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Guest Editorial
Machine Learning in Antenna Design,
Modeling, and Measurements

I. INTRODUCTION

ACHINE learning (ML) is the study of computational

methods for improving performance by mechanizing
the acquisition of knowledge from experience. As a modern
data-driven optimization and applied regression methodol-
ogy, ML aims to provide increasing levels of automation
in the knowledge engineering process, replacing much time-
consuming human activity with automatic techniques that
improve accuracy and/or efficiency by discovering and exploit-
ing regularities in training data. Indeed, many ML and data-
driven methods, such as conventional artificial neural networks
(ANNs), were introduced and studied within electromagnetics
a few decades ago. However, these past studies did not
benefit from the most recent advances in ML, which have
been driven by the present confluence of improved hard-
ware performance at lower cost, advanced network algo-
rithms and architectures, data science, and considerable efforts
dedicated to advancing the computational electromagnetics
(CEM) benchmark. Today, a broader family of ML techniques
based on ANNs has been developed. Examples include deep
neural network (DNN), convolutional neural network (CNN),
recurrent neural network, generative adversarial network, and
deep reinforcement learning, which have been successfully
applied to different engineering and science problems, ranging
from image and video recognition, social media services,
virtual personal assistant to autonomous vehicles, to name
a few. This naturally suggests that applying ML to real-
world electromagnetic problems could be one of the emerging
trends in ML and artificial intelligence (AI) [1]-[4]. Indeed,
ML has been becoming an important complement to exist-
ing experimental, computational, and theoretical aspects of
electromagnetics.

In designs of antennas [5], arrays [6]—[8], and artificial elec-
tromagnetic media (e.g., metamaterials, metasurfaces, electro-
magnetic bandgap structures, and frequency selective surfaces
[9]), ML offers a wealth of techniques to discover optimum
structures and geometric patterns from high-dimensional sto-
chastic data. ML tools are expected to become the cornerstone
of antenna designs in the near future. Novel ML methods
leveraging randomized numerical and experimental data have
been shown to have the potential to become powerful opti-
mization tools and enablers for designing complex antennas,
arrays, and functional electromagnetic structures, which are
difficult to design with traditional analytical and numerical
methods. Many goals in modern antenna and metamaterial
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designs, spanning temporal, frequency and spectral domains,
and a large number of constraints pose serious optimization
issues. These electromagnetic problems are challenging, as
they usually arise in nonlinear and multiscale forms and strong
mutual correlation (coupling), resulting in high-dimensional
and nonconvex optimization landscapes. Fortunately, ML now
opens the possibility to tackle these traditionally intractable
optimization problems in an effective and time-saving way.
Since the ML tools are rather easy to use and do not require
expert knowledge, they are quite appealing to antenna engi-
neers; arguably, some see this as a potential downfall. Despite
the great potential, it is important to emphasize that these
algorithms must be used properly and that no single tool
can solve all tasks, as learned from the collected articles in
this special issue. Similar to the caution with electromagnetic
simulation tools (i.e., sometimes a blackbox), one must adopt
an equivalent philosophy for the use of ML and data-driven
design and optimization tools and use them properly with prior
knowledge and validation. The collected articles may provide a
guide to important aspects of the ML practice and the specific
nature of usability.

In the field of CEM, there are interesting parallels between
the rise of ML in recent years and the rise of high-performance
computing a few decades earlier. Both approaches provide
powerful tools for obtaining deep insights in electromag-
netic physics and analysis of sophisticated electromagnetic
propagation and scattering problems, enabling the commu-
nity to address scientific and engineering questions at an
unprecedented scale and a broader scope than what was
previously possible. ML-assisted CEM techniques can provide
another valuable perspective for complementing more tradi-
tional approaches and enhancing the speed and accuracy of
existing CEM algorithms. To date, many generative Al and
ML methods have been proven successful for scattering [10],
inverse scattering [11], and imaging [12]-[14] applications,
radar signal processing, and reinforcement strategies for CEM.
It is reasonable to believe that fusion of ML algorithms,
measurement data and numerical modeling will pave the way
for building new generations of antenna and radar systems,
as well as ultrahigh-performance and multidimensional CEM
solvers. The papers published in this Special Issue may con-
vince people that ML and data-intensive analysis will have
a similar impact, complementing other well-established CEM
techniques to expand this field of study.

The objective of this Special Issue is to highlight several
promising avenues of ongoing research to integrate ML and
data-driven Al techniques in the field of antennas and propa-
gation. Specifically, it aims to provide a broader perspective,
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outlining recent successes, opportunities, and open challenges
for ML and their potential applications to antennas, radar,
scattering, and propagation problems, as well as to increase
their visibility within the electromagnetics community.

II. MAIN CONTRIBUTIONS OF THE PAPERS
IN THIS SPECIAL ISSUE

The papers in this Special Issue can be categorized into
five groups based on their engineering applications. These
include Al applications for antenna design, antenna arrays,
metasurfaces, CEM, and other related applications.

A. Al for Antenna Design

In [Al], Li et al. presented a new Online Data-Driven
Enhanced-XGBoost strategy for antenna optimization. The
paper starts with a rich bibliographic analysis presenting and
comparing background strategies and existing approaches.
Then the main method is presented and analyzed in detail.
A set of verification experiments concludes the contribution
by showing the practical relevance of the new technique.

In [A2], Shi et al. proposed an intelligent antenna design
system, which can recommend an appropriate type of antenna
and provide specific geometrical parameters for the chosen
antenna based on the desired performance specifications. The
proposed system consists of an intelligent model based on a
support vector machine to recommend the antenna type and a
stacking ensemble learning model to provide corresponding
structural parameters. The paper presented a test case to
demonstrate the use and effectiveness of the system.

In [A3], Fu et al. combined two models based on ML with
a particle swarm optimization algorithm for antenna synthesis
applications. After a study of existing literature, the work
delineates the new idea by comparing it with standard particle
swarm optimization approaches. The new scheme is further
analyzed in each of its components, and the paper concludes
with a rich numerical experiment section where the strategy
is applied to several design case scenarios.

The contribution by Chen et al. [A4] focuses on antenna
design, accelerated via a multibranch ML strategy. The paper
starts with a bibliographic analysis followed by a modular
description of the main components of the newly proposed
scheme: regression approaches, prescreening strategies, and
final stages. The paper concludes with a validation and ver-
ification section where antenna designs of several radiating
structures are considered and the performance of the newly
proposed approaches is thoroughly analyzed and discussed.

In [AS], Sharma et al. proposed an ML-based optimiza-
tion method based on a Gaussian process regression and
an ANN, which can be an efficient alternative to traditional
optimization methods when designing complex antennas with
many design parameters. The authors showcase a multibeam
monopole antenna surrounded by an inhomogeneous 2-D array
of dielectric bricks, whose spatial distribution is improved
by an ML-based optimization methodology. This method can
provide a complete relational model between design para-
meters and performance specification, which can be readily
adapted to different optimization goals, which is not feasible
with a genetic algorithm (GA) and other popular heuristic
optimization methods.
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In [A6], Liu et al. employed a knowledge-based ANN
model, which includes a forward and an inverse neural net-
work, to design antennas by considering multiple performance
indices. The inverse neural network is exploited to predict
antenna parameters, while the forward neural network provides
the required training dataset to the inverse neural network.
The knowledge-based ANN designed circularly polarized lens
antenna fabricated by the 3-D printing technique exhibits
several impressive features, such as wideband, good axial ratio,
and high gain.

In [A7], Stankovi¢ et al. presented a generalized approach
for antenna design and optimization based on the consensus of
results from several independently trained DNNs. The model
is composed of multiple DNNs, with each DNN giving its
decision according to the same input. The final decision is
made by counting on the consensus of the output of all DNNSs,
in order to reduce the uncertainty of the result from a single
DNN when dealing with a complex design. An inverse design
experiment considering the Yagi-Uda antenna demonstrates
that the proposed model can outperform the conventional
single DNN model as it can provide accurate estimates of the
optimal geometric configurations with fewer training iterations
and a much smaller dataset.

In [A8], Liu et al. presented a prior-knowledge-guided
deep-learning-enabled synthesis method that utilizes a con-
ditional deep convolutional generative adversarial network to
strategically guide and speed up the synthesis of antennas
based on prior knowledge including well-known theorems and
experience in antenna design. As a representative example, this
method is employed to enhance the transmission bandwidth
and the phase shift range of a Ku-band metalens antenna.
Remarkably, the conditional deep convolutional generative
adversarial network-designed metacells enable a more than
50% increase in the gain bandwidth, when compared to
traditional metacells, such as the Jerusalem cross.

In [A9], Mou et al. proposed an optimization method
based on the near-field pattern synthesis for building a beam-
scanning reflector antenna with maximum radiation efficiency.
Different from the conventional conjugate field matching
method, this optimization model combines the radiation effi-
ciency and the power amplifier efficiency as a new criterion
called radiation power efficiency. A series of numerical simula-
tion data with all ON-state power amplifiers is first generated
using Ansys HFSS. Then, the ON—OFF state of each power
amplifier is adjusted by using the support vector machine
such that the reflected focal field can be synthesized using the
near-field pattern of the feed array. Although the result shows
that the resulting gain of the reflector is about 1.5 dB lower
than that of the conjugate field matching method, the average
PA efficiency is improved by 39% (i.e., an improvement of
radiation power efficiency from 6% to 28%).

B. Al for Antenna Arrays

In [A10], Nielsen et al. considered active phased arrays
for 5G and 6G radios and proposed a DNN to perform a
fault analysis. The DNN is tailored to classify different faults
by extracting features hidden in the in-phase and quadrature
components of the baseband signals. The validation of the
method is performed on a commercial active phased array that
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operates at 28 GHz. The method achieves a 99% accuracy
in single element failure detection and 80% accuracy for
multiple-element fault detection.

In [All], Wu et al. proposed an effective ML-assisted
array synthesis method based on the active base element
modeling. Specifically, the proposed model considers the
effects of mutual coupling between each antenna element
and the surrounding medium. Four practical design tasks are
investigated to demonstrate the effectiveness and robustness
of the proposed approach. The result shows that the proposed
ML-assisted array synthesis method can offer a great design
freedom, array performance, and design efficiency and coop-
erate with various optimization methods.

In [A12], Zhang et al. studied the pattern synthesis of a
conformal phased array antenna by using a deep deterministic
policy gradient algorithm, which is a typical deep reinforce-
ment learning algorithm that has a strong fitting ability for
high-dimensional continuous nonlinear problems. Such a prop-
erty is exploited to design a conformal heterogeneous phased
array antenna on the surface of an arbitrarily complex 3-D
object, which is capable of performing fast and full solid angle
beam-steering.

In [A13], Oliveri et al. focused on the application of ML
to expedite the analyses of reflectarrays. Leveraging on the
replacement of a unit cell with its digital twin to reduce the
computational cost, the article extends digital twins to a wider
set of reflectarray problems and derives the appropriate ML
method by comparing different learning strategies and training
approaches.

The contribution by Zhang et al. [A14] proposes a cognitive
antenna array connected with a deep reinforcement learning
model to quickly adapt to the complex electromagnetic envi-
ronment. The platform contains a vector network analyzer
and a microprogrammed control unit to observe and adjust
the antenna array. The vector network analyzer feeds the
signal for the phased array antenna through the power divider
and transfers the measured gain to the host computer for
the invocation of the deep reinforcement learning algorithm,
whereas the microprogrammed control unit controls digital
phase shifters to change the phase of each antenna element
when receiving the command of phase distribution adjustment
from the deep reinforcement learning model. The result shows
a good agreement between the simulated and measured radia-
tion patterns. The algorithm is also exploited in the design of a
conformal phased array antenna, demonstrating the feasibility
of auto-adjustment for different beam angles.

C. Al for Metasurfaces

In [A15], Naseri et al. combined ML with an optimiza-
tion approach to obtain a design strategy for nonuniform
bianisotropic metasurfaces. After a quite detailed bibliographic
analysis, the contribution characterizes the main constraints to
the device’s parameters and then shifts to the proposed model,
which divides the design into macroscopic and microscopic
problems. A combination of ML and optimization techniques
is first exploited to obtain the optimum macroscopic surface
parameters. Then, the particle swarm optimization integrated
with the DNN is employed to determine the microscopic
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properties. The contribution concludes with a set of realistic
design scenarios which are tackled with the new technique,
showing its practical impact.

In [A16], Wei et al. presented a design strategy for metasur-
faces based on deep learning enhanced by equivalent circuit
theory. The contribution starts with an analysis of the advan-
tages and disadvantages of design strategies in literature and
then delineates a different and promising approach. The core
of the paper focuses on the definition and analyses of the new
design idea, the role of circuit theory models and their use in
an overall optimization scheme. A set of application examples
is presented in detail with a special focus on frequency
selective surfaces with different filtering properties.

In [A17], Zhu et al. proposed a Fourier subspace-based deep
learning method for the inverse design of frequency selective
surfaces. Data generated using the numerical simulation is first
exploited to train the ANN model, and the trained ANN model
is then used for the inverse design of dual-band frequency
selective surfaces. The result shows that the ANN model can
have a higher accuracy and computational efficiency when
compared to the GA and the quasi-Newton method.

D. Al for Computational Electromagnetics

In [A18], Yin et al. proposed a cascaded neural network to
solve volume integral equations for 3-D electromagnetic scat-
tering from lossless dielectric objects. The proposed approach
combines ML with the knowledge of the underlying physics
of wave scattering to obtain a better performance than a pure
black-box ML method. The paper discusses the advantages and
limitations of general learning approaches for solving electro-
magnetic scattering problems involving dielectric scatterers.

In [A19], Xiang et al. applied the adaptive ANNs (AANNs)
based on the physics locations of observation cells to rapidly
predict the expansion coefficients of sub-entire-domain basis
functions on interior, edge, and corner cells. This task is gen-
erally time-consuming due to the consideration of the mutual
coupling between all the elements. However, by involving the
AANNS, the mutual coupling among all the elements can be
accounted into the neural networks without the construction
of the mutual coupling matrix, and the expansion coefficients
of sub-entire-domain basis functions can be obtained rapidly.
This model may have a good generalization ability to analyze
scattering problems of periodic structures out of the training
dataset.

In [A20], Zhou et al. deal with multiphysics modeling of
microwave filters enhanced via deep hybrid neural networks.
The complexity intrinsic in multiphysics multiparametric mod-
els is tackled with an ad hoc strategy described in the core
sections of the contributions. Special attention is devoted
to showing the impact of the multiphysics approach when
compared to single-physics strategies. This is also evident in
the rich set of examples showing the applicability of the new
scheme to a vast set of scenarios.

In [A21], Bhardwaj and Gaire focused on the solution of
partial differential equations using neural networks. The paper,
after an analysis of the previous work in the field, presents its
main method applied to a second-order differential equation.
The contribution then focuses on the possibility of doing
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transferred learning and applying the optimized data within
one given differential framework to a different one. The work
concludes with numerical experiments and with an insightful
discussion of the obtained results.

E. Al for Other Applications

In [A22], Friedrichs et al. dealt with the use of ML
approaches within the framework of “angle-of-arrival” esti-
mation. After a literature review, the contribution presents in
detail the general application setting, focusing in particular on
the experimental configuration and model of the to-be-received
signal. The paper then discusses the specific ML strategy that
will be used together with the characterization of the training
generation. The contribution ends with extensive numerical
results where all proposed approaches are validated in quite
relevant scenarios.

In [A23], Cil et al. employed a computationally heavy
empirical approach and ML-based approach to design an
optimal matching medium to be placed between an antenna
and biological tissues. The ML model can predict the optimal
matching medium permittivity and thickness for different tar-
geted tissues (muscle, brain, and fat) and application scenarios.
ML-based optimization methodologies are expected to be
beneficial for antennas used in many biomedical and biological
applications.

In [24], Xiao et al. proposed a method based on an ANN for
the resonant-mode recognition of dielectric resonator antennas.
The input vector of the ANN model consists of the information
on electric fields, resonant frequencies, and geometric config-
urations of the dielectric resonator antenna. The ANN model
can classify the resonant features and predict the dominant
resonant mode of the antenna, with a 96.74% accuracy.
Noticeably, although the accuracy can be increased by the
CNN model, the execution time is considerably increased
when compared to the ANN model.

In [A25], Wang et al. proposed a deep learning method
to identify the inertia characteristics, such as the precession
frequency, precession angle, spin frequency, and inertia ratio,
of a cone-shaped space target based on time-varying scattering
fields. To achieve this, a micro-Doppler spectrogram dataset
is first constructed by time—frequency analysis with numerical
simulation accelerated with a multistatic method and point
scattering model, and experimental tests. The dataset is then
compressed through singular value decomposition to reduce
the training time in ML. The accuracy of identification is
improved with the interaction loss function and feed-forward
denoising CNNss.

III. CONCLUSION AND ACKNOWLEDGMENT

Motivated by the emerging developments and some suc-
cessful applications of ML and Al in antennas and electro-
magnetics, we have put together a collection of papers written
by some of the active research groups, covering a wide range
of topics, including optimal design of antennas and electro-
magnetic structures, array synthesis, numerical modeling and
ML algorithms with data-driven techniques. We hope that
these articles and the successes reported therein could serve
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to address the concerns of many of us in the antennas and
propagation community as to why ML and data-driven design
techniques have received remarkable attention over the past
few years. We believe that ML and data-driven design and
optimization will have a profound impact across many fields
of antennas and propagation. Despite the intensive research
during the past few years and many successful applications,
research on Al and ML for antennas and electromagnetics is
still in an early exploratory stage. Much remains to be done to
make them highly useful and powerful tools for complicated
real-world engineering applications. The objectives of this spe-
cial issue are to review the current research activities, present
novel and original ideas, share success stories and lessons
learned, inspire further research on this important subject, and
enrich the knowledge of the readers and researchers in this
rapidly emerging field of study.

Finally, we sincerely thank all the authors and reviewers for
their contributions, and we especially thank the Staff Members
of the IEEE TRANSACTIONS ON ANTENNAS AND PROPAGA-
TION for their constant support over the entire process from
the proposal to the final publication.
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