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Guest Editorial
Artificial Intelligence in Radio Propagation

for Communications

I. INTRODUCTION

THE era of wireless communications began at the turn
of the 20th century, when Guglielmo Marconi used

electromagnetic waves to transmit telegraph signals from
ships to stations onshore [1]. To understand how radio sig-
nals propagate is critical for wireless communication system
design. With the development of wireless communications,
much effort has been made to characterize radio propaga-
tion in different frequency bands and physical environments.
Radio propagation and wireless channel modeling are essen-
tial for communication system simulation, channel emula-
tor design, wireless system planning and optimization, and
the development of regulations and standards in wireless
communications [2], [3].

Recently, the rapid growth in wireless data traffic is push-
ing against the boundary of wireless communication system
performance. The beyond 5th generation (B5G) and 6th gen-
eration (6G) communication systems are expected to provide
higher data rates, better coverage in various scenarios, lower
latency, higher spectrum efficiency, as well as to support mul-
tiple frequency bands [4]–[6]. Particularly, providing reliable
wireless coverage in various scenarios with different radio
propagation characteristics is challenging for future commu-
nication system design. As expectations for the performance
and reliability of B5G and 6G wireless systems expand, radio
propagation and wireless channel modeling will continue to
play a vital role in system design, evaluation, and deploy-
ment. Moreover, since radio propagation in different scenarios
and frequency bands usually show different characteristics
[7]–[16], a massive amount of research is needed in radio
propagation characterization and modeling.

Radio propagation and channel characterization have been
evolving over the years. Characterizations based on propa-
gation mechanisms and approximations to Maxwell’s equa-
tions or related laws of physics are usually considered as
deterministic approaches. These models need to be validated
with measurements and are useful for system deployments.
Characterizations based on statistical descriptions of the chan-
nel responses are usually considered as statistical approaches,
being mainly based on channel measurements taken over
multiple representative spatial/temporal/spectral samples in
a given environment (e.g., urban, rural, and indoor office).
Combining the deterministic and stochastic approaches,
geometry-based stochastic modeling has been developed to
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better characterize radio propagation channels. This approach
utilizes greatly simplified ray tracing as well as measurement
data for parameterization and validation [17], [18]. However,
since 5G and beyond communication systems generally have
larger bandwidths, more antenna elements, and higher mobility
than conventional systems, large amounts of propagation data
would still be needed [19]–[22]. Collecting and analyzing such
large amounts of data for various communication scenarios
present an imminent challenge for radio propagation charac-
terization. Furthermore, future wireless communications will
require robust intelligent algorithms to accurately predict radio
propagation signals for different services in different scenarios.

In the present era of big data where data mining and data
analysis technologies are effective tools for system evaluation
and design, the applications of artificial intelligence (AI)
in wireless communications are receiving a lot of attention
[23], [24]. AI provides new and innovative solutions for the
complex problem of communication system design. It is a
powerful tool with many potential applications to enhance
wireless communications. Radio propagation characterization
and wireless channel modeling also benefit tremendously in
this era. Specifically, AI has shown great ability in regres-
sion/prediction, clustering, tracking, and optimization, which
are naturally suitable for the processing of radio propagation
data. For example, clustering algorithms in machine learning
(ML) are widely used for propagation channel feature extrac-
tion [25]–[28], and the resulting cluster-based propagation
channel models are popular in both academia and industry.
New learning-based approaches for radio propagation signal
prediction, which usually employ neural networks (NNs) or
deep learning (DL) algorithms, are also receiving a lot of
attention in communication system design and performance
evaluation [29], [30]. Many data mining techniques have been
used for analyzing radio propagation data such as expecta-
tion maximization and support vector machines [31]–[34].
AI has also been widely used for communication sce-
nario identification based on radio propagation characteristics
[35]–[38]. Therefore, AI techniques have become a promising
toolbox for the investigation of radio propagation in wireless
communications.

The objective of this Special Issue is to showcase a unified
vision for the applications of AI in radio propagation for com-
munications and other relevant aspects. More specifically, the
initial announcement encouraged emphasis in, but not limited
to, the following areas: novel AI or AI-enabled techniques for
radio propagation characterization and analysis; AI-enabled
data analysis and parameter extractions of wireless channels;
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clustering analysis for radio channel characterization and
modeling; AI-enabled channel modeling and communication
system simulation; AI algorithm design in radio propagation
for the applications in communications. All submitted papers
went through a rigorous peer-review process, and 16 papers
were eventually accepted covering a broad range of topics on
AI in radio propagation for communications.

II. MAIN CONTRIBUTIONS OF THE PAPERS

IN THIS SPECIAL ISSUE

The Special Issue begins with a two-part invited paper
[A1], [A2] by Huang et al. which provides a comprehen-
sive overview of AI-enabled radio propagation for com-
munications. The first part of the overview focuses on
channel parameter estimation and characterization as well
as antenna-channel optimization, whereas scenario identifi-
cation and channel modeling/prediction are investigated in
the second part. Some results from early studies in the cor-
responding fields are demonstrated. Moreover, the pros and
cons of the typical AI methods used in radio propagation
related work are compared and analyzed. The future chal-
lenges of AI/ML-based channel data processing techniques are
discussed as well.

In [A3], Seretis and Sarris present an overview of recent
developments in the modeling of radio wave propagation based
on ML algorithms. It is pointed out that the input and output
specification and the architecture of the model are the main
challenges associated with ML-driven propagation models.
Relevant works are discussed. Emphasis is given to presenting
the prospects and open problems in this promising and rapidly
evolving area.

In [A4], Bharti et al. propose a likelihood-free calibration
method for channel models using approximate Bayesian com-
putation. The method is based on the maximum mean discrep-
ancy, and it has the advantage of returning an entire posterior
distribution on the value of the parameters, rather than a simple
point estimate. The performance of the proposed method is
evaluated by fitting two different stochastic channel models,
namely the Saleh-Valenzuela model and the propagation graph
model, to both simulated and measured data. The proposed
method is able to estimate the parameters of both the models
accurately in simulations, as well as when applied to 60 GHz
indoor measurement data.

In [A5], Bai et al. propose an atmospheric data-driven
Q-band satellite channel model using two artificial neural net-
works (ANNs), i.e., multilayer perceptron and long short-term
memory (LSTM), to estimate real-time channel attenuation.
Seven atmospheric parameters for modeling satellite channel
attenuation are selected by the least absolute shrinkage and
selection operator algorithm. The accuracy performance of
multilayer perceptron- and LSTM-based channel models, such
as absolute errors and mean-squared errors, are discussed and
analyzed. The complexity parameters such as training time,
loading time, and estimation time, are investigated. It is found
that the estimated channel attenuation well aligns with the
measured channel attenuation.

In [A6], Du et al. propose adaptive kernel-power-
density (AKPD) and support vector machine-assisted AKPD

(SVM-AKPD) algorithms for propagation channel clustering.
First, a new distance-based metric is proposed to calculate
an adaptive-K for each multipath component (MPC). Further-
more, the SVM is applied in clustering by the full partition
of MPCs’ feature space to overcome the limitation of the
AKPD. Finally, the performance of the proposed AKPD and
SVM-AKPD algorithms are validated with measured and
simulated channels data, respectively, at the millimeter-wave
(mm-wave) band. Both numerical simulations and experimen-
tal validation results are provided to demonstrate the effective-
ness and robustness of the proposed algorithms. The proposed
algorithms enable applications with no prior knowledge about
the clusters, such as the number of clusters and their initial
locations. It also does not need to adjust cluster parameters
manually and can be implemented for cluster-based channel
modeling with fairly low complexity.

In [A7], Zhou et al. investigate MPC clustering based
on ML and analyze the cluster characteristics in typical
high-speed railway (HSR) scenarios. A variational Bayesian
Gaussian mixture model-based algorithm is used to achieve the
space-time clustering of MPCs. A density-based validity index
is proposed for evaluating clustering performance, and the pro-
posed validity index improves the traditional index by consid-
ering the intracluster density, which can be calculated accord-
ing to the Graham scanning method and Green’s formula. In
addition to synthetic datasets, realistic MPCs datasets collected
in an HSR obstructed viaduct scenario are used for perfor-
mance evaluation. Based on the clustering results in the mea-
sured scenario, static cluster characteristics, including cluster
number, intercluster and intracluster delay spreads and angle
spreads, and dynamic cluster characteristics are extracted and
analyzed. These results will be useful for cluster-based channel
modeling in future HSR mobile communication systems.

In [A8], Wang et al. use ML to develop a long-term
prediction method of the usable working frequency for
high-frequency wireless communication. The refined map-
ping model of the maximum usable frequency propagation
factor for one hop on the F2 layer (of the ionosphere) is
reconstructed by using the statistical ML method. Then, new
mapping models of conversion factors of optimum working
frequency and the highest probable frequency are proposed
by using the fine-grained solar activity parameters and the
coupling with two geomagnetic activity parameters. Compared
with the International Telecommunication Union (ITU) recom-
mended model, the root-mean-square errors of the maximum
usable frequency, optimum working frequency, and highest
probable frequency are reduced by 1.18 MHZ, 1.64 MHz,
and 1.06 MHz, and the accuracies are improved by 10.89%,
15.47%, and 9.10%, respectively. The proposed model can
achieve intelligent frequency planning for high-frequency
communication.

In [A9], Zhang et al. propose a framework of ML-assisted
mm-wave channel modeling, in which the statistical models
are leveraged for inter-cluster-level channel characterization
and the propagation properties within each kind of clus-
ter are predicted using a hybrid physics-based and data-
driven approach. In particular, with a focus on the mm-wave
through-vegetation-scattering effect, a set of dedicated direc-
tional channel measurements and ray-tracing simulations are
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performed in an identical vegetated street canyon environment
at 28 GHz for the performance evaluation of the proposed
approach. Moreover, the training results and model valida-
tion in different environments show that, compared with the
physical-statistical model, the proposed hybrid model, which
adds the environment features to the ANN as inputs, has higher
prediction accuracy and better generalization ability in terms
of the site-specific through-vegetation cluster parameters, such
as vegetation attenuation, delay spread, and angular spread.

In [A10], Chen et al. propose a general framework of
Mahalanobis-distance metric for MPC clustering in MIMO
channel analysis, without user-specified parameters. Remark-
ably, the popular multipath component distance is proven to
be a special case of the proposed distance metric framework.
Furthermore, two ML algorithms, namely, weak-supervised
Mahalanobis metric for clustering and supervised large margin
nearest neighbor, are introduced to learn the distance metric.
To evaluate the effectiveness, a modified channel model is
proposed based on the Third Generation Partnership Project
(3GPP) spatial channel model to generate clustered MPCs with
delay and angular information since the original 3GPP spatial
channel model is incapable to evaluate clustering quality.
Experiment results show that the proposed distance metric can
significantly improve the clustering quality of existing cluster-
ing algorithms, while the learning phase requires considerably
limited efforts in labeling MPCs.

In [A11], Zhao et al. propose a semi-deterministic mm-
wave dynamic channel modeling approach based on the opti-
mal neural network (ONN) principle. The ONNs are radial
basis function NNs trained with optimal variance parameters
and are applied to predict large-scale channel parameters.
Based on the ONNs’ predicted large-scale parameters and
simplified propagation environment including the layout of
the transmitter, receiver, and major scatterers, the proposed
channel modeling approach can generate accurate dynamic
channel parameters. The proposed approach is validated by
the channel data measured at a high-voltage substation. Large-
scale parameters, MPC distributions, and power delay profiles
are validated. The proposed approach is demonstrated to be
an accurate, fast, and robust channel modeling method.

In [A12], Gupta et al. propose an ML-based urban canyon
path loss prediction model based on extensive 28 GHz mea-
surements, where street clutters are modeled via a light
detection and ranging point cloud dataset and buildings
by a mesh-grid building dataset. The paper extracts expert
knowledge-driven street clutter features from the point cloud
and aggressively compresses the 3-D building information
using a convolutional autoencoder. Using a new street-by-
street training and testing procedure to improve generalizabil-
ity, the proposed model using both clutter and building features
is found to achieve a root-mean-squared-error prediction error
of (4.8 ± 1.1) dB compared to (10.6 ± 4.4) dB and (6.5 ±
2.0) dB for 3GPP line of sight and slope-intercept prediction,
respectively. By only using the four most influential clutter
features, the root-mean-squared-error of (5.5 ± 1.1) dB is
achieved.

In [A13], Seretis et al. present generalizable models for
indoor propagation that can predict received signal strengths

within new geometries, beyond the training set of the model,
for transmitters and receivers of multiple positions, and for
new frequencies. It is shown that a convolutional NN can learn
the physics of indoor radiowave propagation from ray-tracing
solutions of a small set of training geometries so that it can
eventually deal with substantially different geometries. The
article emphasizes the role of exploiting physical insights in
the training of the network, by defining input parameters and
cost functions that assist the network in efficiently learning
basic and complex propagation mechanisms.

In [A14], Cazzella et al. design a DL-based low-rank
channel estimation method to infer MIMO channel eigen-
modes in vehicular urban settings, starting from a single
least squares channel estimate and without needing vehicle’s
position information. Numerical results show that the proposed
method attains comparable mean-squared-error performance as
the position-based low-rank estimation. Moreover, the article
shows that the proposed model can be trained on a reference
scenario and be effectively transferred to urban contexts with
different space-time channel features, providing comparable
mean-squared-error performance without an explicit transfer
learning procedure. This result eases the deployment in arbi-
trary dense urban scenarios.

In [A15], Bakirtzis et al. present an efficient ML-based radio
propagation modeling framework for indoor environments.
Specifically, this paper demonstrates how a convolutional
encoder-decoder can be trained to replicate the results of a
ray-tracer, by encoding physics-based information of an indoor
environment, such as the permittivity of the walls, and decode
it as the path loss heatmap for an environment of interest.
The model is trained over multiple indoor geometries and
frequency bands, and it can eventually predict the path loss
for unknown indoor geometries and frequency bands within
a few milliseconds. In addition, it illustrates how the concept
of transfer learning can be leveraged to calibrate the model
by adjusting its pre-estimate weights, allowing it to make
predictions that are consistent with measurement data.

In [A16], Liu et al. present an ML scheme based on
the geographic feature to predict received signal strength. It
elaborately selects four features closely related to received
signal strength from the easily acquired geographic dataset
and designs low-cost methods for computing them. Exper-
iments are executed in the large-scale outdoor scenario at
3.5 GHz for a 5G network where the real received signal
strength data is collected by the field measurement in an urban
environment. Four state-of-the-art ML algorithms are adopted
for the proposed scheme and algorithm accuracy is compared
with the Stanford University interim model, ECC-33 model,
and the ray-tracing method. The experiment results show
the validity of the extracted features. Besides, the proposed
scheme performs well in its model accuracy and computational
efficiency compared with the existing methods.

III. CONCLUSION AND ACKNOWLEDGMENT

Despite the promising progress reported in this Special
Issue, many long-standing problems remain unsolved in the
application of AI in radio propagation. For example, this
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Special Issue includes many concrete proposals on AI-based
channel parameter estimation and characterization. However,
for time-varying non-stationary channels, the proposed algo-
rithms and frameworks still need to be improved signifi-
cantly. Supervised AI-based clustering and tracking methods
are worth receiving more attention in the future, especially
considering the phenomenal increase in both the amount of
collected channel measurement data and the available comput-
ing power. Likewise, AI-based radio propagation prediction
requires further enhancements. In the present Special Issue,
several AI-based solutions have appeared that cleverly use
deep learning networks to learn the data pattern and predict
propagation characteristics. Nevertheless, some known prop-
agation properties, e.g., channel sparsity in high-frequency
propagation, are not well considered during the AI network
design. Besides, the interaction of radio propagation and other
B5G/6G technologies are worth deeper AI-based investiga-
tions, e.g., how to use AI-based radio propagation technologies
in the integration of sensing and communications, how to
control propagation signals using reconfigurable intelligent
surfaces with AI support, etc. Not surprisingly, the field of
AI in radio propagation continues to attract new researchers
worldwide.

By compiling these articles, we have found AI in radio
propagation to be a fascinating topic with many new
challenges, which we hope will enrich the knowledge of
readers and researchers. We sincerely thank all the authors
and reviewers for their contributions, and we especially
thank the Editor-in-Chief and Staff Members of the IEEE
TRANSACTIONS ON ANTENNAS AND PROPAGATION for their
constant support over the entire process from the proposal to
the final publication.
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