR-FILLED PRS-BASED 1-D UNIDIRECTIONAL LWA FOR DIFFERENT DESIGN SCAN ANGLES θ0d AND ANTENNA LENGTHS L/λ0

we want to find the optimum Xs and h. As commented above,578

this would, in general, require us to numerically solve (24a)579

and (24b) over the 2-D space parameter of Xs and h, as exact580

analytical expressions of the form Xs(β̂, α̂) and h(β̂, α̂) cannot581

be derived straightforward from (24a) to (24b).582

One of the main results of this work is represented by583

Table III, which reports, for different practical combinations584

of antenna length and desired scan angle, the optimum values585

of reactance sheet and cavity height to get the maximum586

gain. The numerical values reported in Table III are obtained587

through the above-mentioned 2-D numerical search (“Num.588

2-D” in Table IV) in the air-filled case, but the formulas have589

been tested and proven accurate also in dielectric-filled cases590

(not reported).591

However, a blind 2-D numerical search over large ranges for592

the two parameters might be either computationally expensive593

(for a fine discretization of the intervals) or lead to inaccu-594

rate results (for a rough discretization of the intervals). One595

possibility is to reduce the dimensionality of the problem to596

a 1-D numerical search. This approach can be performed by597

taking the imaginary part of (24a) and (24b): the zeros of the598

resulting equations define an implicit function of h only, thus599

reducing the problem to a 1-D numerical search (“Num. 1-D”600

in Table IV). The solutions for Xs are then found by taking601

the real part of (24a) and (24b), yielding602

XTE
s = Re

[
−η0

j k̂z0,op + k̂zd,op cot
(
2π k̂zd,oph/λ0

)
]

(25a)603

XTM
s = Re

[
−η0k̂z0,opk̂zd,op

j k̂zd,op + k̂z0,opεr cot
(
2π k̂zd,oph/λ0

)
]

(25b)604

where k̂z0,op ≡ k̂z0( f0), k̂zd,op ≡ k̂zd( f0), and λ0 is at the 605

design frequency, and then plugging in the numerical values 606

for h found from the above-mentioned numerical 1-D search. 607

This approach can lead to very accurate results (we dis- 608

cuss the accuracy of all the proposed methods later in 609

Section IV-B), but still requires a 1-D numerical search. The 610

same accuracy can also be reached with a simple procedure 611

based on an iterative method (“Ite.” in Table IV), provided 612

that a good initial guess is chosen. To this aim, we first 613

obtain approximate analytic expressions for the optimum sheet 614

reactances XTE
s , XTM

s . For a given pair of β̂ and α̂, CTE and 615

CTM are uniquely determined, hence from (22a) and (22b) we 616

get 617

|XTE
s | = η0

√√√√ πβ̂α̂ sec θ0√(
εr − sin2 θ0

)3

εr=1= η0

√
πβ̂α̂

cos2 θ0
(26a) 618

|XTM
s | = η0

√
πβ̂α̂ cos θ0

εr

√
εr − sin2 θ0

εr=1= η0

√
πβ̂α̂. (26b) 619

However, the derivation of (26a) and (26b) does not distinguish 620

between the capacitive/inductive nature of the PRS, which 621

explains the modulus sign on the left-hand side of (26a) 622

and (26b). When the PRS is highly reflective, the optimum 623

reactance sheet values for the inductive/capacitive case are 624

actually symmetric with respect to the origin, and this approx- 625

imation is thus fairly accurate. One can easily check from the 626

numerical results of Table III that (26a) and (26b) yield very 627

accurate results close to broadside, and even at larger design 628

scan angles provided the antenna length is sufficiently large 629

to still require a highly reflective PRS to optimize the gain. 630
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TABLE IV

COMPARISON BETWEEN DIFFERENT METHODS FOR OBTAINING THE
OPTIMUM DESIGN PARAMETERS FOR L = 10λ0 AND θ0d = 30◦

Now that we have expressions for the optimum reactance631

sheet Xs, formulas for the optimum cavity heights in both the632

TE and TM cases can directly be derived from (24a) to (24b),633

leading to634

hTE = Re

{
λ0

2k̂zd,op

[
1 − 1

π
cot−1

(
η0 + j Xsk̂z0,op

Xsk̂zd,op

)]}
635

(27a)636

hTM = Re

{
λ0

2k̂zd,op

[
1 − 1

π
cot−1

(
η0 + j Xs/k̂z0,op

εr Xs/k̂zd,op

)]}
.637

(27b)638

Note that the range of the inverse cotangent function is639

assumed here to lie between −π/2 and π/2. The values of640

±XTE
s and ±XTM

s provided by (26a) and (26b) can then be641

used as initial guesses in (27a) and (27b) to get a first estimate642

of hTE and hTM; these values can then be used in (25a)643

and (25b) to get a better estimation of ±XTE
s and ±XTM

s and644

so on. Such an iterative process, based on (27a) and (27b)645

and (25a) and (25b), reaches a satisfactory accuracy after few646

steps. From Table IV, it is manifest that the iterative process647

fully converges to the results of the numerical 1-D method.648

(The results of “Ite.” in Table IV have been obtained with649

less than 40 iterations, with a convergence stop criterion set650

to 
 = 0.001%, where 
 is the relative percent difference651

between consecutive iterations.) Nevertheless, the Xs values652

obtained with the numerical 2-D search are slightly different653

from those obtained with the numerical 1-D and the itera-654

tive method, whereas the h values coincide. This behavior655

is mainly due to the different sensitivity of the dispersion656

equation with respect to variations of either Xs or h from657

the points of global minimum: a small change of h would658

require a significant change in Xs to meet the resonance659

condition. Conversely, significant changes in Xs would require660

only moderate changes in h. This sensitivity is also reflected661

by (27a) and (27b), and (25a) and (25b), which reveal that h662

varies with cot−1(·) and Xs varies with cot(·), respectively.663

The general expressions in (27a) and (27b) can greatly be 664

simplified when specialized for scanned beams in the limit of 665

a highly reflective PRS, that is, Xs � η0. In this case, β̂ 
 α 666

and (27a) and (27b) simplify as 667

hscan
TE � λ0

2
√

εr − sin2 θ0d

[
1 − 1

π
cot−1

(
(η0/Xs)√

εr − sin2 θ0d

)]
668

(28a) 669

hscan
TM � λ0

2
√

εr − sin2 θ0d

[
1 − 1

π
cot−1

(√
εr − sin2 θ0d

εr(Xs/η0)

)]
670

(28b) 671

where the contribution of dielectric losses has safely been 672

ignored. It is worth noting that the inverse cotangent is an odd 673

function and hence the inductive/capacitive (Xs ≷ 0) nature 674

of the sheet impedance shifts downward/upward the design of 675

the cavity height. 676

We note that the first term appearing in front of the square 677

brackets is hppw [cf. (10)] toward which both (28a) and (28b) 678

would asymptotically converge for Xs → 0 (i.e., the asymp- 679

totic limit of a perfect electric conductor) with the TE-TM 680

PPW modes becoming a degenerate pair. Interestingly, in the 681

air-filled case εr = 1, (28a) and (28b) take a very compact 682

and advantageous form 683

hscan
TE,air � λ0

2 cos θ0d

[
1 − 1

π
cot−1

(
η0 sec θ0d

Xs

)]
(29a) 684

hscan
TM,air � λ0

2 cos θ0d

[
1 − 1

π
cot−1

(
η0 cos θ0d

Xs

)]
. (29b) 685

We should comment that (28b) and (29b) are less accurate 686

than (28a) and (29a) for a beam approaching endfire, due to 687

the opposite dependence of the argument of the inverse cotan- 688

gent function with respect to the beam angle: in the TE/TM 689

case, the argument becomes larger/smaller with respect to η0 690

[see (27a) and (27b)], and this effect is more pronounced 691

as the PRS reflectivity diminishes (viz., Xs/η0 increases). 692

Conversely, for a very highly reflective PRS, (28a) and (28b) 693

asymptotically evaluate as 694

hscan
TE � λ0

2
√

εr − sin2 θ0d

(
1 − Xs

√
εr − sin2 θ0d

πη0

)
(30a) 695

hscan
TM � λ0

2
√

εr − sin2 θ0d

(
1 − Xsεr

πη0

√
εr − sin2 θ0d

)
. (30b) 696

As a side comment, we note that (27a) and (27b) reduce to [29, 697

eq. (32)] for β̂ � α̂ → 0 which is the condition for having a 698

highly directive broadside beam in either 1-D bidirectional or 699

2-D LWAs. Indeed, for β̂ � α̂ → 0, we have k̂z0,op → 1 and 700

k̂zd,op → √
εr , thus (27a) and (27b) simplify as 701

hb = Re

{
λ0

2
√

εr

[
1 − 1

π
cot−1

(
η0/Xs + j√

εr

)]}
702

� λ0

2
√

εr

(
1 − Xs

√
εr

πη0

)
(31) 703

where the last expression is obtained for negligible dielectric 704

losses and a highly reflective PRS (i.e., Xs � η0). Equa- 705

tion (31) is equivalent to [29, eq. (32)]. 706
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Another alternative method that yields analytical formulas707

for Xs and h can be obtained from (24a) and (24b) under708

some approximations. The analytical procedure (“Ana.” in709

Table IV) is a bit lengthy and is thus reported in Appendix B.710

All the proposed approaches are remarkably accurate as can711

be inferred from the numerical results reported in Table IV712

for two typical cases, namely L = 10λ0 and θ0d = 30◦, and713

L = 20λ0 and θ0d = 60◦.714

C. Scan Performance715

We apply here the considerations and results of the previous716

Sections IV-A and IV-B to determine the scan performance of717

a PRS-based 1-D unidirectional LWA, distinguishing between718

the TE and TM cases. As commented in Section III-A, if one719

is interested in the scan performance in terms of the gain at the720

desired scan angle, the TE/TM distinction is not that impor-721

tant: (13)–(18) are accurate enough for evaluating the FBW722

and the corresponding angular range over which the gain at the723

desired scan angle does not decay below −3 dB. Conversely,724

if one is interested in the scan performance in terms of the peak725

gain as the beam scans, the different dispersive properties of726

TE and TM leaky modes in PRS-based LWAs discussed in727

Section IV-A play a key role.728

The different behavior of the peak gain over a finite angular729

range is manifest from Fig. 5(a) to (b), where (a) the TE case730

and (b) the TM case are shown for a PRS-based unidirectional731

LWA of length L = 10λ0 optimized for radiation at different732

angles, using the design equations derived in Section IV-B.733

These results have been obtained by solving numerically the734

TE and TM dispersion equations, viz., (24a) and (24b), with735

the optimum design parameters reported in Table III to get736

the accurate dispersion curves (not shown for brevity) and737

then evaluating the peak gain either numerically (solid lines)738

or analytically through (7) (dashed lines). In all cases, the739

peak gain has been evaluated over a frequency range spanning740

from 0.6 f0 to 1.8 f0 (as highlighted by the green triangles in741

Fig. 5(a) and (b) for the θ0d = 60◦ case only) and then mapped742

into an angular range by means of the numerical wavenumber743

dispersion curve and exploiting the relation θ0 = arcsin β̂.744

As can be inferred from Fig. 5(a), in the TE case, the peak745

gain drops below −3 dB over a finite angular range which746

is about 40◦, 35◦, 25◦ for θ0d = 30◦, 45◦, 60◦, respectively,747

whereas it remains almost constant for f > f0 in the TM case748

[see Fig. 5(b)]. This different behavior is readily explained if749

one looks at (22a) and (22b). Indeed, the variation of β̂ with750

frequency is almost the same [12, see Fig. 4]), and in turn that751

of α̂ differs a lot from the TE and TM cases. In particular,752

it is seen that the frequency variation of α̂ in the TE case is753

way more pronounced than that in the TM case. Since the754

gain weakly depends on β̂ but strongly depends on α̂, the755

scan performance is heavily affected in the TE case, and only756

slightly affected in the TM case. It is interesting to note that a757

TM-polarized LWA that has its gain optimized at a particular758

design scan angle will continue to exhibit a beam with a fairly759

high gain as the beam is frequency-scanned, whereas for the760

TE case, the gain drops more rapidly as the beam is scanned761

away from the design scan angle.762

Fig. 5. Peak gain (in dB) versus the scan angle θ0 for three different PRS-
based 1-D unidirectional LWAs optimized for (a) TE polarization and (b) TM
polarization and radiating at 30◦, 45◦, 60◦, with an antenna length of 10λ0.
Numerical (analytical) results in solid (dashed) lines. All curves are evaluated
over the frequency range 0.6 f0–1.8 f0 as shown by the triangles for the case
θ0d = 60◦ .

V. NUMERICAL VALIDATION AND APPLICATION EXAMPLE 763

In this Section V, we want to show how the overall opti- 764

mization workflow (i.e., Sections III and IV) can be applied 765

to the practical case of a PRS-based 1-D unidirectional LWA. 766

Section V has two main objectives that will be addressed in 767

Sections V-A and V-B, respectively. In Section V-A, we assess 768

the accuracy of the formulas for both the bandwidth perfor- 769

mance (results of Section III) and the optimum design rules 770

(results of Section IV) through full-wave simulations of an 771

ideal structure. By ideal structure, we mean a full-wave model 772

with some simplifying hypotheses so as to have an excellent 773

agreement with the theoretical electromagnetic model used in 774

this work. In Section V-B, we demonstrate that the ideal model 775

used in Section V-A is in very good agreement with a more 776

realistic structure, which accounts for both the nonidealities of 777

the PRS (which is no longer modeled with a sheet impedance, 778

but is instead geometrically designed) and the finite size of the 779

ground plane. 780
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Fig. 6. (a) Ideal electromagnetic model of the PRS-based 1-D unidirectional
LWA as implemented in CST Microwave Studio. (b) Three-dimensional view
of the radiated pattern normalized to its beam peak.

For the cases analyzed in Sections V-A and V-B we con-781

sider, for the sake of simplicity, an air-filled εr = 1 PPW-782

like structure of length L = 10λ0 operating at the design783

frequency f0 = 10 GHz, where the PRS consists of an array of784

inductive metallic strips of width w with period p � λ0 under785

TE polarization. This last assumption is advantageous for786

the PRS modeling since the sheet impedance of an array of787

inductive (w � p) metallic strips in free space and under788

TE polarization is not spatially dispersive, and thus the PRS789

shows the same Zs for any β̂; the same feature holds for790

capacitive strips under TM polarization, according to Babinet’s791

principle [36].792

In addition, we assume the frequency dispersion of the793

PRS as Zs = j2π f L, where L = Xs( f0)/(2π f0) to model794

the inductive behavior of the narrow strips. Although the795

bandwidth analysis in Section III ignores the frequency dis-796

persion of the PRS, this aspect has negligible effects on the797

leaky wavenumber dispersion (see [14]), as confirmed by the798

numerical results of Sections V-A and V-B. It is worthwhile799

to stress that we only show here one application example, but800

many other cases have been considered and tested. Specif-801

ically, we tested our results for both the TE and the TM802

cases, for both the inductive and capacitive cases, and for scan803

angles higher and lower than 30◦, for antenna lengths larger804

or smaller than L = 10λ0. Comparison between the results805

obtained in these different operating conditions confirmed the806

theoretical LWA performance commented on in Section III-B807

(the results obtained in terms of FBW, G, and FoM were all808

in good agreement with those reported in Table III). In all809

cases, the agreement between the theoretical and full-wave810

results was comparable with that reported for the application811

example discussed in Sections V-A and V-B.812

A. Ideal Model813

The ideal model of the optimized structure designed in CST814

Microwave Studio [37] and the simulated 3-D radiation pattern815

(normalized to its beam peak) are shown in Fig. 6(a) and (b),816

respectively. As shown, the structure is excited at one end with817

a waveguide port operating in its fundamental TE10 mode (in818

the coordinate system shown, the subscripts 1 and 0 denote819

field variation in the z- and y-directions, respectively) and820

terminated in a matched load (through the definition of another821

waveguide port with no excitation). A sheet impedance bound-822

ary condition is applied on top of the waveguide to represent823

the PRS. In order to simulate an infinite ground plane, PEC824

walls are applied to the lateral boundaries of the domain of825

evaluation. These PEC walls extend along the z-axis with826

respect to the cavity height to form a ‘baffle’ on top of which827

is put a perfectly matched layer (PML) boundary condition to 828

simulate an electromagnetic environment that matches as much 829

as possible the transverse equivalent network in Fig. 4. The 830

length of the baffle b is set to b = λ0/4 = 7.5 mm, whereas 831

the short side of the waveguide d is set to d = λ0/3 = 10 mm 832

to have the antenna operating with a single mode at the 833

frequencies of interest. The other relevant parameters, that 834

is, the cavity height and the PRS sheet reactance are set 835

to h = 0.935hppw = 16.183 mm and Xs = 93.2 � to have 836

maximum gain at θ0d = 30◦ with L = 10λ0, according to 837

the results in Table III. These settings yielded an excellent 838

agreement with the theoretical prediction as can be inferred 839

from the 3-D radiation pattern shown in Fig. 6(b), and as we 840

will discuss in detail below. 841

The first result that shows the impressive correspondence 842

between the ideal model implemented in CST and the theo- 843

retical prediction is the comparison between the wavenumber 844

dispersion as calculated numerically from the dispersion equa- 845

tion in (24a) [black solid line in Fig. 7(a)] and as retrieved 846

from the scan angle of the radiation pattern in CST [blue 847

circles in Fig. 7(a)]. In Fig. 7(a), we have also shown the 848

wavenumber dispersion of the equivalent lossy PPW model, 849

that is, (9) [green dashed line in Fig. 7(a)], and of the lossless 850

PPW model, that is, (11) [red dotted line in Fig. 7(a)]. The 851

normalized attenuation constant curves are available only for 852

the lossy PPW model and the numerical results, and the small 853

deviations between them are merely attributed to the frequency 854

dispersion of the PRS constant C in the TE case (commented 855

in Section IV-A) which is not accounted for in the lossy PPW 856

model. For the PPW solution the value of the effective loss 857

tangent was chosen based on a fixed value of CTE, chosen 858

at the desired scan angle of 30◦, corresponding to f = f0. 859

The normalized phase constant curves are instead mostly 860

overlapped in all cases. We should note that the excellent 861

agreement between the lossless PPW model dispersion curve 862

and the full-wave results is essential for the accuracy of the 863

formulas provided in Section III to determine the bandwidth 864

performance. 865

In this regard, we have reported in Fig. 7(b), the variation 866

of the gain at 30◦ as the frequency changes from 9 to 11 GHz. 867

The gain at 30◦, as evaluated from CST, reaches its maximum 868

at 10 GHz (highlighted with a solid green dot) as predicted 869

from theory, and drops off −3 dB over an FBW (the band 870

edges are highlighted with green dashed lines) of around 871

6.34%. The theoretical prediction (i.e., using (7) for the gain, 872

and (15) for the FBW) and numerical prediction [i.e., through 873

the numerical evaluation of the gain from the radiation pattern 874

in (1) and its corresponding −3 dB frequency points using the 875

numerical wavenumber dispersion reported in Fig. 7(a)] report 876

instead bandwidths of 6.23% and 6.24%, respectively (the 877

band edges are highlighted with black and red dashed lines, 878

respectively, and the peaks are denoted with a black square 879

and a red cross), thus confirming the remarkable accuracy of 880

both the formulas and the model. (The black, red, and green 881

vertical and horizontal dashed lines are almost superimposed.) 882

On the other hand, the gain peak at 30◦ is 15.37 dB from 883

CST (green dot), whereas it is around 15.23 and 15.22 dB 884

from theory (black square) and from numerical results (red 885
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Fig. 7. (a) Dispersion curves β̂ and α̂ versus f/ f0 for the structure investigated in Section V-A (parameters in the text): comparison between different
models. (b) Gain (in dB) versus f/ f0 as evaluated with a time-domain simulation of the ideal CST model. The −3 dB frequency points are highlighted with
vertical dashed lines. (c) Gain (in dB) versus Xs (�) at f = 10 GHz as evaluated with a frequency-domain simulation. The maximum value is highlighted
with a green dot, whereas the theoretical prediction is highlighted with a black square. (d) Radiation pattern normalized to its beam peak P̄(θ) versus θ (◦)
in the principal plane (E-plane) at f = 9, 10, 11 GHz (theoretical and full-wave results are reported in solid lines and dots, respectively).

plus sign), respectively; these values lead to FoMs of 2.156,886

2.071, and 2.075, for CST, theoretical, and numerical results,887

respectively.888

The previous results were obtained through the time-domain889

solver of CST in order to get a sufficient number of frequency890

points over the bandwidth 9–11 GHz with a fast broadband891

simulation. However, in order to further assess the consis-892

tency of our optimum design rules, we decided to use the893

frequency-domain solver of CST to run a parametric analysis894

of the structure at a fixed frequency, by varying the value of895

the reactance sheet Xs from 60 � to 120 in steps of 2 �. The896

result is shown in Fig. 7(c) and demonstrates that the gain is897

indeed maximized for a value very close to the theoretical one.898

More precisely, CST obtained a maximum gain of 14.94 dB899

for 92 � (green dot) instead of the predicted 15.22 dB for900

93.2 � (black square and dashed lines).901

To complete the picture, in Fig. 7(d), the radiation pattern902

normalized to its beam peak P̄(θ) = P(θ)/P(θ0) over the903

principal plane (i.e., φ = 0◦) at the center frequency (in904

green) and at 9 and 11 GHz (in yellow and blue for the lower905

and higher edge, respectively) obtained with CST (colored 906

dots) are compared with those obtained with a straightforward 907

implementation of (1) (note that a cos2(θ) has been included 908

to account for polarization effects) together with the numerical 909

wavenumber dispersion reported in Fig. 7(a), showing again 910

an excellent agreement. 911

B. Realistic Model 912

The results of Section V-A assessed the accuracy of the 913

proposed formulas when an ideal electromagnetic model of the 914

optimized LWA is designed in CST. Here, we want to remove 915

some simplifying assumptions and show that the proposed 916

optimum design rules still work even for a more realistic 917

structure. Specifically, we refer to the structure depicted in 918

Fig. 8(a), where: 1) an MSG (the relevant design parameters 919

are provided next) replaces the sheet impedance boundary con- 920

dition; 2) a finite ground plane of lateral size W now appears 921

at both sides of the PRS; and 3) the baffle with the PML on 922

top and the lateral PEC boundary conditions are replaced by 923

radiation boundary conditions. The 3-D radiation pattern of 924
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Fig. 8. (a) Realistic electromagnetic model of the PRS-based 1-D unidirec-
tional LWA as implemented in CST Microwave Studio. (b) Three-dimensional
view of the radiated pattern normalized to its beam peak.

this realistic structure is shown in Fig. 8(b) and differs from925

that of the ideal model [cf. Fig. 8(a)] due to the presence of926

some spurious radiation below the horizon (due to the finite927

size of the ground plane) and the presence of some ripples928

along the cone of radiation (due to edge diffraction from the929

finite-size ground plane). The slight differences between these930

patterns are commented on in more detail below, by showing931

the effect that each assumption made in the ideal model has932

on the radiation performance.933

For this purpose, the radiation patterns (normalized to their934

beam peak) over the principal plane are shown in Fig. 9 for935

different simulated structures. Specifically, we first reported936

for comparison purposes only the patterns of the ideal model937

in Fig. 6(a) (green solid line with dots). Then, we removed938

the PEC lateral boundary conditions and introduced a ground939

plane with different sizes W ranging from 2λ0 and 5λ0 (see940

dashed gray lines) for the model in Fig. 8(a). The PRS was941

represented by a sheet impedance. It is seen that the size of the942

ground plane has no significant effects on the radiation pattern943

but in all cases the beam peak shifts to 31◦ (this is better944

appreciated from the inset of Fig. 9). However, we found that945

the finite ground plane is not responsible for the beam peak946

shift; it is rather the absence of the baffle on top of the PRS.947

As a matter of fact, when we simulated the structure with a948

finite size ground plane with W = 3λ0 and a baffle extending949

b = λ0/4 = 7.5 mm beyond the PRS and with a PML right950

on top, we obtained a radiation pattern that points again at951

exactly 30◦ (see the yellow solid line with dots).952

It is worthwhile to stress here that a strong truncation of the953

antenna length L may cause an appreciable beam peak shift954

due to the element pattern, as exhaustively discussed in [38].955

However, the optimum gain conditions always lead to radiation956

efficiencies as high as 92% (see [7, Table II]) for which these957

effects can safely be neglected for practical antenna lengths (as958

can be inferred from [38, Fig. 2]) and are thus not discussed959

further.960

Finally, we replaced the sheet impedance boundary con-961

dition with an MSG with p = λ0/4 = 7.5 mm and962

w = 1.82 mm. Such an MSG shows a reactance sheet of963

about 93.13 � (note that the optimum value of Xs is 93.2 �;964

cf. Table III) according to the homogenization formula for965

inductive metallic strips under TE polarization [26], [27] that966

we report here for the reader’s convenience as967

Xs = η0
p

λ0
ln

[
csc

(
πw

2 p

)]
. (32)968

Fig. 9. Radiation patterns normalized to the beam peak P̄(θ) versusθ (◦) in
the principal plane at f = 10 GHz for different CST models, progressively
moving from the ideal one (in green) to the more realistic one (in red). The
inset highlights the region close to the beam peak.

Results with the actual MSG but the baffle present [to better 969

match with the ideal model of Fig. 6(a)] are shown with a red 970

dotted line. 971

As manifest from Fig. 9, there are negligible differences 972

between the ideal model with the MSG (red solid line with 973

dots) and that with the PRS impedance (green solid line with 974

dots). As expected, when we use a finite-size ground plane 975

with W = 3λ0 and the MSG, the beam peak shifts again 976

to 31◦ (see the inset of Fig. 9) because of the absence of the 977

baffle. Except for this small difference, the agreement between 978

all the models is excellent. 979

For the sake of brevity, we did not repeat all the simulations 980

we showed for the ideal model, since the gain evaluation is 981

a consequence of the radiation pattern that we just showed is 982

in very good agreement among all models. Notwithstanding, 983

we evaluated with full-wave simulations both the gain and the 984

bandwidth performance for the realistic model in Section V-B 985

obtaining results consistent with those shown in Fig. 9 and 986

thus not reported. 987

VI. CONCLUSION 988

In a previous work [7], we laid the groundwork to derive 989

by analytical and numerical means optimum conditions for 990

maximizing the gain of 1-D unidirectional LWAs assuming 991

that the leaky normalized phase β̂ and attenuation α̂ constant 992

can be varied freely. In this work, we specialized these results 993

to PRS-based 1-D unidirectional LWAs. For this class of struc- 994

tures, an approximate analytical wavenumber dispersion exists, 995

from which it has been possible to determine the bandwidth 996

performance and the gain–bandwidth FoM when the antenna 997

is designed to operate under the maximum gain conditions 998

described in [7]. In this case, β̂ and α̂ can no longer be varied 999

freely but must obey the hyperbolic relation C = β̂α̂, where 1000

C is the PRS constant. Interestingly, we found that the β̂α̂ 1001

product does not always remain constant; this relation holds 1002

approximately true only for TM leaky modes, whereas for TE 1003

leaky modes, there exists a strong dependence on the scan 1004

angle. 1005
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One of the main objectives of this work was to link the1006

general optimization procedure described in [7] to a more1007

specific one, providing practical design rules for the general1008

class of PRS-based 1-D unidirectional LWAs. In particular,1009

we were interested in finding the optimum PRS and cav-1010

ity height parameters that lead to the optimum gain. These1011

design rules have been found with both accurate numerical1012

methods and approximate analytical formulas using a rigorous1013

dispersion analysis of the transverse equivalent network of1014

the structure. Interestingly, we found that there exist indeed1015

four different equivalent ways to maximize the gain for a1016

given antenna length and beam angle, depending on whether1017

an inductive/capacitive PRS and a TE/TM leaky mode are1018

considered.1019

We should also stress again that, as opposed to PRS-based1020

1-D bidirectional LWAs [16], PRS-based 1-D unidirectional1021

LWAs are rarely used to radiate a beam at broadside, and1022

the gain–bandwidth FoM depends on the design scan angle,1023

increasing with the design scan angle. The FoM also decreases1024

slightly as the aperture length increases but is almost indepen-1025

dent of the aperture length for larger lengths. This is another1026

important finding of this work.1027

The entire design flow, that is, from the determination of the1028

optimum β̂ and α̂ to the determination of the optimum design1029

parameters, has been demonstrated for the reference case of1030

an air-filled PPW-like structure of length L = 10λ0 at 10 GHz1031

excited in its TE fundamental leaky mode, when the PRS is a1032

metal strip grating. The radiating performance of this structure1033

has been optimized for achieving maximum gain when the1034

beam angle is fixed and was validated through time-domain1035

and frequency-domain CST full-wave simulations, as well as1036

an accurate numerical leaky-wave analysis. Two CST models1037

have been implemented: an ideal model that better matches1038

the theory, and a realistic model that better matches a practi-1039

cal realization of the structure. A remarkable agreement was1040

found among all techniques, thus corroborating the validity1041

and accuracy of the proposed analysis for the optimization1042

of the radiating properties of finite-size 1-D unidirectional1043

LWAs. Future activities are planned to derive similar optimum1044

conditions for the relevant cases of finite-size 1-D periodic and1045

1-D bidirectional LWAs.1046

APPENDIX A1047

EXTENSION TO THE THICK PRS CASE1048

To have a more compact notation, the results of this appen-1049

dix are expressed in terms of the normalized sheet (input)1050

admittance defined as Ỹs = η0/Zs (Ỹin = η0/Z in).1051

The extension to the thick PRS case requires modifications1052

to the formulas for the PRS constant, that is, (23) and for1053

the cavity height, that is, (24a) and (24b). We start from the1054

modification required by (23). As shown in [19] and [20], for1055

a thick PRS, the normalized input admittance looking upward1056

Ỹ +
in is what is important. For a lossy, thin PRS, Ỹ +

in is related1057

to Ỹs through1058

Ỹ +
in = G̃+

in + j B̃+
in = 1 + G̃s + j B̃s. (33)1059

The relation between the PRS constant Cb and the reactance1060

of a lossless, thin PRS [viz., (23)] has been extended to the1061

lossy case in [11] and reads 1062

Cb = εr

2

(
tan δ + 2

√
εr

π

1 + G̃s(
1 + G̃s

)2 + B̃2
s

)
. (34) 1063

Hence, (34) is easily generalized to the thick PRS case upon 1064

making the following substitutions: 1065{
1 + G̃s → G̃+

in

B̃s → B̃+
in

. (35) 1066

As concerns the cavity height formulas, we have a reactance 1067

term Xs appearing in (24a) and (24b) that we need to gener- 1068

alize. To this aim, we first need to distinguish between the TE 1069

and TM cases. For the TE case, a more general form reads 1070

G̃+
in + j B̃+

in − j k̂zd cot
(
2π k̂zdh/λ

) = 0 (36) 1071

whereas for the TM case reads 1072

G̃+
in + j B̃+

in − jεrk̂
−1
zd cot

(
2π k̂zdh/λ

) = 0. (37) 1073

Comparison between (36) and (24a) reveals that the sought 1074

generalization requires, in the TE case, the following 1075

substitutions: 1076{
k̂z0 → G̃+

in

X̃s → B̃+
in .

(38) 1077

By the same token, comparison between (37) and (24b) pro- 1078

vides, in the TM case, the following substitutions: 1079{
k̂z0 → 1/G̃+

in

X̃s → −1/B̃+
in .

(39) 1080

APPENDIX B 1081

ACCURATE FORMULAS FOR CAVITY 1082

HEIGHT AND PRS REACTANCE SHEET 1083

We aim at deriving approximate closed-form expressions for 1084

the cavity height h and the PRS sheet reactance Xs once the 1085

β̂ and α̂ of the TE or TM dominant leaky wave propagating 1086

in a PRS-based 1-D unidirectional LWA are given a priori at 1087

a given operating frequency. 1088

To this aim, we start from (24a) and (24b) and note that 1089

if we assume the PRS to be sufficiently reflective, that is, 1090

Xs � η0, the optimum cavity height hopt should be designed 1091

close to the first resonance, that is, 2π k̂zdh/λ � π , so we 1092

use the first-order Laurent approximation for the cotangent 1093

function, viz., cot(z) � 1/(z − π). Under this assumption, 1094

simple but lengthy algebraic manipulations allow for having 1095

a closed-form expression for hopt in terms of β̂ and α̂, solely, 1096

and for B̃s = −η0/Xs in terms of β̂ and α̂, and hopt . 1097

We show here the whole derivation for the TE case (the TM 1098

case follows straightforward and is thus not repeated; only final 1099

results are provided). Therefore, from (24a) we have 1100

B̃TE
s � j k̂z0 + k̂zd

k0k̂zdh
. (40) 1101

For the sake of simplicity, we define 1102

B̃TE
s1 ≡ j k̂z0 B̃TE

s2 ≡ k̂zd

k0k̂zdh − π
(41) 1103
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such that B̃TE
s = B̃TE

s1 +B̃TE
s2 . From (40) and the definitions (41),1104

BTE
s,opt and hTE

opt are expressed by the following equations:1105

B̃TE
s,opt = Re

[
B̃TE

s1

] + Re
[
B̃TE

s2

]
(42)1106

hTE
opt; Im

[
B̄TE

s1

] + Im
[
B̄TE

s2

] = 0. (43)1107

After simple algebraic manipulations, we obtain the following1108

expressions for the real and imaginary parts of B̃TE
s1,2:1109

Re
[
B̃TE

s1

] = α̂z01110

Re
[
B̃TE

s2

] = k0h
(
β̂2

zd + α̂2
zd

) − β̂zdh(
k0hβ̂zd − π

)2 + (k0hα̂zd)
2

1111

Im
[
B̃TE

s1

] = β̂z01112

Im
[
B̃TE

s2

] = πα̂zd(
k0hβ̂zd − π

)2 + (k0hα̂zd)
2
. (44)1113

Putting all the pieces together, we get an equation for B̃TE
s,opt1114

in terms of h, which reads1115

B̃TE
s,opt = α̂z0 − β̂zdπ − k0h|k̂zd|2(

k0hβ̂zd − π
)2 + (k0hα̂zd)

2
(45)1116

and a second-order polynomial equation a2x2 + a1x + a0 = 01117

for x = hTE
s,opt with the following coefficients:1118 ⎧⎪⎨

⎪⎩
a2 = k2

0|k̂zd|4
a1 = −2k0πβ̂zd

a0 = π2
[
1 + α̂zd/

(
β̂z0π

)]
.

(46)1119

Plugging the two roots of hTE
opt into (45), we obtain a capacitive1120

(B̃s > 0) and an inductive solution (B̃s < 0) for B̃TE
s,opt.1121

With similar steps, the following results are found in the1122

TM case. The reactance sheet is given by1123

B̃TM
s,opt = − α̂z0

|k̂z0|2
1124

+ εr
[
k0h

(
β̂2

zd − α̂2
zd

) − β̂zdπ
]

[
k0h

(
β̂2

zd − α̂2
zd

) − β̂zdπ
]2+[

2k0hβ̂zdα̂zd − α̂zdπ
]21125

(47)1126

whereas hTM
s,opt is given by a second-order polynomial equation1127

b2x2 + b1x + b0 = 0 for x = hTM
s,opt with the following1128

coefficients:1129 ⎧⎪⎨
⎪⎩

b2 = k2
0 |k̂zd|4

b1 = −2k0πβ̂zd
[|k̂zd|2 − εrα̂zd|k̂z0|2/

(
β̂z0π

)]
b0 = π2

[|k̂zd|2 − εrα̂zd|k̂z0|2/
(
β̂z0π

)]
.

(48)1130
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