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Orthogonality Properties of Characteristic Modes
for Lossy Structures
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Abstract— Orthogonality of the characteristic modes with
respect to the weight operator of the generalized eigenvalue equa-
tion (GEE), and in the far-field, is investigated in the case of lossy
conducting and dielectric objects. Linking the weight operator
to radiated power is shown to provide orthogonal far fields in
the lossless case. In the lossy case, both the orthogonality of the
characteristic far fields and the weight operator orthogonality of
the modal currents are satisfied with respect to the Hermitian
inner products only for sufficiently symmetric geometries, such
as a sphere. For irregular lossy shapes, independent of the
symmetry of the formulation, the far-field orthogonality can be
obtained only with respect to the symmetric (non-Hermitian)
product. The weight operator orthogonality can be satisfied
with (complex) symmetric formulations, but again only with
respect to the symmetric product. Since the symmetric products
are not related to any physical power quantity, the modes do not
form a (radiated) power orthogonal set in the lossy case. Hence,
for lossy structures, characteristic modes (CMs) do not satisfy
their classical definition and they need to be redefined.

Index Terms— Characteristic modes (CMs), conductor losses,
dielectric losses, surface integral equation (SIE), volume integral
equation (VIE).

I. INTRODUCTION

CHARACTERISTIC modes (CMs) were originally intro-
duced for lossless structures as modal functions that form

a complete orthogonal set on the surface of a sphere with
respect to radiated power [1]–[3]. These functions diagonalize
the perturbation operator of a scattering problem and can be
used to expand any field scattered or radiated by the object [2].
Harrington and Mautz [4] approached the same problem with
an integral (impedance) operator relating the current on the
surface of a perfect electric conductor (PEC) to the tangen-
tial electric field. They formulated a generalized eigenvalue
equation (GEE) and showed that the solutions of the GEE
diagonalize both the impedance and radiation operators.

In both perturbation and integral operator approaches, the
key feature is the far-field orthogonality. As pointed out in [4],
a symmetric weight operator can diagonalize the impedance
operator, but only a weight operator related to the radiated
power can provide orthogonal far fields. The same prop-
erty was shown to be valid also with the volume integral
equation (VIE)-based CM formulation for lossless dielectric
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non-magnetic bodies [5]. The common feature in these two
formulations is that the GEE is expressed with real symmetric
operators.

In the case of nonsymmetric operators, and for lossy objects,
the situation is more complicated. Harrington et al. [5] and
Chang and Harrington [6] tend to symmetrize the operators
and express the GEE in terms of the Hermitian parts. This
approach, applied for the Poggio–Miller–Chang–Harrington–
Wu–Tsai (PMCHWT)-based surface integral equation (SIE)
formulation [6], is found to produce spurious non-physical
solutions [7]–[9].

In the lossy case, two alternative CM formulations have
been proposed [5], [10]. The first one, producing complex
eigensolutions, was argued to diagonalize both the scatter-
ing and impedance operators, thus providing also orthogonal
far fields. The second one, giving real eigensolutions and
diagonalizing the impedance operator only, was shown to
have non-orthogonal far fields. The first approach is recently
generalized for closed lossy impedance surfaces [11], for
lossy dielectric and dielectric–magnetic [12], as well as for
combined PEC and lossy dielectric objects [13].

In this article, we show that neither of the formulations
for lossy metallic sheets introduced in [10] gives modes that
simultaneously diagonalize both the impedance and radiation
operators. The consequences of this result are investigated in
the case of lossy dielectric and dielectric–magnetic objects
following Harrington’s first formulation type [5]. We use both
the SIE-(PMCHWT) and VIE-based approaches, including
symmetric and nonsymmetric formulations. To our knowl-
edge, numerical solutions of the VIE approach for (lossy)
dielectric–magnetic materials have not been considered before.

The orthogonality with respect to the radiated power opera-
tor is shown to be equivalent to the far-field orthogonality.
In the lossless case, this implies that the weight operator
related to the radiated power ensures orthogonal far fields.
In the lossy case, the orthogonality properties of the CMs are
found to depend also on the symmetry of the geometry. For
sufficiently symmetric objects, such as a sphere (the results
are not shown here, but this is obvious since the CMs match
with the spherical modes), the CMs satisfy both the operator
and the far-field orthogonalities. Numerical results of previous
studies propose that this result holds also for a cube [9], [14].

For irregular nonsymmetric lossy dielectric geometries,
none of the considered CM formulations satisfy the oper-
ator nor the far-field orthogonality with respect to the
Hermitian inner product. However, in that case, the symmetric
formulations satisfy orthogonality relations with respect to
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the symmetric product. This agrees with Harrington’s result
for the operator orthogonality [5] but disagrees with the far-
field orthogonality. Although these symmetric orthogonality
relations are not related to any physical (power) quantity,
symmetric formulations are useful in the modal expansion,
since the computation of the eigenvectors of the adjoint
GEE [15] can be avoided.

II. DEFINITION, FORMULATION, AND PROPERTIES OF

CHARACTERISTIC MODES

Let us consider time-harmonic electromagnetic fields with
the time convention e−iωt . We begin by reviewing the main
features of the perturbation- and integral-operator-based CM
formulations in the lossless case.

A. Perturbation Operator Formulation

Garbacz [2] introduced the mathematical basis for the CMs
using scattering and perturbation operators of an arbitrarily
shaped lossless object. The modes were obtained from an
eigenvalue equation defined by

P
[

f n

] = νn f n (1)

where P is called the perturbation operator, νn is the eigen-
value, and f n is the characteristic field pattern. The perturba-
tion operator essentially describes how the object transforms
converging fields to diverging fields in comparison with free
space. Mathematically, it is related to the scattering operator
S as follows:

P = 1

2
(S − I) (2)

where I is the identity operator.
Since the scattering problem maintains reciprocity, the

corresponding scattering matrix is complex symmetric. In a
lossless case, the scattering matrix is also unitary, and thus
both the scattering and perturbation matrices are normal [2].
According to the spectral theorem [16], the eigenvectors of
a normal matrix are orthogonal, that is, the scattering and
perturbation matrices are unitarily similar to a diagonal matrix.
In other words, the scattering matrix can be expressed as

S = U D U H (3)

where D is a diagonal matrix, matrix U is unitary, that is,
U H U = I , and (·)H denotes Hermitian (complex conjugate)
transpose.

The perturbation-operator-based CMs can be defined as
a set of orthogonal far-field pattern functions that unitarily
diagonalize both the scattering and perturbation operators.

B. Integral Operator Formulation

The integral operator formulation for the CMs starts with a
linear integral equation of the scattering or radiation problem

L[F] = −Ginc. (4)

Here, L is a linear surface or volume integral operator,
a generalized impedance operator,1 F is a current density, and
Ginc is a known incident field. In [4], a solution to (4) was
found in the form of a GEE

L
[

f n

] = (1 − iλn)M
[

f n

]
(5)

where λn is an eigenvalue, f n is an eigenvector, and M is
a weight operator. Obviously, the choice of the operator M
is crucial since it determines the properties of the eigenvalues
and eigenvectors. The basic principle in this approach is to
define M so that both the generalized impedance operator L
and the radiation operator are simultaneously diagonalized.

The integral-operator-based CMs can now be defined as a
set of weighted orthogonal currents, weighted with respect to
the radiated power, which diagonalize both the radiation and
the generalized impedance operators. A direct result from this
definition is that the corresponding far fields are orthogonal
and they also diagonalize the scattering operator.

The obvious difference between the perturbation-operator-
based formulation and the integral-operator-based one is that
the first one considers far-field eigenfunctions, while the
second one deals with eigencurrents on the surface or volume
of the object. As pointed out in [4], these two formulations
lead to the same CMs with the same far-field properties. In the
following, we consider only the integral operator approach.

C. Operator Orthogonality Relations

The way the CMs diagonalize the integral operators depends
on the symmetry of the operators. Let us express (5) in the
following form:

i(L − M)
[

f n

] = λnM
[

f n

]
. (6)

A special case is when the operators on the both sides of this
equation are real and symmetric, that is, they satisfy〈

g,L
[

f
]〉 = 〈

L
[
g
]
, f

〉
(7)

with respect to the symmetric L2 product

〈u, v〉 =
∫

�

u · v d�. (8)

Here, domain � is either a volume V or a surface S. If this
is satisfied, and operator M is positive (or negative) definite,
the characteristic eigencurrents f n diagonalize operators L and
M [16]. In other words, the following orthogonality relations
hold [4], [5]:〈

f ∗
m,L

[
f n

]〉 = 0,
〈

f ∗
m,M

[
f n

]〉 = 0, if m �= n. (9)

In that case, the eigenvalues are also real and the eigenvectors
are equiphase and can be chosen as real [16].

If one of the operators in (6) is complex symmetric, opera-
tors L and M are diagonalized with respect to the symmetric
product, defined without the complex conjugate [5]〈

f m,L
[

f n

]〉 = 0,
〈

f m,M
[

f n

]〉 = 0, if m �= n. (10)

1Operator L can be interpreted as an impedance operator, that is, a mapping
from the electric current to the electric field only in a few special cases.
Generally, it involves magnetic currents and magnetic fields, as well.
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In a general case of nonsymmetric operators, diagonaliza-
tion is satisfied with respect to the eigenvectors f n and the
adjoint eigenvectors gm , according to [15]

〈
g∗

m,L
[

f n

]〉 = 0,
〈
g∗

m,M
[

f n

]〉 = 0, if m �= n. (11)

Here, gm is a solution of the adjoint GEE [15], [17]

La
[
gm

] = (
1 + iλ∗

m

)
Ma

[
gm

]
(12)

and La and Ma are the adjoint operators of L and M. For self-
adjoint operators, La = L, Ma = M, and the eigenvectors
f n and gn agree.

D. Power Orthogonality

The above-mentioned operator orthogonalities have a con-
nection to the physical properties of the CMs. Let us next
consider radiated P rad

n , reactive P reac
n , and dissipated Pdiss

n
power of an eigencurrent f n . The first two are defined with
the complex Poynting vector as

P rad
n = 1

2
Re

∫
S

(
En × H∗

n

) · n d S (13)

P reac
n = −1

2
Im

∫
S

(
En × H∗

n

) · n d S + ωW sto,in
n (14)

and with the corresponding eigenfields En and Hn . Here, S
is the surface of the object with unit normal vector n, and
W sto,in

n is related to the energy stored in the volume enclosed
by S [4], [5]. The dissipative power Pdiss

n due to dielectric
losses is given by

Pdiss
n = ω

2

∫
V

Im(ε1)‖En‖2 dV (15)

where V is the volume of the object and ε1 is the dielectric
permittivity of V . For lossy conductors

Pdiss
n = 1

2

∫
S

Re(Zs)‖Jn‖2 d S (16)

where Zs is the position-dependent surface impedance of
the conductor and Jn is the electric surface current. In the
following, we consider only structures with constant ε1 and
Zs . The power quantities can also be expressed with operator
inner products [18], [19]

P rad
n = −1

2
Re

〈
f ∗

n,W
[

f n

]〉
(17)

Pdiss
n = −1

2
Re

〈
f ∗

n,N
[

f n

]〉
(18)

P reac
n = 1

2
Im

〈
f ∗

n, (W + N )
[

f n

]〉
. (19)

Here, f n is a modal surface or volume current, including both
the electric and magnetic currents. Operator W contains the
integral operators of the exterior region, defining the radiation
properties and the reactive power stored in the near field. The
material-dependent operators are included in N . The exact
forms of these operators will be given later.

E. Far-Field Orthogonality Relations

From (17) to (19), it is evident that only the Hermitian
inner products (with complex conjugates) agree with physical
power quantities. In the lossy case, however, two different
types of orthogonality definitions of CMs are used [4], [5].
The first one is the Hermitian orthogonality, defined for the far
fields as ∫

S∞
E∗

m(r) · En(r) d S = 0, if m �= n (20)

where S∞ is a spherical surface in the far-field region. Another
type of orthogonality relation, called symmetric orthogonality,
is defined without the complex conjugate∫

S∞
Em(r) · En(r) d S = 0, if m �= n. (21)

F. Summary of the Properties of CMs

By combining the classical results [2]–[5] with [12], [15],
the main properties of the CMs can be summarized in the
lossless case as follows.

P1 The eigenfields unitarily diagonalize the scattering oper-
ator.

P2 The eigencurrents are not necessarily orthogonal, but the
corresponding eigenfields are orthogonal in the far-field.

P3 The eigenvalues are real and provide the ratio of reactive
and radiated power.

P4 The eigencurrents diagonalize the radiated and reactive
power operators.

P5 The eigencurrents diagonalize the generalized
impedance operator and the weight operator. The
exact form depends on the symmetry of the operators,
as in Section II-B.

It is important to emphasize that these properties are valid for
lossless structures only. In the following, we study them in the
case of lossy structures.

III. CM FORMULATIONS FOR LOSSY METALLIC SHEETS

To illustrate the role of the losses on the eigensolutions,
we start with the electric field integral equation (EFIE) for an
open metallic surface [10]

(Z − ZsI)[ J] = −Einc (22)

with the EFIE impedance operator Z = R + iX = η0T0,
(constant) surface impedance Zs = Rs + i Xs , and incident
field Einc. Here, η0 is the wave impedance of vacuum and
operator T0 is defined in Appendix B.

A. Radiated Power-Based Formulation

To connect the eigenvalues to radiated power, we choose
M = R, and write the GEE as [18]

(Z − ZsI)[ Jn] = (1 − iλn)R[ Jn]. (23)

This formulation agrees with the first formulation of [10], and
the eigenvalues have the following physical interpretation [18]:

λn = P reac
n

P rad
n

+ i
Pdiss

n

P rad
n

(24)
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Fig. 1. Far-field correlation coefficient of the CMs (28) up to order 30 for
a 1.0 m × 0.5 m rectangular plate at 300 MHz. (a) Lossless surface with
Zs = 0.5iη0 and (b) lossy surface with Zs = 0.5η0. The axes correspond to
mode indexes.

where the powers are defined as in (17)–(19) with W = Z and
N = −ZsI. If the surface is a PEC, Zs = 0, and (23) reduces
to the well-known GEE with real and symmetric operators [4]

X [ Jn] = −λnR[ Jn]. (25)

In that case, the obtained eigencurrents diagonalize both the
impedance operator Z and the radiated power operator R
and the modes are reactive and radiated power orthogonal.
Consequently, the far fields of the modes are orthogonal, too.

Let us then consider a lossless surface with Zs = i Xs �= 0.
In this case, the GEE reads

(X − XsI)[Jn] = −λnR[ Jn]. (26)

Also here the operators on both sides of the GEE are real
symmetric, and the same orthogonality properties hold as with
PEC. However, a lossy surface with Zs = Rs > 0, gives

(X + i RsI)[Jn] = −λnR[ Jn]. (27)

The difference from the previous cases is that the operator
on the left-hand side is not real symmetric, but it is complex
symmetric. Therefore, the eigensolutions are complex and it
is not obvious which orthogonality relations they satisfy.

Let us next illustrate this with a numerical example.
In Fig. 1, we show the far-field correlation coefficient of modes
m and n defined as

ρnm =
∫

S∞ E∗
n · Em d S√∫

S∞ E∗
n · En d S

√∫
S∞ E∗

m · Em d S
(28)

for a rectangular metallic plate at 300 MHz. We consider
a lossless surface with Zs = η00.5i , and a lossy one with
Zs = 0.5η0. The results in Fig. 1 suggest that the (Hermitian)
far-field orthogonality is not necessarily satisfied in the lossy
case as the correlation coefficient matrix includes non-zero
off-diagonal elements.

B. Active Power-Based Formulation

In [5], another CM formulation for lossy structures was
proposed. In this formulation, the weight operator is chosen as
the real part of the operator L, corresponding to active power,
radiated plus dissipated, giving the following GEE:

(X − XsI)
[

J (2)
n

] = −λ(2)
n (R − RsI)

[
J (2)

n

]
. (29)

Fig. 2. Weighted inner products of the characteristic eigencurrents for a
lossy 1.0 m × 0.5 m rectangular plate with Zs = 0.5η0 at 300 MHz, with
respect to (a) radiated, (b) reactive, and (c) dissipated power operators for
radiated power-based formulation (23). (d) Far-field correlation coefficient of
the modal fields for active power-based formulation (29). The axes give the
mode indexes.

Clearly, in the lossless case, Re(Zs) = Rs = 0, and this
formulation agrees with (25). In the lossy case, however, the
active power and radiated power formulations do not agree.
The eigenvalues of (29) have the following interpretation [18]:

λ(2)
n = P reac

n

P rad
n + Pdiss

n

. (30)

This formulation diagonalizes the impedance operator but does
not provide orthogonal far fields in the lossy case [10].

To further illustrate the effect of losses, and the differences
between the two formulations, Fig. 2 shows orthogonality of
the CMs of the radiated power-based formulation with respect
to the radiated R, reactive (X − XsI), and dissipated, RsI,
power operators. In this figure, also the far-field orthogonality
of the solutions of the active power-based formulation is
shown. In Fig. 3, the real parts of the eigenvalues of the
radiated and active power-based formulations are plotted as
the losses, that is, Re(Zs), are increased.

From these results, the following observations can be made.

1) The far-field orthogonality is identical with the radiated
power orthogonality.

2) The non-orthogonality is stronger with respect to the
reactive and dissipated power operators than with respect
to the radiated power operator.

3) In the lossy case, the active power-based formulation
(29) leads to much stronger non-orthogonality in the far
fields than the radiated power-based one (23).

4) The eigenvalues of the formulation (29) tend to approach
zero as losses are increased, while in (23), the losses
contribute to the imaginary part only, providing separa-
tion of the radiated, reactive, and dissipated power.
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Fig. 3. Real parts of the eigenvalues of the radiated power formulation (23)
and active power formulation (29) for a 1 m × 0.5 m lossy metallic sheet
versus the real part of the surface impedance Zs/η0.

5) The active power-based formulation (29) diagonalizes
the real and imaginary parts of the impedance operator,
and thus the full impedance operator. As a consequence,
the modes are orthogonal with respect to both active and
reactive power.

IV. CM FORMULATIONS AND ORTHOGONALITY

PROPERTIES FOR LOSSY DIELECTRIC–MAGNETIC

OBJECTS

From the results of Section III, we may conclude that
only the first formulation type, based on the radiated power
operator, provides separation of the powers for lossy struc-
tures. In this section, we consider the properties of similar
formulations in the case of lossy dielectric and dielectric-
magnetic bodies. We investigate the effect of losses on the
orthogonality properties of the solutions of two alternative
CM formulations. The first one is based on VIE formula-
tion [5] and the second one on the PMCHWT SIE formu-
lation [9], [12]. Both symmetric and nonsymmetric forms are
considered.

The electromagnetic material properties of the background
and a homogeneous and isotropic object are characterized by
constant parameters ε0, μ0 (vacuum) and ε1, μ1, respectively.
The object can be lossy with complex permittivity defined as

ε1 = ε′
1 + iσ1/ω = ε0

(
ε′

r + iε′′
r

)
. (31)

Here, σ1 is the conductivity of the material.

A. Volume Formulation for Dielectric-Magnetic Bodies

With the volume integral operators (VIOs) given in
Appendix A, we define two other VIOs. The first one depends
only on the shape of the body [5], [18]

WV =
⎡
⎢⎣

i

ωε0
V −U

U i

ωμ0
V

⎤
⎥⎦ =

[
Vε −U
U Vμ

]
(32)

while the second depends on the material parameters [5], [18]

NV =
⎡
⎢⎣

1

iωε0

1

εr − 1
I 0

0
1

iωμ0

1

μr − 1
I

⎤
⎥⎦ =

[
Iε 0
0 Iμ

]
. (33)

The (nonsymmetric) VIE for a dielectric–magnetic object can
now be expressed compactly with these operators as follows:

(WV + NV )[FV ] = −Ginc (34)

where Ginc = [Einc, H inc]T is the incident electromagnetic
field and FV = [J V , M V ]T . The complex power balance of
the body can be expressed with these operators as in (17)–(19).
The radiated power can also be expressed as

Re
〈
F∗

V ,WV [FV ]
〉 =

[
J V

M V

]H [
Re(Vε) −i Im(U)
i Im(U) Re

(
Vμ

) ]
︸ ︷︷ ︸

MV

[
J V

M V

]
.

(35)

By selecting MV as the weight operator, the GEE reads

(WV + NV )[Fn] = (1 − iλn)MV [Fn]. (36)

This is the generalization of the first VIE formulation of [5],
resulting in the formulation for lossy dielectric–magnetic
objects.

If the body is non-magnetic, the operators of (36) become

WD
V = Vε, N D

V = Iε, MD
V = Re(Vε). (37)

As a result, the GEE reads [5]

(Im(Vε) − Iε)[ Jn] = −λnRe(Vε)[Jn] (38)

which is the well-known VIE-based CM formulation for
dielectric bodies [5].

B. PMCHWT-Based Surface Formulation

Next, we present the required operators and GEEs with the
PMCHWT-based SIE formulation. With the SIOs defined in
Appendix B, PMCHWT equations are given by⎡

⎣η0T0 + η1T1 −K+
0 − K−

1

K+
0 + K−

1

1

η0
T0 + 1

η1
T1

⎤
⎦[

J S

M S

]
= −

[
γt Einc

γt H inc

]
(39)

with the wave impedance η j = √
μ j/ε j , j = {0, 1}.

By arranging the operators of the background with index
0 in WP and the operators with index 1 in NP , (39) can be
expressed as [9]

(WP + NP )[FS] = −γt Ginc (40)

with FS = [J S, M S]T . Using these notations, the complex
power balance can be expressed as in (17)–(19).

Following the formulation proposed in [9] and [12], the
weight operator is chosen as

MP =
[

Re(η0T0) −i Im(K0)
i Im(K0) Re(1/η0T0)

]
. (41)

Here, K j is the same as in (56) but without the residual term.
This choice of the weight operator again relates the equivalent
surface current to the radiated power, and the GEE reads

(WP + NP )[Fn] = (1 − iλn)MP [Fn]. (42)
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C. Symmetric Formulations

In [5], a symmetric form of the VIE formulation was
proposed. In this formulation, the operators read

W S
V =

[
Vε iU
iU Vμ

]
, N S

V =
[
Iε 0
0 Iμ

]
. (43)

Clearly, the second operator, which depends on the material
properties of the body, is unchanged. For the PMCHWT
equations, the same symmetrization process gives operators [6]

W S
P =

⎡
⎣η0T0 iK+

0

iK+
0

1

η0
T0

⎤
⎦, N S

P =
⎡
⎣η1T1 iK−

1

iK−
1

1

η1
T1

⎤
⎦. (44)

Here, both operators are modified. In order to have the same
eigensolutions as with the nonsymmetric PMCHWT-based for-
mulation, the weight operator for the symmetric sPMCHWT
formulation should be defined as [9] and [12]

MS
P =

[
Re(η0T0) −Im(K0)
−Im(K0) Re(1/η0T0)

]
. (45)

Analogously, for the symmetric VIE (sVIE), we define

MS
V =

[
Re(Vε) −Im(U)
−Im(U) Re

(
Vμ

) ]
. (46)

In the lossless case, operator N S
V is purely imaginary, and thus

Re
(
W S

V + N S
V

) = Re
(
W S

V

) = MS
V . (47)

The GEE for the sVIE can now be expressed as

Im
(
W S

V + N S
V

)[
FS

n

] = −λnRe
(
W S

V + N S
V

)[
FS

n

]
(48)

with FS
n = [Jn, i Mn]T . In other words, in the lossless case,

the GEE of the sVIE can be expressed in terms of its real and
imaginary parts, and the operators are real and symmetric.
In the lossy case, operator N S

V is complex, and the operator
on the left-hand side of the GEE becomes complex symmetric,
while the weight operator is still real symmetric.

For sPMCHWT formulation, the situation is different.
In both lossless and lossy cases, the material-dependent opera-
tor N S

P is complex. This implies that in all cases, the operator
on the left-hand side of the GEE is complex symmetric, while
the weight operator is real symmetric [12]. In addition, since

Re
(
W S

P + N S
P

) �= Re
(
W S

P

) = MS
P (49)

the GEE for the sPMCHWT cannot be expressed in terms of
its real and imaginary parts, as proposed in [6].

D. Verification of the VIE and SIE CM Formulations

To verify the solutions of VIE and SIE CM formulations,
two test objects are used, as specified in Table I.

Fig. 4 shows the real and imaginary parts of the eigenval-
ues of ten lowest order modes computed with the nonsym-
metric and symmetric VIE formulations and nonsymmetric
PMCHWT formulation. The results are given as functions of
the imaginary part of εr of the objects at 3 GHz.

The results in Fig. 4 suggest that the VIE- and
PMCHWT-based approaches give eigenvalues with essentially
the same behavior in both cases of lossy dielectric and lossy

TABLE I

PROPERTIES OF THE TEST OBJECTS. D-BRICK REFERS TO DIELECTRIC
MATERIAL AND DM-BRICK TO DIELECTRIC–MAGNETIC MATERIAL

Fig. 4. Eigenvalues versus ε′′
r at 3 GHz: (a) real part for D-brick (b) imaginary

part for D-brick, (c) real part for DM-brick, (d) imaginary part for DM-brick.
(e) Real and (f) imaginary parts with sVIE for DM-brick.

dielectric–magnetic bodies. Some differences in the numerical
values can be observed due to numerical approximations.
In addition, the eigenvalues have the same physical interpre-
tation as in (24).

E. Inner Product and Far-Field Orthogonalities

Next, we study the orthogonality properties of the modes.
In Fig. 5, we show the weighted inner products and far-field
correlation coefficients of the modes computed with the VIE
and PMCHWT formulations in the case of the D-brick with
εr = 9.1 + 10i . Visually, the results are nearly identical.

Next, we illustrate that the modes of the VIE and PMCHWT
formulations satisfy the symmetric far-field orthogonalities,
that is, as (28) is defined without the complex conjugate. These
results are shown in Fig. 6. It is important to note that the CMs
of the nonsymmetric formulations do not satisfy symmetric
operator orthogonality relations (10).

F. Diagonal Dominance of the Matrices

Another point of view on the orthogonality of the modes
can be obtained by studying the diagonal dominance of the
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Fig. 5. Hermitian weighted inner products (9) of the characteristic eigencur-
rents: (a) VIE and (c) PMCHWT. Hermitian far-field correlation coefficient
(28) of the characteristic fields: (b) VIE and (d) PMCHWT. D-brick with
εr = 9.1 + 10i at 3 GHz.

Fig. 6. Symmetric far-field correlation coefficient: (a) VIE and (b) PMCHWT
formulation. D-brick with εr = 9.1 + 10i at 3 GHz.

Fig. 7. Inverse of δn, n = 1, . . . , 10, as a function of ε′′
r with PMCHWT

formulation at 3 GHz. (a) D-brick and (b) DM-brick.

inner product matrix

δn = |Ann|∑
m |Amn| , m �= n (50)

where A is defined with M, the weight operator of the GEE

Amn = 〈
F∗

m,M[Fn]
〉
. (51)

Fig. 7 shows the inverse of δn for the D- and DM-bricks
computed with the (nonsymmetric) PMCHWT formulation.

By comparing the results of Figs. 4(b) and 7(a), a clear cor-
relation between the diagonal dominance of the inner product

Fig. 8. Maximum of 1/δn , n = 1, . . . , 10, versus ε′′
r and geometry parameter

d at 3 GHz. d = 1 is a cube with edge length 25.40 mm, d = 0.5 is a
25.40 mm× 19.05 mm × 12.70 mm brick. (a) D-brick and (b) DM-brick.
PMCHWT formulation.

matrix and the imaginary part of the eigenvalues of the modes
can be observed. In the case of a dielectric–magnetic brick, the
correlation is not as obvious. In addition, a correlation between
Figs. 4(b) and 5 can be observed. For example, Fig. 5 shows
that modes 5 and 9 correlate only with each other. Thus, their
diagonal dominance factors are identical.

In the last example, we vary both the geometry and the
imaginary part of the permittivity. Fig. 8 shows the maximum
of the inverse of the diagonal dominance for the ten first
modes as a function of the imaginary part of the relative
permittivity ε′′

r and symmetry parameter d . We observe that
the diagonal dominance depends also on the geometry. For a
cube, as d = 1, the inner product matrix is more diagonally
dominant than for a brick, agreeing with the results presented
in [9] and [14].

V. DISCUSSION

The integral operator-based theory of CMs with real sym-
metric operators is well established in the case of PEC-only
structures [4]. The corresponding theory and the properties of
the CMs for dielectric, and, in particular, for lossy materials
have been found to be much complicated and less known. For
these reasons, to date, the CMs have been mainly applied for
lossless conducting structures [20]. Since the losses have not
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attained much attention before, the definition of CMs in the
lossy case has been uncertain.

Garbacz [1], Garbacz [2], and Garbacz and Turpin [3]
did not consider losses at all, and Harrington et al. [5]
and Harrington and Mautz [10] gave only a rather brief
presentation of the theory for lossy dielectric objects without
further analysis. In [5], two alternative formulations for lossy
penetrable objects were proposed. However, even though those
formulations look mathematically solid, they included serious
shortcomings. The first, the radiated power-based one, lacks
both the power and far-field orthogonality property since
the GEE cannot be expressed solely with real symmetric or
Hermitian operators. The active power-based one is able to
provide orthogonality with respect to the reactive and active
power and thus also diagonalizes the impedance operator, but
does not give orthogonal far fields.

With any formulation, we always end up with the same
problem: the modes cannot be orthogonal with respect to the
three power quantities, radiated, dissipated, and reactive power,
at the same time. Therefore, the classical definition of CMs,
which requires orthogonal far fields and orthogonal complex
power balance, cannot be satisfied. On the other hand, always
two of these three power quantities can be orthogonalized.
These formulations, where one of the power-related operators
is dropped out, produce solutions that cannot be considered as
CMs, but that could be useful in various situations [21].

VI. CONCLUSION

Orthogonality properties of the CMs are investigated in
the case of lossy metallic, dielectric, and dielectric–magnetic
objects. For lossy conducting structures, both the radiated
power and active power-based SIE formulations are consid-
ered. In the other cases, symmetric and nonsymmetric forms
of the SIE- and VIE-based radiated power approaches are
analyzed.

As was already pointed out in [5] and [10], the active
power-based formulation does not provide modes with orthog-
onal far fields if losses are involved. Furthermore, [5] also
argued that radiation power-based formulation would provide
orthogonal far fields despite the complex symmetry of the
operators. In this article, we have shown that this is not true
in general. The far fields are orthogonal only if the geometry
is sufficiently symmetric, such as a sphere, and the symmetry
of the formulation has no effect on the far-field orthogonality.
The main consequences of this result are as follows.

1) In the lossy case, the modes do not conform to the cur-
rently used definition of CMs providing a radiated-power
orthogonal set of functions.

2) The power quantities associated with the modes of lossy
structures cannot be treated independently, that is, the
power computed from the sum of modal currents does
not agree with the sum of modal powers.

The first property states that the CMs (based on the radiated
power formulation) have different properties on the lossless
and lossy cases:

1) In both cases, the far-field orthogonality is satisfied
with respect to the symmetric product, but only in the

lossless case this agrees with physical radiated power
orthogonality.

2) In the lossless case, the eigenvalues are real, giving
the ratio of reactive and radiated power. In the lossy
case, they are complex, the real part having the same
interpretation as in the lossless case and the imaginary
part giving the ratio of dissipated and radiated power.

Since the non-orthogonality of the CMs is rather moderate
with low losses, the modes can still give important physical
insights into radiation properties and loss mechanisms of the
structure [22].

APPENDIX

In this appendix, we give the definitions of the used volume
and surface integral operators and currents.

A. Volume Integral Operators

For the VIE-based formulations, we define the following
VIOs:

V
[

f
]
(r) = (∇∇ · +k2

0

) ∫
V

G0
(
r, r ′) f

(
r ′) dV ′ (52)

U
[

f
]
(r) = ∇ ×

∫
V

G0
(
r, r ′) f

(
r ′) dV ′. (53)

Here, V is the volume of the object and G0 is the scalar
Green’s function in free space with wavenumber k0. The equiv-
alent electric and magnetic volume currents are defined as

J V = −iωε0(εr − 1)E, MV = −iωμ0(μr − 1)H . (54)

B. Surface Integral Operators

For the SIE-based formulations, we use SIOs

T j
[

f
]
(r) = i

k j
γt∇

∫
S

G j
(
r, r ′)∇′

s · f
(
r ′)d S′

+ i k jγt

∫
S

G j
(
r, r ′) f (r)d S′ (55)

K±
j

[
f
]
(r) = γt∇ ×

∫
S

G j
(
r, r ′) f

(
r ′)d S′ ± 1

2
n(r) × f (r).

(56)

Here, S is the surface of the object, n is the unit normal
vector, k j and G j are the wavenumber and Green’s function in
domain j, j = {0, 1}, ∇s · is the surface divergence, and γt f =
−n × (n × f )|S is the tangential component on the surface S.
The equivalent electric and magnetic surface currents are

J S = n × H and M S = −n × E. (57)
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