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Correlated Sample-Based Prior in
Bayesian Inversion Framework

for Microwave Tomography
Rahul Yadav , Adel Omrani , Guido Link , Marko Vauhkonen , and Timo Lähivaara

Abstract— When using the statistical inversion framework in
microwave tomography (MWT), generally, the real and imag-
inary parts of the unknown dielectric constant are treated as
uncorrelated and independent random variables. Thereby, in the
maximum a posteriori estimates, the two recovered variables may
show different structural changes inside the imaging domain.
In this work, a correlated sample-based prior model is presented
to incorporate the correlation of the real part with the imagi-
nary part of the dielectric constant in the statistical inversion
framework. The method is used to estimate the inhomogeneous
moisture distribution (as dielectric constant) in a large cross
section of polymer foam. The targeted application of MWT is
in industrial drying to derive intelligent control methods based
on tomographic inputs for selective heating purposes. One of
the features of the proposed method shows how to integrate
lab-based dielectric characterization, often available in MWT
application cases, in the prior modeling. The method is validated
with numerical and experimental MWT data for the considered
moisture distributions.

Index Terms— Correlated sample-based prior, industrial
microwave drying, maximum a posteriori, microwave tomogra-
phy, statistical inversion method.

I. INTRODUCTION

M ICROWAVE tomography (MWT) use-cases in the
industry are mostly for monitoring and inspection

purposes, as reported in [1]–[3]. A new idea is to apply
MWT based control in the industrial microwave heating sys-
tem [4], known as HEPHAISTOS [5], to increase its heating
efficiency and enhance the material processing quality. The
HEPHAISTOS system has a hexagonal design [6] for the
applicator (cavity) that offers a very high uniform electro-
magnetic field inside the cavity. Its main areas of applications
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are in material processing, for example, drying, sintering, and
thermal curing. Often, this system suffers from the problem of
hot-spot formation and overheating (thermal runaway) specifi-
cally while drying materials with low-loss like porous polymer
foam. These situations may degrade the quality of material
processing or may even lead to damage to the industrial unit.

One of the solutions to eliminate the problem of thermal
runaway and hot-spot formation is intelligent control of power
sources (magnetrons) to obtain a selective heating rate at
each stage of the drying process [7], [8]. However, to apply
such a precise microwave power control in situ and nonin-
vasive measurement of the unknown distribution of moisture
inside the porous material is required. The infrared camera
sensors integrated with the microwave drying systems for
process observation are limited to providing information on
the material’s surface only and, hence, not adequate to provide
efficient control of microwave power sources. Thus, integration
of MWT imaging modality [9], [10] with the drying system
was proposed to estimate the moisture content distribution in
a polymer foam. Using the MWT tomographic output, strate-
gies for intelligent control can be derived. The MWT senor
setup consists of open-ended waveguide antennas operating
in the X-band range. The selection of the frequency and the
antenna type for the MWT sensor array are detailed in [11].
For estimating the moisture levels (in terms of dielectric
constant) in a porous material with a large cross-sectional
dimension, we apply a statistical inversion approach [12] based
on the Bayesian framework. Some earlier efforts of using
statistical inversion approaches in MWT have been proposed
in [13]–[16].

In our earlier studies [17], [18] on statistical inversion in
MWT, the real and imaginary parts of the unknown dielectric
constant were treated as independent and uncorrelated random
variables. This assumption led to independent reconstructions
of the real and imaginary parts, causing conflicting and
incorrect moisture level estimates by the real and imaginary
parts. As the imaginary part governs the heating behavior, its
correct estimation becomes imperative when deriving optimal
control algorithms for the drying system. Therefore, to achieve
accurate maximum a posteriori estimates (MAP), the key is to
construct a joint-prior model that favors correlation between
the real and imaginary parts. In [19] and [20], a similar prob-
lem is addressed using the expectation–maximization (EM)
algorithm [21], albeit it may not be a suitable approach for our
high-dimensional problem with a nonlinear observation model.
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On the other hand, joint reconstructions in the deterministic
inversion methods have been addressed in: 1) [22] where
the complex permittivity in the imaging domain is expressed
as a weighted sum of a few pre-selected permittivities, close
to the range of the expected values, and permittivity weights
are obtained using Gauss–Newton inversion (GNI) algorithm;
however, the method is mostly valid for practical biomed-
ical applications with linearized inverse scattering model and
2) in [23] and [24], an approximate ratio is obtained between
the real and imaginary parts of the complex permittivity based
on the dielectric characterization of the material(s) under test,
and this approximate ratio served as the prior information
in the GNI algorithm with the total variation multiplicative
regularizer term. Moreover, the results show improvement
by adjusting the approximate average ratio. However, in our
work, the moisture-to-dielectric relationship is nonlinear; thus,
a single average factor for all moisture points will lead to
inaccurate reconstructions.

In this work, we present a correlated sample-based prior
model, as an extension to our preliminary work [25], to con-
struct the prior covariance structure for the joint-prior Gaussian
density. The method is primarily suitable for the use-case
of MWT when either structural information of the imaging
domain or dielectric behavior of the material under test is
available a priori. For example, in medical applications, the
structure of the body organs and their dielectric properties
are known approximately. In our MWT application, dielectric
characterization of the foam with respect to different moisture
levels (wet-basis) is available. To form the prior covari-
ance structure, first, a database containing possible moisture
distribution is formed with different spatial variations. The
inhomogeneous profile of each sample is modeled using the
squared exponential covariance function, and its dielectric
values are based on the available dielectric characterization
data. Next, the second-order statistics of this database are
calculated to build the joint prior covariance structure. Herein,
the performance of the proposed correlated sample-based
prior model is first evaluated with numerical scattered field
data from the 2-D MWT setup for three moisture scenarios.
Furthermore, we have also evaluated the sample-based prior
model on the scattered electric field data from our developed
prototype of the MWT system. Results presented show the
efficacy of this approach in comparison to the past approach
where parameters are considered uncorrelated.

This article is organized as follows. Section II provides
an overview of the MWT setup and the forward observation
model. Section III details the statistical inversion framework.
Prior construction and sample-based prior model approach are
given in Section IV. In Section V, the results for different real-
istic moisture scenarios are presented using 2-D synthetic data.
Experimental results are investigated in Section VI. Finally,
Section VII shows the concluding remarks.

II. MICROWAVE TOMOGRAPHY: SETUP

AND OBSERVATION MODEL

In this study, we consider a 2-D imaging domain �foam =
[−25, 25] × [−1.5, 1.5] cm with inhomogenous relative
dielectric constant �r = � �

r − j� ��
r , placed in the background

Fig. 1. Schematic of the 2-D MWT setup used in the study.

domain � consisting of free-space with �b = 1 − j0. For
this 2-D numerical study, the open-ended waveguide antennas
are modeled as a line source with an excitation frequency
of 8.3 GHz and are located at a distance of 15 cm from
the top and bottom surfaces of the foam. The 2-D MWT
setup is shown in Fig. 1 where the sources are represented
by number Tags N = 1, 2, . . . , 12. The scattered electric
field E scat under the illumination of time-harmonic (time
convention e− jωt with angular frequency of ω is assumed and
suppressed) TM-polarized incident field is given as [26], [27]

E scat(r) = k2
∫

�foam

G
(
r, r �)(�r

(
r �) − �b

)
Etot

(
r �)dr �

∀r ∈ �, r � ∈ �foam (1)

where k is the wavenumber of the background medium and
G(r, r �) is the background Green’s function of 2-D line source
(i.e. the Hankel function of the second kind and zeroth order).
The observation and source points are denoted by the position
vectors r �→ (x, y) and r � �→ (x�, y�), respectively. The term
Etot is the total electric field inside the domain �foam and is
calculated as

Etot(r) = Einc(r) + k2
∫

�foam

G
(
r, r �)(�r

(
r �) − �b

)
Etot

(
r �)dr �

∀r, r � ∈ �foam (2)

where Einc is the incident electric field.
After discretization [28], [29] for all N transmitter and

receiver, (1) is given as

E scat = Lo(�r )Etot (3)

and (2) as

Etot = [I − Lin(�r )]
−1 Einc. (4)

Furthermore, by substituting (4) in (3), the scattered electric
field can then be expressed as

E scat = Lo(�r )[I − Lin(�r )]−1 Einc = F (�r ) (5)

where L0 and Lin are short notations for the integral operators
in (1) and (2), respectively. This is known as a forward
observation model that maps the dielectric constant to scattered
electric field where the mapping is denoted by F . As the
total electric field depends on the dielectric constant of the
foam, its mapping with the scattered electric field is nonlinear.
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In (5), the scattered field data can come from real experiment
or may be simulated data, while the right-hand side denotes
the approximate physical nature of the problem. To obtain
estimates using measurement data related to S-parameters,
proper calibration scheme can be used to convert the data into
electric field [30], [31].

In MWT, the aim is to estimate the 2-D dielectric profile
of the porous material given the measurement data E scat.
Generally, this is a severely ill-posed inverse problem mainly
due to the fact that different profiles may map to the same
measurement data. Also, part of the ill-posedness is due to
the properties of the integral operator defined in (5) [32].
Under the quantitative inversion framework, the regularization
term (related to the prior information) can reduce this problem
to some level and improve the estimates. In our case, some
prior information related to the dielectric behavior of the foam
with respect to wet-basis moisture content level is available.
Furthermore, we expect the moisture content distribution to
have smooth distribution in the foam. In this work, to naturally
encode this information in the regularization term, we apply
a statistical inversion approach based on the Bayesian frame-
work. With the Bayesian estimate, it can be quantified which
parameters are more favorable to generate the measurement
data rather than providing fixed estimates that are given in
classical, deterministic, inversion framework.

III. BAYESIAN INVERSION FRAMEWORK

Consider an inverse problem of identifying an unknown
parameter �r ∈ Cm×n given noisy measurement data E scat ∈
CN×N according to the observation model [17], [18]

E scat = F (�r ) + ξ (6)

where ξ denotes the additive measurement noise component.
Herein, the unknown parameter and noise terms are considered
mutually independent. Note that the unknown parameter and
the measurement data are complex quantities and denoted
by C. In this article, the real and imaginary parts are treated
separately as real-valued random variables for the real-valued
optimization problem. They are separated into real and imag-
inary parts and concatenated in the 2-D vector form as

E scat =
(

R
{

E scat
}

I
{

E scat
} )

2S×1

(7)

and

�r =
({

�r �
i

}{
�r ��

i

})
2Nn×1

, i = 1, 2, . . . , Nn (8)

where S = N × N and Nn = m × n are the total number of
measurements and the total number of unknowns, respectively.

In statistical inversion, we treat the unknown parameters as
random variables, and information about them is expressed in
terms of probability densities. The inverse problem can then
be expressed as given the measurement data, and the task is
to find the conditional probability density π(�r | E scat) for the
unknown parameter �r . The conditional probability density is

constructed using Bayes’ theorem as

π
(
�r | E scat

) = π
(
E scat | �r

)
π(�r )

π(E scat)

∝ π
(
E scat | �r

)
π(�r ) (9)

where π(�r | E scat) is the posterior density, π(E scat | �r ) is
the likelihood density that represents the distribution of the
measured data if �r is known, and π(�r ) is the prior density
that contains the prior information available for unknown �r .
The denominator is the marginal density of the measured data
and plays the role of normalization constant. It is often ignored
since it requires integration over all possible �r space. In the
next step, we construct the likelihood and prior density terms
and obtain the posterior density.

Let the joint prior model of the unknowns and noise be
π(E scat, �r , ξ). Using Bayes’ theorem repeatedly, the joint dis-
tribution of all associated random variables can be decomposed
as

π
(
E scat, �r , ξ

) = π
(
E scat | �r , ξ

)
π(ξ | �r )π(�r )

= π
(
E scat, ξ | �r

)
π(�r ). (10)

In the case that both �r and ξ are fixed, the measurement in the
model (6) is completely specified, so the conditional density
π(E scat | �r , ξ) is formally given by

π
(
E scat | �r , ξ

) = δ
(
E scat − F (�r ) − ξ

)
(11)

where δ is the Dirac delta distribution. Using (9)–(11), we get
the likelihood model as

π
(
E scat | �r

) =
∫

π
(
E scat, ξ | �r

)
dξ

=
∫

π
(
E scat | �r , ξ

)
π(ξ | �r )dξ

=
∫

δ
(
E scat − F (�r ) − ξ

)
π(ξ | �r )dξ

= πξ |�r

((
E scat − F (�r )

) | �r
)
. (12)

In the quite common case of mutually independent �r and ξ ,
we have πξ |�r (ξ | �r ) = πξ (ξ), where πξ (·) denotes the
distribution of noise. Furthermore, if the noise is assumed to be
additive Gaussian with zero mean and covariance matrix �ξ ,
the likelihood density can be written as

π
(
E scat | �r

) ∝ exp

{
−1

2

(
E scat − F (�r )

)�
�−1

ξ

×(
E scat − F (�r )

)}
(13)

where (·)� denotes the transpose operator. Furthermore

π
(
E scat | �r

) ∝ exp

{
−1

2

(
E scat − F (�r )

)�
L�

ξ Lξ

×(
E scat − F (�r )

)}
(14)

which can then be written in the norm form as

π
(
E scat | �r

) ∝ exp

{
−1

2

∥∥Lξ

(
E scat − F (�r )

)∥∥2
}

(15)
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where Lξ is the Cholesky factor of the inverse of the
noise covariance matrix. As a prior information, it is first
assumed that the moisture variation is smooth inside the foam.
Such an assumption can be encoded using a Gaussian density
with mean η�r and covariance ��r as

π(�r ) ∝ exp

{
−1

2

(
�r − η�r

)�
�−1

�r

(
�r − η�r

)}
= exp

{
−1

2

∥∥L�r

(
�r − η�r

)∥∥2
}
. (16)

Here, L�r is the Cholesky factor of the inverse of the prior
covariance matrix ��r . The prior covariance matrix encodes
the spatial smoothness knowledge of the unknowns. After
multiplying the expressions in (15) and (16) and ignoring the
normalization constant in (9), posterior density is obtained that
contains the complete solution of the inverse problem in the
Bayesian framework and can be expressed by point estimates.
One of the most common point estimates in tomographic
imaging problems is the maximum a posteriori (MAP). The
MAP estimate can be computed from the posterior as

�̂rMAP = arg max
�r

π
(
�r | E scat

)
. (17)

This problem is equivalent to the minimization problem

�̂rMAP = arg min
�r

{∥∥Lξ

(
E scat − F (�r )

)∥∥2 + ∥∥L�r

(
�r − η�r

)∥∥2
}

(18)

which is a regularized nonlinear least-square (LS) problem.
In (18), the prior norm term acts as a regularization term, and
it shares close links to generalized Tikhonov regularization.
This minimization problem can be formally solved using
the gradient-based optimization method. In the Newton-type
method, the minimum point is found iteratively by linearizing
the forward model, resulting in a linear LS solution in each
iteration as

�r
+1 = �r

+ α
 A−1 B (19)

with

A = (
J T

 �−1

ξ J
 + �−1
�r

)
B = (

J T

 �−1

ξ

(
E scat − F

(
�r


)) − �−1
�r

(
�r


− η�r

))
where α
 is the step length parameter, index 
 is the iteration
number, and J
 is a Jacobian matrix (its derivation can
be found in [33]), which is decomposed in real (JR) and
imaginary (JI) parts as

J =
[

JR JI

−JI JR

]
2S×2Nn

.

The approximate covariance of the posterior density �post is
given as

�post = (
J T

 �−1

ξ J
 + �−1
�r

)−1
. (20)

This approximate posterior indicates the uncertainty associated
with the ill-posedness of the solution.

A. Noise Model

Let us denote the noise standard deviations (STD) of the real
and imaginary parts of the complex-valued scattered electric
field data to be σR and σI, respectively. Under the assumption
that noise between measurement points is independent and not
correlated, the noise covariance is then given as

�ξ =
[
σ 2

R
IS 0S

0S σ 2
I

IS

]
(21)

where IS is an S × S identity matrix and 0S is an S × S zero
matrix. In the case of real measurements, the noise covariance
can be estimated by performing repeated measurements.

IV. PRIOR MODELING

In Section III, we defined the general expression for the
prior density in (16). Since the unknown complex-valued
dielectric constant is treated as a real-valued random variable,
the prior density in (16) can be further expressed [34], [35] as

π

([
� �

r
� ��

r

])
∝ exp

{
−1

2

(
� �

r − η��
r

� ��
r − η���

r

)�(
���

r
���

r �
��
r

����
r ��

r
����

r

)−1

×
(

� �
r − η��

r

� ��
r − η���

r

)}
. (22)

The terms η��
r

and η���
r

denote the mean values of the real and
imaginary parts of the dielectric constant, respectively. The
matrices ���

r
∈ RNn×Nn and ����

r
∈ RNn×Nn are the marginal

covariance matrices. ���
r �

��
r

∈ RNn×Nn and ����
r ��

r
∈ RNn×Nn

are the cross-covariance matrices of real and imaginary parts
of dielectric constant, which embeds their correlation. The
covariance ��r ∈ R2Nn ×2Nn , assumed to be a positive definite
matrix, is given as

��r =
(

���
r

���
r �

��
r

����
r ��

r
����

r

)
2Nn×2Nn

. (23)

1) Uncorrelated Real and Imaginary Parts: If real and
imaginary parts of the dielectric constant are treated as sta-
tistically uncorrelated, i.e., ���

r �
��
r

= ����
r ��

r
= 0, then the prior

covariance matrix can be written as

��r =
(

���
r

0Nn

0Nn ����
r

)
2Nn×2Nn

(24)

where 0Nn is an Nn × Nn zero matrix. The moisture field
variation inside the foam is assumed to be smooth. Here,
such a random field [36] can be generated using squared-
exponential (SE) covariance function [37], which can account
for the inhomogeneities. In general, the SE structure in 2-D is
defined as

Ci j = exp

(
−1

2

(∥∥xi − x j

∥∥2

c2
x

+
∥∥yi − y j

∥∥2

c2
y

))
(25)

where cx and cy are characteristic length components and
i, j = 1, . . . , Nn . In practice, the characteristic lengths affect
the moisture distribution (smoothness) in the x and y direc-
tions, respectively, Thus, (24) becomes

��r =
(

σ 2
��

r
C 0Nn

0Nn σ 2
���

r
C

)
2Nn×2Nn

(26)



5864 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 70, NO. 7, JULY 2022

where σ��
r

and σ���
r

are the standard deviations for the real and
imaginary parts of the dielectric constant, respectively. These
standard deviation values are multiplied with the SE covari-
ance function, so as to control its overall amplitude variation.
The values are chosen based on what knowledge of the
unknown parameters is available prior to any measurements.

2) Correlated Real and Imaginary Parts: Consider that the
real and imaginary parts of the dielectric constant are assumed
statistically correlated. This implies that the cross-covariance
terms ���

r �
��
r

	= 0 and ����
r ��

r
	= 0 are required to form the covari-

ance structure in (23). However, to find cross-variances matri-
ces, dependence between the two random variables should be
known. Herein, to establish the correlation between the random
variables and form the prior covariance structure, we use
sample-based densities.

In sample-based densities, we make use of a large set
of previously/numerically obtained samples of the random
variable in question. These datasets are known as samples.
Assume that π = π(�r ) is the probability density of a random
variable �r , and we have a large database χ of size K and
contain realizations of �r

χ =
{(

� �
r

� ��
r

)
1
,

(
� �

r
� ��

r

)
2
,

(
� �

r
� ��

r

)
3
, . . . ,

(
� �

r
� ��

r

)
K

}
(27)

where K is the total number of samples. The aim is to
approximate π(�r ) based on the χ . For this, we calculate the
sample mean

η�r =
(

η��
r

η���
r

)
≈ 1

K

K∑
j=1

(
� �

r
� ��

r

)
j

(28)

and sample covariance

��r ≈ 1

K

K∑
j=1

(
� �

r
� ��

r

)
j

(
� �

r
� ��

r

)T

j

−
(

η��
r

η���
r

)(
η��

r

η���
r

)T

. (29)

The dielectric constant values for the samples are generated
numerically using the data from the dielectric characterization
of the polymer foam in the laboratory environment. In the
dielectric characterization, a small cylindrical shape volume
of the foam is characterized using a cavity perturbation tech-
nique at room temperature to obtain the complex dielectric
value for different levels of moisture content. The developed
dielectric measurement system is shown in Fig. 2. The foam
sample is located in a quartz tube to have a stable position
inside the cavity. Both sides of the cavity are terminated to
a small iris of 10 mm width and the same height as the
WR340 waveguides [38]. The moisture content is calculated
based on the wet basis, that is,

M = Wm − Wd

Wm
× 100 (30)

where M is the moisture percentage, Wm is the weight of the
foam sample after adding the water, and Wd is the weight
of the dry sample. At the first step, we obtained the dielectric
constant associated with the 0% moisture level. Then, a certain
amount of water is added manually, and the dielectric constant
is recorded in each level. The real part of relative dielectric
constant was found to be in the range of 1.164 and 3.255,

Fig. 2. Experimental setup of the cavity-perturbation [38] method for
dielectric characterization of the foam.

TABLE I

MATERIAL MODEL PARAMETERS

and the imaginary part varying between 0.017–0.276 for wet
basis moisture content from 0% to 80%, respectively. After
the characterization, the relationship between the wet-basis
moisture content Mmeas and its corresponding dielectric value
is obtained using curve fitting and is given as [10], [39]

θ = āθ exp
(
b̄θ Mmeas

)
(31)

where θ = {� �
r , � ��

r } denotes the material parameters. The
values for the mean terms āθ and b̄θ are provided in Table I.
The variables δaθ

and δbθ
are the standard deviation terms and

denote the uncertainties in the curve fitting.
In order to create the dataset χ containing different mois-

ture content realizations, the experimentally obtained mapping
Mmeas → {� �

r , � ��
r } is applied. To generate simulated moisture

samples, the uncertainties in the dielectric characterization is
also considered, and hence, (31) is replaced as

θ = aθ exp (bθ M) (32)

where aθ and bθ are random variables such that aθ ∼ U(āθ −
δaθ

, āθ +δaθ
) and bθ ∼ U(b̄θ −δbθ

, b̄θ +δbθ
), where the variable

are sample from the uniform distribution U . Numerical values
for δaθ

and δbθ
are given in Table I. The moisture content

distribution in each sample M can be expressed as

M = M∗1 + δM L Z (33)

where 1 is an all-ones vector, M∗ and δM are the mean and
standard deviation of the moisture content field, respectively,
L is the lower triangular matrix of the Cholesky factorization
of the covariance C , and Z is a standard normal random
vector.

Using (32) and (33), a dataset χ with K = 5000 ran-
dom moisture samples is created. For each sample, moisture
mean and standard deviation are chosen randomly. Also,
the characteristic lengths in each sample were randomized.
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Fig. 3. Real (left) and imaginary (right) parts of the dielectric constant for samples drawn from uncorrelated smoothness and sample-based prior models.

Algorithm 1 Steps for Generating Samples for the Correlated
Sample-Based Prior Model. Note That, to Ensure the Positive
Definiteness for Matrix C , a Small Diagonal Component Is
Added
1: M∗ ∼ U(0, 80) %, δM ∼ U(2, 20) %
2: cx ∼ U(xmin, xmax), cy ∼ U(ymin, ymax)
3: Evaluate C = Covariance(cx, cy, x, y) using (25)
4: L = Cholesky(C)
5: M = M∗ ones(Nn) + δM L randn(Nn)
6: Calculate � �

r , � ��
r using (32)

A pseudocode for generating a sample is given in the fol-
lowing, where the terms xmin = 0 cm, xmax = 50 cm,
ymin = 0 cm, and ymax = 3 cm denote the minimum and
maximum dimensions in the x and y directions of the foam
domain, respectively.

Using the dataset, in which each sample is stacked in a
vector form [see (8)], we calculated (28) and (29) using
MATLAB built-in mean and covariance functions. The new
prior covariance structure, from here on, is known as the
sample-based prior model. The samples (or realization) from
this prior density can be generated as

�r = η�r + L�r Z . (34)

A randomized draw from the sample-based prior model is
shown in Fig. 3 (right). Also, the same sample when we
ignore the cross-covariance terms is shown in Fig. 3 (left). It is
evident that, with the sample-based prior model, similar spatial
variations are seen in the real and imaginary parts. How-
ever, with the neglected cross-covariance matrices, real and
imaginary parts show different variations. In the next section,
we present numerical examples that show how the choice of
two priors affects the MAP estimation and overall estimation
accuracy. It should be emphasized that, to evaluate the MAP
estimate with uncorrelated parameters, we have used (26)
instead of sample-based prior covariance with cross-covariance
terms treated as zero.

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the MAP
estimates with the smoothness prior and sample-based prior for
different moisture scenarios and levels. The imaging algorithm
is tested with three cases where a high moisture distribution is
tested in the first case. In the second case, it is assumed that
moisture distribution is piecewise constant. For the third case,
considering practical interest, the foam top surface geometry
is assumed rough instead of the planar, and the moisture is
modeled as a hot spot (has more moisture than the surrounding
area). To generate the numerical measurement data from the
MWT setup shown in Fig. 1, a finite element method (FEM)-
based COMSOL simulation tool is chosen. The scattered
electric field data are generated at a frequency of 8.3 GHz
and stored in a matrix of size 12 × 12. Also, we added noise
of 3% of the peak value of the numerical scattered field to
the data. Note that the lower frequency point is chosen from
X-band as it presents low degree of nonlinearity for the inverse
scattering problem [40], [41] and computational efficiency.

As for the observation model F (�r ), we choose the method
of moment (MoM) computation [42] with a pulse basis and
point-matching testing function. For the MoM computation
at 8.3 GHz, we assume that the imaging domain �foam is
discretized into 80 × 20 uniform rectangular pixels along the
x and y directions, respectively. Here, the pixel size is chosen
to be of size λ/6, so as to achieve sufficient numerical accuracy
for the MoM solver (in comparison to the COMSOL solver).
Thus, the total number of unknowns in the imaging domain,
i.e., the real and imaginary part of the dielectric constant, for
estimation becomes 3200. Note that a different solver is chosen
for synthetic data generation to ignore “inverse crime,” [12],
i.e., the use of the same grid settings or numerical model for
data generation and observation model. Otherwise, the same
grid setting or the numerical model may potentially lead to
a situation where severe modeling errors are ignored, hence
giving a false impression on the accuracy of the estimates.

To calculate the MAP estimates with the smoothness prior,
we set prior σ��

r
= 1, and σ���

r
= 0.1. The mean value η�r

in the prior is set to dielectric constant of the dry foam,
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Fig. 4. High moisture case: MAP estimates with smoothness prior and sample-based prior model with real part (left) and imaginary part (right) of the
dielectric constant. To highlight the dielectric constant values, contour is added.

i.e., 1.16− j0.01. For the sample-based prior, the prior covari-
ance structure evaluated from the database is directly used to
calculate the MAP estimates. For our simulation study, σR and
σI are set to 3% of the peak value of the numerical scattered
field data. To start the iteration, the value of �r0 is set to the
dielectric constant of the dry foam, i.e., �r0 = 1.16 − 0.01i
and α = 0.25 are sets of all the reconstructions. The iterations
are terminated, following the stopping criteria Q(�r
+1 ) <
Q(�r


), where Q(�r

) is the norm term defined in (18). The

reconstruction algorithm is implemented in MATLAB 2018b
and takes approximately or less than 1 min per image.
All computations were performed on a local computer with
the configuration of 32 GB access memory, Intel Core(TM)
i7-7820HQ central processing unit, and Nvidia Quadro M2200
graphics processing unit.

A. Smooth Moisture Variation

In the first set of experiments, numerical scattered electric
field measurement data for a high moisture scenario are gen-
erated using (32) and (33). The MAP estimation with smooth-
ness prior model and sample-based prior model is shown in
Fig. 4. It can be seen that, with both the priors, the real part is
estimated fairly well. However, the estimation of the imaginary
part is much more accurate with the sample-based prior model
with certain moisture regions being clearly indicated.

Post reconstruction, we also plotted the MAP estimate for
a fixed value y = 0 cm along the cross section of the foam
with ±3 posterior standard deviation and compared it against
the respective true cases for both the real and imaginary parts,
as shown in Fig. 5. Especially, for the imaginary part, the
uncertainty bound is higher when using just smoothness prior.
However, this uncertainty bound is reduced for the case with

TABLE II

HIGH MOISTURE CASE

sample-based prior. To quantitatively evaluate the accuracy of
the reconstruction, we compared the true and estimated profile
by using root mean square error (RMSE) and resemblance
coefficient (RC) performance metrics. The RC parameter is
calculated as

RC�r =

∫ ∫
�foam

�MAP
r �True

r dxdy√∫ ∫
�foam

(
�MAP

r

)2
dxdy

√∫ ∫
�foam

(
�True

r

)2
dxdy

(35)

where �MAP
r = �MAP

r − �MAP
r �, �True

r = �True
r − �True

r �, and
·� is the mean operator. For the RC, its values vary between
0 and 1. As the RC gets closer to 1, the MAP estimation is
closer to the true profile. The RMSE and RC are calculated
separately for the real and imaginary parts of the dielectric
constant. Note that, to calculate these metrics, the number
of pixels in the true profile is interpolated corresponding to
the pixels in the estimated profile. The performance metric
values for high moisture cases are shown in Table II. They
are compared separately for the real and imaginary parts for
the two prior models. It is clear from RC and RMSE values
that the overall accuracy of the MAP estimate has improved
with the sample-based prior model in both cases.
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Fig. 5. Comparison between the true profile and MAP estimate for a high moisture case along the cross section of the foam y = 0 cm. The real part (left)
and imaginary part (right) of the estimates are compared for smooth (top) and sample based prior (bottom), respectively. The light gray color denotes
±3 posterior standard deviation, denoted as σ .

Fig. 6. Representation of RC evaluated for reconstructed distribution with
smoothness prior (top) and sample-based prior (bottom) for 50 moisture
scenarios. The vertical dashed lines indicate the serial number for the moisture
scenario.

Furthermore, we also tested the two prior models on 50 dif-
ferent smoothly distributed moisture scenarios and evaluated
the corresponding RC parameter, as shown in Fig. 6. Note
that the RC metric is chosen for better representation purposes
only. For most of the selected scenarios, significant improve-
ment can be seen in RC with the sample-based prior model.

B. Piecewise Homogeneous Moisture Distribution

In this case, the moisture distribution is assumed piecewise
homogeneous in the foam. The moisture area is given the value
�rmoisture = 1.557 − j0.05, and the rest of the foam is assumed
dry with �rdry = 1.16 − j0.01. It should be emphasized that
the primary goal is not to estimate the exact shape of the
moisture area. This special case is taken considering practical
interest where the moisture is sometimes located in bulk in one
portion of the foam. Also, this case will test the generalization
capabilities of the algorithm. As it breaks the smoothness
assumption, which is otherwise present in the dataset of

Fig. 7. MAP estimates for the piecewise homogeneous moisture sce-
nario (top) with sample-based prior with real (middle) and imaginary
parts (bottom) of the dielectric constant. The red dashed lines indicate the
true boundary of the moisture profile.

samples used to build the sample-based prior covariance
structure, the MAP estimates from the sample-based prior
model are shown in Fig. 7 along with the true moisture distri-
bution. We observe that both the estimated real and imaginary
parts of the dielectric constant indicate the same presence of
moisture and are well-estimated. This is also evident from the
performance metrics shown in Table III. In the MAP estimates
with smoothness-based prior, the imaginary part showed the
wrong location of the moisture and hence not shown.

C. Random Rough Surface

So far, the foam with a planar surface is considered for
moisture detection during an industrial process. However, it
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Fig. 8. Top figure shows the top surface of the foam with considered roughness and its mean height. Asymptotic electric fields magnitude (bottom left) and
phase (bottom right) compared with the FEM results of a rough surface with an σ of 0.15 and 0.23 are probed at y = −0.5 cm and −25 cm ≤ x ≤ 25 cm
with shown for the line source number 4 located at y = 11.5 cm.

TABLE III

PIECEWISE HOMOGENEOUS CASE

has been observed that dielectric foam as a porous material
can also have some uncertainty on the surface. In order to
investigate the effect of the roughness of the surface, we con-
sider a dielectric foam with a randomly rough surface (RRS)
at the top. The random roughness is modeled [43] as follows:

y(x) =
M∑

m=−M

m−β Gm cos(2πmx + Um) (36)

where m is the integer number representing the spatial fre-
quency, β denotes the spectral exponent, Gm ∼ N (0, σ ) is
sampled from a Gaussian distribution, and Um ∼ U(0, 2π)
is sampled from the uniform distribution. The random rough
surface is characterized here by the following parameters:
σ = 0.15 and β = 0.8. To obtain the scattered field, a hot-
spot with 40% moisture (1.3785 − j0.0432) with radius 1 cm
at position (15 cm, 0 cm) is considered inside the foam with
permittivity 1.16 − j0.01 and a moderate rough surface with
mentioned parameters.

In Fig. 8, for one sample frequency, i.e., f = 8.3 GHz,
the real and imaginary parts of the electric field of FEM and
asymptotic fields are compared [44] for a dry foam with two
different degrees of roughness. It should be noted, in order
to obtain the asymptotic expression for the rough media,
it is assumed that the fluctuation in the top surface is zero
(i.e. root mean square (rms) height). Moreover, in the forward
model, the top surface is given the average distance from each
antennas to the top surface of the foam, i.e., h = hi � and

i = 1, 2, . . . , N/2. The distance from the bottom antennas
to the bottom surface of the foam is considered unique (has
only one value). We observed that, in the MAP estimate,
as shown in Fig. 9, with the smoothness prior, the imaginary
part is indicating the presence of a strong artifact. However,
in the estimated imaginary part with sample-based prior, strong
presences of only one-hot spot is favorable. However, with
both prior models, the shadow image due to the roughness of
the surface is also visible.

VI. EXPERIMENTAL RESULTS

In this section, the sample-based prior model is tested
on the scattering electric field data from our experimental
MWT data for a wet-spot moisture case in a planar foam of
size 50 × 7.6 × 75 cm. The MWT experimental prototype
shown in Fig. 10 consists of 12 WR90 open-ended waveguide
antennas (with a VSWR 1.03 : 1). The distance of the top and
bottom antenna to the top and bottom surface of the polymer
foam is 8 cm, and the center-to-center distance between two
adjacent antennas is 5 cm. The top and bottom antennas are
resided in free-space from −12.5 cm to +12.5 cm along the
x-axis. For data acquisition, antennas are connected to the
Agilent N5224A vector network analyzer (VNA) via a P9164C
2 × 16 USB solid-state switch matrix with the maximum
power level of 5 dBm. It should be noted that a waveguide
calibration is performed to remove the unwanted reflections.
Moreover, the MWT setup is surrounded by absorbers to
increase the signal-to-noise ratio. Phase stable cables (offering
phase stability of 3◦ at the maximum frequency) are used
for the connections between the measurement devices and
the antennas. Communication between the controlling com-
puter, VNA, and the switch is provided using the Ethernet
cable. The data acquisition process is entirely automated using
MATLAB R2018b. For each foam sample, 12 × 12 data points
(S-parameter measurements) were collected at 8.3 GHz using



YADAV et al.: CORRELATED SAMPLE-BASED PRIOR IN BAYESIAN INVERSION FRAMEWORK FOR MICROWAVE TOMOGRAPHY 5869

Fig. 9. Reconstructions with smoothness prior (first row) and sample-based prior (second row) of a hot-spot area embedded inside the foam with an assumed
rough top surface with σ = 0.15.

Fig. 10. Experimental setup of the MWT system prototype at the KIT Laboratory, Germany. The MWT system consists of X-band open-ended waveguide
antennas as sensors and is indicated by number Tag 1. The alignments of the top and bottom antennas are shown in the bottom left by the green arrow, and
the portion of the metal plate is removed to enable wave propagation between the top and bottom antennas. The polymer foam is shown by number Tag 2
and surrounded by absorbers, as shown by number Tag 3. The measurement data acquisition setup consists of the solid switch and VNA that are denoted by
number Tags 4 and 5, respectively. The location plane of the test target is shown in right by white dash lines.

an IF bandwidth of 500 Hz. The approximate time for data
acquisition was about 40 sec.

To create the wet-spot moisture target, a spherical foam of
diameter 2.5 ± 0.1 cm and with 46% wet-basis moisture level
(�r ≈ 2.0 − 0.085i ) is chosen. An approximate location of the

target inside the foam is centered at (−9 cm, 1.55 cm, 0 cm).
We follow similar steps described in Section V to obtain
the MAP estimates from the measurement data. Only the
standard deviations of the measurement noise [see (21)] need
to be changed and are calculated for 8.3 GHz frequency point
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Fig. 11. Reconstructions with smoothness prior (left) and sample-based prior (right) of a wet-spot area embedded inside the foam. The red dashed line
indicates the true mean location of the target.

following the approach used in [45]. In the forward model, the
antennas are modeled as line sources, and the electric field data
EMoM are converted to equivalent scattering matrix (in terms
of S-parameter) SMoM through calibration with respect to dry
foam response Sscatdry as

SMoM = Sscatdry

EMoMdry

� EMoM. (37)

The MAP estimate with the smoothness prior and
sample-based prior is shown in Fig. 11 for the selected x-y
plane at z = 0 cm. With the smoothness model, the location
of the target and its value are satisfactorily estimated in the real
part. However, the imaginary part shows completely different
spatial variations of the moisture distribution in the foam. With
the sample-based prior, a significant improvement in the MAP
estimation is observed. It is clear that, with this sample-based
prior approach, the obtained MAP estimates offer a good
reconstruction accuracy in comparison to the smoothness prior
model.

VII. CONCLUSION AND DISCUSSION

In this work, we used microwave tomography to estimate the
moisture distribution (as dielectric constant) in a polymer foam
using the Bayesian inversion framework. The imaging modal-
ity will be integrated to derive intelligent control approach
for an industrial microwave drying system. It is shown that,
when real and imaginary parts are treated uncorrelated in
the smoothness-based prior model, obtained dielectric values
can be conflicting and incorrect i.e., there is some imbalance
between the real and imaginary parts of the dielectric constant.
Thus, we proposed a sample-based prior model to correctly
reconstruct both the real and imaginary parts of the dielectric
constant and the corresponding correlation between them.
To construct the sample-based prior model, we use a large
dataset consisting of simulated moisture samples to evaluate
the prior mean and build the prior covariance structure. In each
sample, moisture values are chosen based on the parametric
model obtained from the dielectric characterization of the
foam. The proposed approach is tested with 2-D numerical

microwave tomography data obtained in the X-band frequency
for the considered moisture scenarios. The results presented
show that a significant improvement in the estimation result is
achieved with the sample-based prior model in comparison to
the smoothness prior model. Also, two performance metrics,
namely, the RC and RMSE, clearly highlight the effectiveness
of the sample-based prior model on the reconstruction accu-
racy. Furthermore, the developed algorithm is tested on the
MWT experimental prototype data. The results obtained with
sample-based prior indicate that the estimated moisture distri-
bution is very close to the true moisture scenarios considered
in comparison to the smoothness prior.

We observed that the real and imaginary parts in the
MAP estimation are slightly underestimated, which may be
caused due to the modeling errors. Together with the source
modeling error, this discrepancy might be caused due to
the 2-D versus 3-D Green’s function mismatch when the
geometry of the target is no longer independent of the
z-coordinates. In essence, these errors are very significant for
the case when spherical geometries are assumed for the wet
spots in comparison to infinite extended scatterer cases (where
the general performance of the 2-D forward model with line
sources is good). A detailed discussion was provided in [46]
for medical imaging applications but is equally applicable for
our application as well. Nonetheless, the source model errors
remain persistent in our study. Thus, one way to improve the
reconstructions is by using the Bayesian inversion approach in
conjunction with the approximation error scheme [4], which
can accommodate statistics of these errors resulting in better
estimates. Therefore, a Bayesian approximation error [47]
scheme will be employed to further improve the microwave
tomography estimation. In the industrial drying system, the
foam temperature will be higher than the room temperature
at the exit. Therefore, dielectric characterization of the foam
with wet-basis moisture levels at different temperatures is
our next task. In this article, the real measurements are done
with the static case where the influence of the conveyor belt
is not considered. Therefore, future work will be related to
doing dynamic measurements where the foam will be under
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movement, and the estimated moisture information will be
utilized in the feedforward loop of the intelligent control
block of the industrial drying system. To further reduce the
data acquisition time from MWT sensor setup and build fast
controllers, limited-view MWT setup with statistical inversion
framework has been in the testing phase.
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