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Guest Editorial
Artificial Intelligence: New Frontiers in

Real-Time Inverse Scattering and
Electromagnetic Imaging

UNDERSTANDING and solving complex problems in
the physical world has been an intelligent endeavor of

humankind. Moreover, the study of artificial intelligence (AI)
embodies the dream of designing machines like humans.
Research in deep-learning (DL) techniques has attracted much
attention in many application areas. With the help of big data
technology, massive parallel computing, and fast optimization
algorithms, DL has greatly improved the performance of many
problems in speech and image processing, power transporta-
tion networks, and bio-electromagnetics, among others.

Nowadays, DL is rapidly emerging in the antennas and
propagation community as an extremely powerful paradigm
for solving high-complexity electromagnetic inverse scatter-
ing (IS) and imaging problems with unprecedented computa-
tional efficiency without sacrificing accuracy and reliability.

As a matter of fact, DL is a promising solution to achieve
accurate pixel-wise reconstructions with real-time estimation
performance, a desirable feature in many applications such as
biomedical imaging, works of art and archaeological inspec-
tion, industrial nondestructive testing and evaluation, trough-
the-wall imaging, and subsurface imaging. With the spreading
of DL techniques, improvement in learning capacity may allow
machines to “learn” from a large amount of physical data
and “master” the physical laws under controlled boundary
conditions.

The objective of this Special Issue is to report recent
advancements in theory and applications of AI, machine learn-
ing (ML), and DL to solve electromagnetic IS and imaging
problems within the research scope of antennas and propaga-
tion with extremely fast but reliable techniques. With this Spe-
cial Issue, we hope to bring more attention and research efforts
in our society to this emerging multi-disciplinary field, result-
ing in an evolution of the state of the art. It features 19 works
from top research teams spread worldwide. An overview of
such articles is given in the following to help the reader in
having a clear summary of the different contributions.

I. OVERVIEW OF THE SPECIAL ISSUE

A. Methodological Papers

In [A1], Guo et al. propose an innovative physics-embedded
deep neural network (DNN) to solve electromagnetic (EM)
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forward scattering problems (FSPs) with high computational
efficiency. More in detail, the conjugate gradient method,
traditionally used to solve the volume integral equation (VIE),
is unfold into an iterative DNN capable of accelerating the
computation of the total field within a 2-D domain starting
from the incident field and the dielectric profile within it.
To embed wave physics into the network, the Green’s function
is exploited as an explicit operator to describe wave physics
and inject a-priori knowledge on the scattering problem.
The results clearly indicate that the proposed methodology
is effective and computationally efficient, with problem-scale
independent capabilities, being for such a reason a promis-
ing candidate for the DNN-driven fast solution of inverse
scattering problems (ISPs). As a matter of fact, the same
team of researchers described in [A2] how to effectively
embed such a DNN-assisted forward solver within an IS
network. The arising imaging methodology is capable of out-
putting accurate guesses of the unknown scatterers, achieving
super-resolution reconstructions with high computational effi-
ciency. Both numerical and experimental benchmarks assess
the capabilities of the developed data-driven and physics-
assisted method, opening the doors to robust and reliable
real-time microwave imaging (MI).

Within this framework, Luo et al. propose in [A3] a novel
two-step DNN-based methodology for solving phaseless-data
ISPs. More specifically, a phase retrieval network (PRNet)
and an image reconstruction network (IRNet) are cascaded
to 1) recover both the magnitude and the phase of the scat-
tered field starting from the measured magnitude of the total
field and to 2) retrieve an image of the investigation domain
from such guesses. The physical relationship between the
EM field and the unknown constitutive parameters is reserved
thanks to the exploitation of a complex-valued DNN archi-
tecture. Both numerical and experimental results verify the
high efficiency, robustness, and generalization capabilities of
the method, which exhibits high accuracy when dealing with
strong scatterers, as well.

Following a different approach, Sabbaghi et al. discuss
in [A4] how to design a DNN-based strategy for efficiently
predicting the number of conducting wires randomly located
within the investigation domain. Towards this end, a convo-
lutional neural network (CNN) is exploited to build a reli-
able supervised (data-driven) predictor solving a classification
problem where the unknown number of wires (N) is a-priori
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upper-bounded. The reported results clearly verify the accu-
racy of the method, which is able to reach an accuracy of 96%
when N ≤ 10.

An innovative MI framework has been presented by
Ruiz et al. in [A5] for the effective, reliable, and
user-independent shaping of unknown targets starting from
the collected scattered field. More precisely, a U-Net DNN
architecture is combined with a qualitative reconstruction
method (i.e., the orthogonality sampling method, OSM).
Thanks to the proposed approach, it is possible to avoid
case-dependent and user-biased results due to the traditional
manual hard-thresholding of the OSM results, by letting the
DNN automatically separate the targets from the background.
The good performance of the proposed DNN-assisted quali-
tative imaging approach has been verified with both synthetic
and experimental data.

Another interesting DL framework to solve ISPs integrating
a complex-valued convolutional neural network (DConvNet)
into the supervised descent method (SDM) is proposed by
Yao et al. in [A6]. After the offline training phase, high-
accuracy reconstructions are efficiently yielded in the online
step exploiting the learned descent directions by the SDM and
the real-time DConvNet forward scattering predictions.

Chen et al. propose in [A7] a new semi-physics-driven arti-
ficial neural network (ANN)-based method for solving ISPs.
The method consists of cascading two sub-nets, the first of
which aims at converting the scattered field to a preliminary
coarse guess of the dielectric permittivity in the investigation
domain. Then, such a guess is input to the second sub-net to
further refine the unknown target profile. To inject EM physics
within the inversion loop, the approximate sensitivity matrix
is embedded within the first sub-net, whose parameters are
fixed and not determined from training data. Thanks to such
a strategy, robust and reliable guesses of the unknown targets
can be yielded with a significantly lower amount of training
samples with respect to a purely data-driven DL inversion
method.

The MI of hybrid scatterers made of arbitrary combinations
of dielectric parts and perfect electric conductors is dealt
within the DL framework by Song et al. in [A8]. Toward this
end, the solution of ISPs with mixed boundary conditions is
performed by effectively combining the back propagation (BP)
method with an attention-assisted generative adversarial net-
work (GAN). More specifically, the BP retrieves a rough image
of the zero-order T-matrix coefficients, which is then refined
by the GAN, where a spatial attention mechanism is exploited
to enforce the learning of salient high-level features of the
unknown scatterers, resulting in high-accuracy images with
both numerical and experimental data.

The solution of 3-D ISPs with dielectric anisotropic scat-
terers is addressed by Fei et al. in [A9]. A novel DNN-based
method relying on a Residual U-Net (ResU-Net) is proposed
by replacing the conventional CNN convolution kernels with
residual kernels. After a preliminary off-line training phase,
during the online test phase, such a ResU-Net is exploited
to instantaneously invert multiple anisotropic model parame-
ters of 3-D homogeneous unknown objects. Moreover, the
ResU-Net is combined with a variational Born iterative method

to enable the computationally effective imaging of inhomoge-
neous or multiple homogeneous targets.

Finally, an innovative System-by-Design (SbD)-based
method is presented by Salucci et al. in [A10] for the
computationally-efficient AI-driven solution of fully nonlin-
ear ISPs. Thanks to the SbD, the effective, robust, and
time-efficient exploitation of an evolutionary algorithm (EA)
is enabled for the global minimization of the data mismatch
cost function. Toward this end, a smart re-formulation of
the ISP based on the a-priori information on the unknown
targets is exploited to define a minimum-dimensionality and
representative set of degrees-of-freedom. Then, the AI-driven
integration of a customized global search technique with a fast
digital twin predictor is exploited to effectively and efficiently
invert both synthetic and real scattering data.

B. Applicative Papers

In [A11], Shao and Zhou propose the use of a GAN to
generate 2-D virtual breast phantoms that are similar to the
real ones, which can be used to develop ML-based microwave
breast imaging (MBI). Each phantom consists of several
images with each representing the distribution of a dielectric
parameter in the breast map. This approach permits to obtain
the large number of digital dielectric breast phantoms required
in ML-based MBI for the training set, difficult to be achieved
from practice. With the GAN-based approach developed in this
work, one may generate an unlimited number of breast images
with much more variations than with traditional strategies.

Still, in the field of application of breast imaging, CNNs are
proposed in [A12] by Quin et al. to achieve joint inversion of
microwave and ultrasonic data. Source and field quantities,
obtained via backpropagation, are used as inputs. Thus, the
network outputs the distribution maps of electric and acoustic
parameters directly to achieve real-time imaging. The authors
test the network with simulations on breast phantoms extracted
from a repository. The results show that with both microwave
and ultrasonic data, a proper estimation of the breast structure
and detection of small tumors can be achieved.

In order to improve the resolution of imaging techniques,
in [A13], Xiao et al. propose a hybrid neural network elec-
tromagnetic inversion scheme (HNNEMIS) with shallow and
deep neural networks. It is applied to solve super-resolution
3-D electromagnetic inversion for microwave human brain
imaging, alleviating the required huge computational costs and
solving this high-contrast ISP. The authors propose a semi-join
back propagation neural network (SJ-BPNN) for nonlinearly
mapping of the measured scattered electric field to two output
channels (i.e., permittivity and conductivity of the scatterers).
Then, the U-Net is employed to further enhance the imaging
quality of the output from SJ-BPNN.

Considering a different application, in [A14], Tan et al.
propose an ML-based method for real-time, high-accuracy
and efficient classification method on frequency-modulated-
continuous-wave (FMCW) automotive radar in the 77 GHz
band. They establish the mapping relationship from the phys-
ical space to the range-Doppler (R-D) image, so they extract
four relevant physical features of targets, such as speed,
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reflectivity, area, and incidence angle. Starting from them,
the classification is performed into five categories, including
pedestrian, bike, sedan, truck/bus, and other static objects. The
overall accuracy bof the real data is about 99% even with
complex multiple-target cases.

A novel application shown in this Special Issue is the clas-
sification of pottery in the framework of archaeology studies,
as proposed by Zidane et al. in [A15], using Low-Terahertz
measurements in the D-band. The authors process the measure-
ments and then the result is classified with an optimized multi-
layer perceptron with up to 99% of accuracy. The technique is
useful to develop compact and portable systems for the pottery
classification instead of current required and bulky equipment
such as Computerized Tomography scanners or synchrotrons.

In [A16], Dai et al. propose a two-stage DNN, called
DMRF-UNet, to reconstruct the permittivity distributions
of subsurface objects from ground-penetrating radar (GPR)
B-Scans under heterogeneous soil conditions. In the first stage,
a Ushape DNN with multi-receptive-field convolutions (MRF-
UNet1) is built to remove the clutters due to the inhomo-
geneity of the heterogeneous soil. Then, the denoised B-scan
from the MRFUNet1 is combined with the noisy B-scan to
be inputted to the DNN in the second stage (MRF-UNet2).
The MRF-UNet2 learns the inverse mapping relationship and
reconstructs the permittivity distribution of subsurface objects.

Wei et al. propose in [A17] a complex-valued U-net
(CU-net) to solve ISPs, so that the complex scattered data
carrying information of the object can be directly used for
inversion without any preprocessing, improving the accuracy
of the final result. The performance is demonstrated with a
finite periodic set of circular cylindrical dielectric rods, which
is detected for textural abnormalities, including missing, flaw,
and displacement of the rods. The distances between rods
and diameters of rods are both subwavelength, beyond the
Rayleigh criterion.

Finally, in order to overcome the classic limitations of using
sparse data to reconstruct images, in [A18], Zhang et al.
propose the application of DL to microwave-induced ther-
moacoustic tomography (MITAT) with specific application to
breast cancer detection. The network proposed is a domain
transform network called FPNet+ResU-Net. They demon-
strate the technique with both simulation and ex-vivo exper-
iments with breast phantoms, obtaining images with better
quality and less artifacts than those obtained by a traditional
imaging algorithm.

C. Summary and Discussion

To conclude the Special Issue, a tentative review of recent
progress in applying AI, ML, and DL to solve ISPs and
imaging problems is presented by Salucci et al. in [A19].
After a brief introduction and a description of several
AI-assisted inversion frameworks, the authors categorize
recent publications into three groups. Fully data-driven
learning approaches approximate the IS process with an
ML model that maps the measured scattered field into
properties of the scatterers. With the help of DNNs and large
datasets, this approach has been more powerful than before.

Knowledge-assisted learning approaches approximate the IS
operators with a combination of data-driven and physics-
driven models. The entire procedure is partitioned into several
steps. Some steps are modeled based on EM physics while the
others are modeled using ML techniques. The choice of the
models in each step is determined based on their complexity.
This approach improves the learning and generalization
ability of the solution procedure, as compared with the fully
data-driven approach. Yet, the physics-embedded learning
approach incorporates the physical models into the DNNs.
This approach provides a way of designing physics-based
neural networks suitable to solve problems involving both
numerical simulation and data processing. Therefore, it is
very suitable for solving IS problems. In this paper, recent
progress in the application of DL to solve EM inverse
scattering and imaging problems is also reviewed.

In the long run, a hybridization of fundamental physical
principles with “knowledge” from big data could unleash
numerous engineering applications that used to be impossible
due to the limit of data information and the ability of com-
putation. As a result, more advanced IS and electromagnetic
imaging techniques can be developed with improved accuracy,
robustness, and computational efficiency.
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