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Abstract— Efficient and realistic indoor radio propagation
modeling tools are inextricably intertwined with the design
and operation of next-generation wireless networks. Machine-
learning (ML)-based radio propagation models can be trained
with simulated or real-world data to provide accurate estimates
of wireless channel characteristics in a computationally efficient
way. However, most of the existing research works on the
ML-based propagation models focus on outdoor propagation
modeling, while indoor data-driven propagation models remain
site-specific with limited scalability. In this article, we present
an efficient and credible ML-based radio propagation modeling
framework for indoor environments. Specifically, we demonstrate
how a convolutional encoder–decoder can be trained to replicate
the results of a ray tracer, by encoding physics-based information
of an indoor environment, such as the permittivity of the walls,
and decoding it as the path loss (PL) heatmap for an environment
of interest. Our model is trained over multiple indoor geometries
and frequency bands, and it can eventually predict the PL for
unknown indoor geometries and frequency bands within a few
milliseconds. In addition, we illustrate how the concept of transfer
learning can be leveraged to calibrate our model by adjusting
its preestimate weights, allowing it to make predictions that are
consistent with measurement data.

Index Terms— 5G, deep learning, indoor radio communication,
machine learning (ML), radio propagation, ray tracing.

I. INTRODUCTION

DURING the past decades, wireless communication sys-
tems have experienced immense growth and they are

now an indispensable part of our every day life. With the
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advent of the Internet of Things (IoT), and the establishment
of 5G and beyond systems, the landscape in the wireless
ecosystem is expected to change radically [1]–[3]. Unlike
legacy communication systems, next-generation wireless net-
works are anticipated to host a vast number of technologies
and applications with diverse requirements. Hence, efficient
network planning and optimization is becoming a much more
convoluted and manifold problem, rendering conventional
communication network design techniques obsolete [4].

Artificial intelligence is a key enabler toward the reshaping
of wireless networks and the shifting from a reactive to
a proactive network design approach [5]. In particular, the
potential of machine learning (ML) algorithms, a subfield of
artificial intelligence, to process large volumes of data and
extract purposeful information, can revolutionize wireless net-
work operation [6]. Until now, ML has been used to tackle a
wide range of wireless-network-design-related problems, such
as resource allocation, user mobility analysis, localization, and
wireless channel modeling [7]–[9]. The latter case has recently
attracted significant interest, as radio propagation modeling is
the cornerstone of the cellular network design [10], [11].

Conventionally, for radio channel modeling, empirical or
deterministic models are used. The empirical channel models,
such as the COST-231 model [12], are derived by fitting
simplistic mathematical models to measurement campaign
data [13], [14]. Although these models are practical in
use, they can demonstrate significant deviations from the
actual received path loss (PL) values [15], potentially ren-
dering them unreliable. Deterministic models rely on the
governing laws of electromagnetic wave propagation, pro-
viding an approximate solution to Maxwell’s equations. The
commonly used deterministic models include ray tracing, the
finite-difference time-domain method, or the vector parabolic
equation method [16]. Unlike empirical models, deterministic
models are site-specific, solving Maxwell’s equations within
a specified physical geometry, thereby yielding more accurate
results.

For that reason, the popularity of deterministic models
has grown constantly over recent years. Among the various
deterministic models, ray tracing has been widely used to
calculate radio channels characteristics, and it is expected
to have a leading role in the deployment and the design of
5G and beyond systems [17]. A key difference between 5G
and legacy communication system design is that a significant
part of 5G radio access networks will be installed in indoor
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environments. Traditionally, in-building traffic is served by
outdoor cells, following an outside–in approach, and until now
only a small number of buildings have dedicated indoor mobile
networks. However, in the 5G and beyond era, the majority of
in-building mobile traffic will be served by indoor base stations
or access points [18]. Thus, an accurate and expedient indoor
propagation modeling tool is now more important than ever.

Computational efficiency usually appears as a bottleneck for
ray tracing, due to the substantial simulation time and memory
required to trace all the ray paths, when the number of scat-
tering objects and ray intersections within the simulated space
increases. Data-driven approaches aim to alleviate this limita-
tion by integrating ray tracing simulators with ML algorithms
which are capable of learning and inferring radio propagation
parameters [10], [11]. In particular, artificial neural networks
(ANNs) have been widely used in an effort to expedite [19]
or even replace ray tracing simulators [20]. The prepon-
derance of past research concentrates on urban propagation
scenarios [20]–[27]; however, as has been mentioned, indoor
propagation modeling is of high significance in the deployment
of 5G networks. Currently, most of the existing approaches on
indoor propagation modeling are confined to the use of simple
multilayer perceptrons (MLPs) [28] to determine the radio
channel characteristics [19]. This poses limitations in terms
of model’s generalizability, as MLPs trained within a certain
geometry are agnostic to the characteristics of other geome-
tries (materials, building layout, transmitter position) [29].
In addition, it is necessary to increase the fidelity of ML-based
propagation models by considering real measured data, instead
of using simulated data only [22], [29], [30].

The main contribution of this article is to tackle these
two fundamental limitations of indoor ML-based propagation
models. To that end, first we outline how a convolutional
encoder–decoder can be trained to predict the PL for an
arbitrarily complex indoor environment over multiple fre-
quency bands. In particular, we use a modified version of the
U-Net architecture using stacked dilated convolutions (SDU-
Net) [31], which learns to transform an input tensor, compris-
ing information regarding the physical properties of an indoor
environment, to a PL heatmap. Unlike [19], [29], and [30], the
predictions of the proposed data-driven framework are based
on the electromagnetic properties of the physical environment,
such as the permittivity and the conductivity of the walls,
and other parameters that affect wave propagation, e.g., the
distance and the frequency. We demonstrate that our approach
overcomes the problem of limited generalizability, as it is
directly applicable to multiple indoor geometries and frequen-
cies, without any further training. The predictions made by
our model can replicate closely the results of a ray tracing
simulator, with the additional advantage of a substantially
reduced computational time (less than a second in a GPU).

To tackle the second limitation, in this article we present
an approach that allows making predictions that match mea-
sured data. Thence, we use the idea of transfer learning to
calibrate the proposed data-driven propagation model. Specif-
ically, we introduce an expedient method that allows our model
to adjust its preestimated weights, computed using simulated
data, and provide realistic estimates of the signal level using

only a very small quantity of measured data. To summarize,
in this article we show how to leverage the results from a
ray tracing simulator to create a generalizable data-driven
propagation model for indoor environments. Once trained,
our model can be used as a standalone propagation solver to
predict the PL for unknown indoor geometries and frequencies.
Consequently, it can be readily calibrated to provide realistic
estimates of the signal level for any indoor environment, using
only a few measurements.

Specifically, our work differs from previous research in the
following ways.

1) While urban and suburban ML-propagation models have
been widely explored [20]–[26], the ML-based indoor
propagation models have received less attention, despite
their importance for 5G and beyond systems. In our
work, we introduce a standalone indoor radio propa-
gation model, which builds on input features that con-
sider the particularities of wave propagation in indoor
environments. For instance, in indoor environments it
is common to encounter a larger variety of building
materials than in outdoor spaces. Moreover, in outdoor
ray tracing simulations the building walls are modeled as
semi-infinite spaces because of the high losses. However,
the walls found in indoor environments are typically
thinner, and for materials such as plasterboard or wood,
the losses are considerably smaller. Hence, it is neces-
sary to consider waves’ attenuation when propagating
through walls.

2) Instead of using conventional convolutional neural net-
works (CNNs) and/or MLPs [19], [23], [25], [26], [30],
we leverage the computational efficiency of convo-
lutional encoders–decoders to create a generalizable
data-driven propagation model. Unlike [20] and [24], the
convolutional encoder–decoder used in this article uses
the concept of atrous convolutions, which as was shown
in [29] and [31] can be considerably advantageous.

3) Our approach is directly applicable to new indoor envi-
ronments and frequency bands, without further train-
ing, allowing PL estimation in a few milliseconds.
On the contrary, the predictions of MLP-based models
using relative coordinates, environmental features, and
other tabular information [19], [25] are restricted to the
environment at which the MLP is trained. Likely, the
data-driven models in [23] and [24] were trained over a
sole operating frequency, or in [24] and [26] the testing
was performed on parts of cities included in the training
set.

4) We do not confine the comparison of our model’s per-
formance only with synthetic ray tracing data 22]–[24],
[30]. We also demonstrate that our model can provide
estimates of the signal strength, for unknown geometries
and frequencies, which are in close agreement with real-
world measurements. More importantly, we outline how
sparse measurements can be leveraged through transfer
learning to make realistic predictions of the signal
strength, minimizing the error between our model’s
predictions and some measured data.
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The outline of this article is as follows. First, in Section II,
we discuss the functionality of some basic ANN architectures.
In Section III, we provide a brief overview of some of
the existing approaches to ML-based propagation modeling,
focusing on ray tracing. In Section IV, we present the pro-
posed data-driven indoor propagation modeling framework.
Next, in Section V, we provide numerical results comparing
our model with synthetic data computed through a ray tracing
simulator. We study scenarios where the proposed framework
is trained over multiple geometries and frequency bands, and
we also explore its applicability to unknown indoor envi-
ronments and frequencies. Then, in Section VI, we outline
how transfer learning can be exploited to calibrate our model,
and we compare the predictions of our and other propagation
models with measured data. Finally, Section VII concludes
this article outlining its main contributions.

II. THEORETICAL BACKGROUND

ANNs seek to imitate human intelligence by allowing
simple learning components to perform basic computational
operations and connect to other learning components. The
learning components are referred to as nodes, artificial neu-
rons, or just neurons. In what follows, we briefly discuss the
functionality of MLPs and CNNs, focusing on the latter since
in this work we are using a convolutional encoder–decoder.

A. Multilayer Perceptrons

In MLPs, the neurons are arranged into layers, where each
neuron has input connections originating from the previous
layer and output connections pointing toward the next layer.
A typical MLP consists of an input layer, a number of
hidden layers, and an output layer, as shown in Fig. 1,
where x1, x2, . . . , xn and y1, y2, . . . , ym are the input features
and the outputs of MLP, respectively. With the term input
features, we refer to the characteristic physical quantities that
affect a quantity of interest (QoI), which is the output of
MLP. For instance, the commonly used input features of ML
propagation models are the operating frequency, the distance,
or the transmitter height, while typical QoIs are the signal level
or the PL. The hidden layers consist of neurons that apply
nonlinear transformations to their input data. Specifically, the
output, u(l)

j , of the j th neuron in the lth layer is computed by
applying a nonlinear function, g, to the weighted sum of the
previous layer neuron outputs, plus a bias term, b(l)

j

u(l)
j = g

(
nl−1∑

i

θi, j u
(l−1)
i + b(l)

j

)
(1)

where u(l−1)
i is the output of the i th neuron of the previous

layer, θi, j is the weight associated with u(l−1)
i , and nl−1 is the

number of neurons in the previous layer. Some commonly used
nonlinear functions, g, are the rectified linear unit (ReLU),
the tanh, and the sigmoid function [28]. The output of MLP
is estimated in a similar manner, and the QoI can assume
discrete categorical or continuous values, for classification and
regression problems, respectively.

Fig. 1. MLP.

B. Convolutional Neural Networks

CNNs have been widely used in computer vision and in
image-processing-related applications. In CNNs, the input data
are represented as tensors, and they have three dimensions:
the width, W , the height, H , and the number of channels, C .
A CNN typically comprises three different layer types: convo-
lutional, pooling, and MLPs. An example of a CNN is shown
in Fig. 2, where an RGB image, representing the geometry of
an indoor environment, is fed to a convolutional layer.

In a convolutional layer, the input tensor is convolved
with n f different filters. Each filter identifies different hidden
features and it consists of stacked 2-D kernels, i.e., 2-D
square fw × fh weight matrices. The number of stacked
kernels is equal to the number of input channels C , and the
number of output channels is equal to the number, n f , of the
individual filters convolved with the input tensor. The result
of these convolutions, i.e., the layer output, is known as the
feature map. To estimate the elements of feature map, each
kernel is slid with a stride, s, over the respective channel
of the input tensor, and the dot product between the filter
kernel weights and the points of the corresponding overlapping
channel subarea is computed. Consequently, the elements of
the output feature map are computed as the cross-channel
summation of the results of the aforementioned dot products.
With respect to Fig. 2, this corresponds to computing the
dot product between the orange weight boxes and the pixel
intensity values of the overlapping subarea, and then adding
the dot products estimated for each one of the three RGB
channels. Let X be the input tensor and θ the weights of the
o-th filter, then the elements z of the feature map are computed
via [28]

zm,n,o =
∑

k

∑
i

∑
j

θi, j,k · Xm×s−i,n×s− j,k (2)

where the summation over i and j captures spatial correlations
between the elements of the same channel, while the summa-
tion over k enables unveiling correlations between the different
channels of the input tensor (cross-channel correlations). The
convolutional layers of a CNN are typically followed by
pooling layers used to simplify the representation of the
encoded feature maps through downsampling and to reduce the
number of model’s trainable parameters. The most common
pooling operation is max-pooling. In a max-pooling layer,
a single fw × fh × fc filter, where fc is the number of input
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Fig. 2. Typical operations in a CNN. The orange box depicts the kernel of a convolutional filter slid over an RGB image. The different colored squares
represent the kernels of a max-pooling filter used to extract the maximum point from a subarea of each channel.

tensor channels, is slid over the received input tensor, and
the elements of the output feature map are estimated as the
maximum element of the overlapping subarea of each channel.
For instance, the different colored squares in Fig. 2 correspond
to the kernels of the filter used to extract the maximum point
from a subarea of each channel. Finally, CNNs are commonly
terminated with MLPs, which are used to estimate the final
network output.

The main advantages of CNNs are the weight sharing and
the connection sparsity properties. The first means that the
same filter weights are applied to different parts of the input
tensor, i.e., the same orange box is slid over the entire indoor
geometry in Fig. 2. Thus, each convolutional filter can identify
certain kinds of hidden features, and more importantly it is
not required to compute different weights for every point of
the input tensor. The second property signifies that unlike
MLPs, where each output neuron receives information from
all the neurons of the previous layer, in CNNs, each neuron
considers information originating only from a small subarea of
the previous layer. Thus, the numerical operations required to
compute the output value of a neuron decrease substantially.
For instance, for the estimation of z1,1,1 in Fig. 2 (purple box),
only the top-left side of the indoor geometry is considered.

The connection sparsity property also gives rise to the
concept of the receptive field, which depicts the information
region of the input tensor that affects the output response of
a neuron. Evidently, since each convolutional layer encodes
and compresses information of the previous layer, the neurons
of deeper layers have an indirect access to a larger area of
the input tensor, and thereby a larger receptive field [28].
Hence, the shallower layers within a CNN can detect low-level
features of the input tensor, whereas the deeper layers, due to
their augmented receptive field, can identify more complicated
abstract high-level features.

III. RELATED WORK

The idea of using ANNs to improve the perfor-
mance of radio propagation modeling tools is not new.
Perrault et al. [21] used an MLP to calibrate a ray tracer
with measurement taken from three different cities taken
at 900 and 1800 MHz. The MLP received as input the
received signal strength (RSS) provided by the ray tracer and

several simulation parameters (transmitter height, number of
reflections, and land type). Then, the authors tried to fit the
simulated RSS to the measured RSS values and calibrate the
ray tracer. More recently, due to their computational efficiency,
the use of CNNs for radio propagation modeling has become
popular [20], [22]. In [22] and [23], a CNN was trained with
images that depicted the buildings of a city, assuming different
pixel intensity values according to the building height. Conse-
quently, the PL for different urban environments was simulated
through a ray tracing simulator. The city images along with the
respective simulated PL values were used as the input and the
expected output of the data-driven model, respectively. In [20]
and [24], a U-Net-like convolutional encoder–decoder was
used. The authors incorporated multiple features to their model
by encoding additional information through different input
channels. Although these models provided accurate results
and they overcame the scalability limitation posed by MLPs,
they focus on outdoor propagation modeling and they are not
applicable to indoor environments.

Most of the existing AI-based indoor propagation models
make use of MLPs [19], [32]. The motivation in the work done
in [19] was to reduce the computational cost of ray tracing
through a coarse-to-dense grid MLP-assisted scheme. A ray
tracing simulation was conducted in an indoor environment
assuming a coarse grid discretization. Then, the ray tracing
results were used to train an MLP to recognize radio channel
characteristics and infer the RSS for other points and coverage
“holes,” assuming a dense grid discretization. In [32], a similar
approach was implemented using real measurements instead
of ray tracing data. A CNN-based formulation was presented
in [30], consisting of two convolutional layers and an MLP
with four hidden layers, aiming to evaluate the characteristics
of a millimeter-wave channel. The input data comprised the
coordinates of the receiver and the transmitter, while the
output vector included various channel characteristics (PL,
delay spread, angle of arrival, etc.). The main drawback all
the previous approaches share is that they attempt to associate
the geometrical coordinates of an indoor environment to
telecommunication-related features. As it was shown in [29],
this constitutes a fundamental bottleneck in the applicability
of such models in geometries other than those in which they
are trained.
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Fig. 3. Example of the input tensor channels for a random sample at an operating frequency of 2 GHz. (a) Permittivity channel. (b) Conductivity channel.
(c) Distance channel. (d) FSPL channel.

IV. PROBLEM FORMULATION AND PROPOSED MODEL

In this section, we present the details of our data-driven
indoor propagation model, called EM DeepRay. We describe
the format of the input and output data, the general framework
pipeline, and the convolutional encoder–decoder used.

A. Input Features and Target Output

The input features used in our work are: 1) the permittivity;
2) the conductivity of the building materials; 3) the distance
between the transmitter and every point within the simulated
grid; and 4) the free space PL (FSPL) at every point of
the indoor geometry, assuming the absence of the building.
The predicted parameter is the PL at every spatial point
within an indoor geometry, given a specific transmitter position
and building layout. The reasoning behind the input feature
selection and the generation of the input tensor is explained
in the following paragraphs.

Wave propagation is affected by four basic mechanisms:
reflection, transmission, diffraction, and diffuse scattering [16],
[33]. It is well-known that the impact of these mechanisms
depends on the wavelength λ of the propagating wave. In par-
ticular, reflections and transmissions require that the objects
found within the propagation environment are electrically
large, i.e., their dimensions are much larger than λ. When λ is
much larger than the object (sharp edges, small openings), the
propagating waves will bend around the object and diffraction
will occur. Finally, diffuse scattering requires that abrupt
variations in the surface height are an order larger than the
wavelength. The impact of these mechanisms also depends on
the material proprieties, which in turn are related to the radio
signal frequency [34].

The electromagnetic properties of a material can be quan-
tified by its permittivity and its permeability. In this work,
we assume that all the construction materials found within the
simulated indoor geometries are nonmagnetic, i.e., they have
a constant permeability equal to μ0. The permittivity is for-
mulated as: ε = εrε0 = (ε ′

r − jσ/ε0ω)ε0, where εr and σ are the
relative permittivity and the conductivity, respectively. Thus,
to consider how different materials affect wave propagation,
we use two input channels that convey information regarding
the relative permittivity. Specifically, the first channel depicts
the real part of εr at every point of the simulated grid, and the
second includes the value of the conductivity. An example of

TABLE I

MATERIAL PARAMETERS

these channels is shown in Fig. 3(a) and (b), respectively. The
conductivity is modeled as σ = c f d , where f is the frequency
of the propagating wave in GHz. The values of ε ′

r , c and d ,
are derived from the ITU-R P.2040-1 Recommendation [34],
and they are shown in Table I. The first channel allows our
model to understand the presence of an object and infer
the strength of the reflected and the transmitted components
of an electromagnetic wave impinging onto it. The second
channel accounts for the attenuation that an electromagnetic
wave undergoes while it propagates through an absorbing
medium. Also, to indicate the transmitter position within the
simulated grid, the values of ε′

r and σ around the transmit-
ter’s position are set equal to twice the maximum values
of ε ′

r and σ .
Another important parameter that affects wave propagation

in indoor environments is wall thickness. In outdoor ray trac-
ing simulations, building walls are modeled as semi-infinite
spaces due to the high losses, and thus the penetration into
buildings or the multiple reflections within the building facets
can be omitted. In indoor environments, this assumption
does not hold, since the walls are thinner than the building
facets, and for materials such as plasterboard or wood, the
losses are considerably smaller. Hence, objects such as walls,
doors, and windows are modeled as slabs, and consequently
the reflection and transmission coefficients depend on slabs’
thickness. To account for that, we use a third channel which
depicts the physical distance between the transmitter and every
point in the simulated grid. An example of the distance channel
is shown in Fig. 3(c). Thus, when a convolutional kernel is
applied to a subarea of the input tensor, apart from detecting
the wall type through the first two channels, it can also
consider the wall length via the difference between the values
of the third channel.

Furthermore, the third channel can also provide a good
estimate about the deterioration of the signal over distance.
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Fig. 4. EM DeepRay architecture. (a) Block diagram of EM DeepRay architecture. (b) Schematic of EM DeepRay functionality.

To further enhance the awareness of our model regarding the
impact of distance on wave propagation, we add a fourth
channel which includes the FSPL for each point in the
simulated grid. We note that if our model was trained only over
one frequency, the fourth channel would have been a simple
transformation of the third channel, and thus this information
would have been redundant. However, EM DeepRay is trained
over multiple frequencies, and hence the fourth channel helps
our data-driven model to unveil correlations over the frequency
and space domains.

The target output of EM DeepRay is a tensor including the
PL at every point of the simulated grid. We note that a similar
treatment can be applied for another QoI such as the RSS or
the phase delay. As shown in [29], each channel of the output
tensor corresponds to different sampling heights. In this work,
we use a single output channel, representing the PL at the
horizontal plane at a height equal to 1.5 m. The target PL
values are computed using a ray tracing simulator [35]. The
goal is to train a convolutional encoder–decoder which encodes
the input tensor and then decodes it as a PL heatmap, i.e.,
to find a mapping between the material properties, physical
distance, and frequency space and the PL space.

B. Workflow

The block diagram of the EM DeepRay, shown in Fig. 4(a),
preserves the same idea as the initial DeepRay framework [29].
In the initial framework, the simulated results from a ray
tracing simulator are leveraged to train a convolutional
encoder–decoder to learn how to transform a blueprint of
the indoor geometry to a PL heatmap. For each ray tracing
simulation, we obtain an image, Xi , representing the geometry
of an indoor environment and a tensor, yo, comprising the
simulated PL values at each point of the indoor geometry. The
target PL tensor is converted into a grayscale image, yo,gs , and
consequently it is resized to a standard size image, y. Simi-
larly, the input geometry image is also resized to a standard
size image Xc. Although a convolutional encoder–decoder can
be trained with varying sized images, using standard size

images facilitates the training procedure [36]. To avoid a
substantial stretching or squeezing when resizing is applied
to the building layouts and the target PL image, the standard
size selected in this work is 512 × 512. The resized input
geometry and PL images are provided as an input–target pair
to a convolutional encoder–decoder that performs a pixel-to-
pixel prediction, translating the blueprint of an input geometry
to a PL heatmap.

The main difference between the two frameworks is the
form of the input tensor. The initial DeepRay framework
uses a blueprint of the indoor geometry, and the convolu-
tional encoder–decoder learns to identify how different con-
struction materials affect wave propagation, by representing
each material with a distinct color. In this work, we use
the blueprint of the input geometry to extract physics-based
information that will augment the performance of the convo-
lutional encoder–decoder and allow it to make more accurate
predictions. Specifically, as discussed in Section IV-A, for each
indoor geometry image, Xi , we derive an input tensor, X , with
four channels representing: 1) ε′

r and 2) σ at each point of the
grid; 3) the physical distance between the transmitter and each
point; and 4) the FSPL for each point. Hence, first we resize
the initial input geometry image to a standard size image, and
then we use the resized image to compute the values of the four
input channels of Fig. 3. The first two channels are derived by
matching the colors of the blueprint, i.e., different RGB pixel
values, to the values of Table I. The physical distance, di, j ,
for the (i, j)-th pixel is computed as

di, j = R
√

Wr (xT x − i)2 + Hr(yT x − j)2 (3)

where R is the spatial resolution of the ray tracing simulation,
(xT x, yT x) corresponds to the transmitter position in the simu-
lated grid, and Wr , Hr = W, H/512 are the width and height
resizing ratios, respectively. Consequently, the values of the
fourth channel are estimated as

F S P Li, j = 20 log10

(
4πdi, j f

co

)
(4)
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Fig. 5. Convolutional encoder–decoder used in EM DeepRay to encode a physics-based input tensor and decode it as a PL heatmap.

where f is the operating frequency in Hz and co is the speed
of light.

A schematic representation of this process is shown in
Fig. 4(b). As can be observed, the initial input image is
resized to a 512 × 512 image, and it is used to extract
the four-channel tensor X , which is input to the convolu-
tional encoder–decoder. Apart from the input tensor X , the
convolutional encoder–decoder receives an auxiliary input
z, which conveys information about the frequency and the
resizing ratios, Wr and Hr , of each sample. The details of
the incorporation of the auxiliary input with the input tensor
are outlined in Section IV-C. The target PL tensor is turned
to a grayscale image, assuming values between 0 and 255,
and the grayscale image is resized to have the same size as
X (i.e., 512 × 512). The resized geometry image along with
the auxiliary input tensor form a pair of input values, (X, z),
while y is the target value. Each input–output pair accounts
for a sample used to train the convolutional encoder–decoder.

Once trained, the convolutional encoder–decoder can be
used to directly predict the PL for new geometries or frequency
bands that are not included in the training dataset (dashed box
in Fig. 4(a) and (b)). Predictions for new geometries require
only an image of the indoor environment, which is used to
extract the physics-based input tensor, as shown in Fig. 4(b).
The request of an image depicting the input geometry is not
undue, since most of the existing commercial ray tracing
software use such a representation [17], [35]. In addition,
our approach can be further facilitated by recent research
which allows computer-aided design (CAD) floor plans to be
turned into blueprints [37]. We also note that the extraction of
the physics-based input tensor does not entail any complex
operations, only i f statements and matrix multiplications
whose computation requires a few milliseconds.

Given the physics-based input tensor, the convolutional
encoder–decoder predicts a PL heatmap image, ŷ, for the
desired input geometry. The predictions of the convolutional
encoder–decoder are pixelwise, and the size of the output
tensor is 512 × 512. Thus, after prediction, we use a bilinear
interpolation to resize the output image back to the initial
dimensions W and H of each geometry. As a final step, the
grayscale PL images are converted into numerical values. The

latter simply implies perceiving the elements of the resized
input image as dB instead of pixel intensity values.

C. Convolutional Encoder–Decoder

Conventionally, CNNs are terminated by MLPs, as shown
in Fig. 2. There are three main drawbacks associated with this
approach: 1) MLPs require a fixed-size input; 2) they neglect
the spatial and cross-channel correlations; and 3) they are
computationally expensive as they have more parameters [36].
This motivated the development of fully convolutional net-
works (FCNs), which are able to perform pixel-to-pixel pre-
dictions [36]. In FCN architectures, the MLP at the end
of the network is replaced by a series of upsampling and
convolutional layers. The absence of the MLP translates to a
smaller number of trainable parameters and a higher efficiency.

A convolutional encoder–decoder is an FCN that consists of
two basic components: 1) an encoder, used to downsample the
input tensor and compress its context, and 2) a decoder which
is used to recapture the input tensor details and reconstruct
it in the form of the target output tensor. Convolutional
encoders–decoders may also include skip connections between
the encoding and the decoding path, as shown in Fig. 5
(dark yellow arrows), to retain information that might be
lost during the encoding procedure. In this work, we use
the convolutional encoder–decoder depicted in Fig. 5, which
is a slightly modified version of the SDU-Net architecture
introduced in [31] (we include an additional upsampling path).

The SDU-Net used has five encoding and decoding layers,
i.e., five downsampling and upsampling operations are applied,
denoted by orange and purple arrows at the encoding and the
decoding branches, respectively. As can be seen in Fig. 5,
the left path of SDU-Net is used to encode and downsample
the input tensor containing information about the indoor geom-
etry, while the right path upsamples the encoded tensor and
transforms it to a PL heatmap. At the end of the encoding path,
we add an upsampling path used to upsample the auxiliary
input z. Consecutive upsampling operations are applied to
z to increase its size and concatenate it with the encoded
representation of the input tensor. This will allow the SDU-Net
to understand the operating frequency and also be aware of the
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Fig. 6. Structure of the SDU-Net block used at each encoding/decoding
layer [31].

resizing ratio for each sample. This information is not included
in the input tensor for computational efficiency, i.e., there
is no need to reserve an entire channel for scalar variables.
Instead, it is considered during the decoding by fusing the
upsampled z with the encoded input tensor just before the
decoding procedure begins.

At the encoding path, each layer includes a 3 × 3 standard
convolution, followed by the SDU-Net block, shown in Fig. 6,
and a 2 × 2 max pooling with stride equal to 2. At the
decoding branch, the feature map of the previous layer is first
upsampled, and then it is concatenated with the feature map
of the respective layer of the encoding branch (yellow boxes
shown at each layer of the decoding branch). Consequently,
a 3 × 3 standard convolution is applied to the concatenated
tensor, and the resulting feature map is forwarded to the
SDU-Net block and moved upward to the next layer. All the
convolutional layers use an ReLU activation function, except
for the last 1 × 1 convolution which uses a linear activation
function. The number of convolutional filters is increased or
decreased by a factor of 2 at each encoding or decoding
layer, respectively. At the top layer of the decoding branch, a
1 × 1 convolution is used after the SDU-Net block to derive
the PL heatmap image. The number of filters for the final
1 × 1 convolution is equal to the number of the desired output
channels, i.e., one.

The SDU-Net block, as shown in Fig. 6, comprises five
cascaded atrous convolutions, each one using a different
number of filters and a different atrous rate. The feature
maps of different atrous convolutions are concatenated and
forwarded to the next layer after being down- or upsampled.
Atrous convolution, also known as dilated convolution, is a
generalized case of the standard convolution operation. Its

Fig. 7. Example of convolutional filters with different atrous rate r applied
to the image of an indoor environment.

popularity has recently increased, since it can be used to
efficiently augment the receptive field of each neuron without
increasing the number of model parameters [38]. In atrous
convolution, the kernel is widened and its sparsity is increased
by introducing blank spaces between the kernel elements. The
distance between neighboring nonblank elements of the kernel
is r − 1, where r is the atrous rate. The parameters for each
atrous convolution are shown in Fig. 6, where r is the atrous
rate, and nout denotes the number of filters at the next layer
(which is twice or half the number of filters at the current
encoding or decoding layer, respectively).

An example of 3 × 3 atrous convolutions with different
values of r applied to the image of an indoor environment is
shown in Fig. 7. It can be observed that as r increases, the
receptive field is augmented, since the convolutional kernel has
an enhanced field of view over the indoor geometry. Indeed,
the area covered by the convolutional kernel with r = 1
(standard, nondilated, convolution, orange box) is substantially
smaller than that of the kernel with r = 3. That comes at
no increase in the overall computational cost, since the num-
ber of trainable parameters remains the same. Furthermore,
the use of various atrous convolutions with different atrous
rates enables the aggregation of information originating from
different spatial scales and the identification of correlations
between distant points. Moreover, due to multiple layers of the
SDU-Net architecture, it is also possible to capture multiscale
correlations at different resolutions (since the size of the
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input tensor is decreased by a factor of 2 at each encoding
layer). The augmented receptive field and the potential of
capturing multiscale correlations (using various r values) at
multiple resolutions (due to the multiple encoding and decod-
ing layers) render the SDU-Net an exemplary convolutional
encoder–decoder for radio propagation modeling tasks.

D. Evaluation Metrics

To evaluate the performance of DeepRay, we use four
error metrics: the mean absolute error (MAE), the mean
absolute percentage error (MAPE), the root mean square error
(RMSE), and the Pearson correlation coefficient, rp, defined as
follows: (5)–(8), as shown at the bottom of the previous page,
where yo,(n)(i, j) and ŷo,(n)(i, j) are the ray tracing and the
predicted PL values for the nth sample at the spatial point
(i, j), respectively, yo,(n) and ŷo,(n) are the corresponding
mean values for that sample, and N represents the number
of samples. We note that the error is measured at the end
of the proposed framework, i.e., it is not pixelwise but it is
estimated with respect to the actual PL values.

V. COMPARISON WITH SIMULATED DATA

In this section, we proceed to the implementation of EM
DeepRay, comparing its PL predictions with simulated data.
To create the synthetic data to train EM DeepRay, we use
the Ranplan Professional ray tracing simulator, developed by
Ranplan Wireless [35]. Ranplan Professional is a robust radio
propagation engine, supporting radio propagation simulations
for both indoor and outdoor environments. It enables easy and
efficient wireless network design of entire floors or even build-
ings and it supports a large number of different communication
technologies (WiFi, 5G New Radio, IoT). The software has
been widely used for actual network planning, which provides
us an assurance regarding its reliability.

To train and validate EM DeepRay, we conduct ray tracing
simulations at 20 different indoor environments. The buildings
considered include simple and more complicated indoor envi-
ronments, with more than 20 subrooms in the same building
floor, and the walls are made of various construction materials
(concrete, brick, plasterboard, wood, and glass) and have var-
ious thicknesses. For each building, we consider transmitting
devices operating at three different frequencies: 1) 0.433; 2)
2; and 3) 3.7 GHz, which correspond to frequency bands
used in IoT and 5G systems. To create our dataset, we place
a sole transmitter operating at a given frequency within a
building, and then conduct a ray tracing simulation only for
this transmitter. Once the ray tracing simulation is finished,
we change the transmitter position and/or the frequency, and
we run a new ray tracing simulation to create a new sample.
This corresponds to consecutively sampling the PL response
in an environment of interest for a given transmitter position
and frequency.

For all the simulations, the transmitter antenna is 1.5 m
above the floor and has an omnidirectional beam pattern.
The resolution of the ray tracing simulations is set to 0.1,
i.e., we sample the PL value once per 0.1 m. For each
frequency band, we run approximately 35 different ray tracing

simulations at each building, i.e., 35 × 3 samples per building,
assuming a different transmitting device position within the
indoor geometry for each sample. We use 80% of the samples
to train DeepRay and 20% to validate its performance, which
is a commonly used data splitting ratio in ML problems [28].
Once the data are split into two sets, the training dataset is
augmented by flipping the indoor geometry, along with the
transmitter’s position within it, and the PL heatmap images
left, right, and downward. The initial and the flipped input
images exhibit a symmetry, and hence one should expect
that the ray-tracing results should be the same. Indeed, the
intersections between the rays and the walls, the respective
reflection and transmission coefficients, and the diffracting
edges remain the same, and thus the flipped PL images are
equivalent to the ray tracing simulation results for the flipped
geometry. This allows an effective increase in the training set
size by a factor of 3 without conducting any extra simulations.
We note that EM DeepRay is validated with samples from
known geometries and frequency bands, i.e., from indoor
environments and frequency bands included in the training
dataset, but for unknown transmitting device positions within
these environments.

To test EM DeepRay, we consider three cases, aiming
to explore how well our model: 1) can generalize to new
geometries, not included in the training dataset; 2) can infer
the PL for frequency bands other than those of the training
set; and 3) behaves in a combination of 1) and 2). We refer to
these cases as Tests 1, 2, and 3, respectively. The case studies
are summarized in Table II, where with the term “known”
and “unknown” we indicate either included or not included
in the training dataset. To implement Test 1, we consider
five new indoor environments, generating about 35 samples at
each building, for each frequency band of the training dataset
(0.433, 2, and 3.7 GHz). We underline that EM DeepRay has
no prior information regarding PL distribution within these
indoor environments, and it will infer the PL heatmaps based
on the weights estimated during the training phase. For Test 2,
we assume transmitting devices operating at 866 MHz and
2.6 GHz, and we randomly place approximately 15 devices for
each frequency at each one of the 20 buildings used to train
and the validate our model. Finally, for Test 3, we consider
transmitting devices operating at 866 MHz and 2.6 GHz at the
five buildings used in Test 1, i.e., for buildings and a frequency
band not included in the training dataset, taking approximately
40 samples per building and frequency.

Our data-driven model is trained on a Nvidia Quadro
RTX 8000 GPU over Tensorflow, using the Adam optimization
algorithm for 250 epochs, with the learning rate set to 0.0005,
and a batch size of 4. Before passing the input data to our
model, a min–max normalization is applied separately at every
input channel [28]. The loss function to be optimized is RMSE.
We also explored the use of MAE, but the performance of
our model was slightly worse, and thus we present results
only using RMSE as a loss function. During training, the loss
function is minimized with respect to y and ŷ, i.e., based on
the pixel intensity values of ray tracing and the predicted PL
images. However, the error metrics are estimated with respect
to ray tracing and the predicted actual PL values (i.e., between
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Fig. 8. Comparison between the PL heatmap simulated through (a) ray tracing and predicted by (b) EM DeepRay for a validation set sample at 433 MHz
(known building and frequency, but unknown transmitter position). (c) Error map depicts the absolute error between (a) and (b).

Fig. 9. Comparison between the PL heatmap simulated through (a) ray tracing and predicted by (b) EM DeepRay for a Test set 1 sample at 2 GHz (known
frequency band, but unknown indoor geometry). (c) Error map depicts the absolute error between (a) and (b).

Fig. 10. Comparison between the PL heatmap simulated through (a) ray tracing and predicted by (b) EM DeepRay for a Test set 2 sample at 2.6 GHz
(known indoor geometry, but unknown frequency band). (c) Error map depicts the absolute error between (a) and (b).

Fig. 11. Comparison between the PL heatmap simulated through (a) ray tracing and predicted by (b) EM DeepRay for a Test set 3 sample at 868 MHz
(unknown indoor geometry and frequency band). (c) Error map depicts the absolute error between (a) and (b).

yo and ŷo, in dB). The training takes almost 2 h, while a
prediction for a single sample requires about 100 ms, including
the extraction of the physics-based input tensor.

The overall error metrics between the simulated and pre-
dicted PL values for all the case studies are presented in

Table III. The error metrics are negligible for the training
set, with the RMSE and the MAE being equal to 1.2 and
0.99 dB, respectively. This implies that the proposed frame-
work can indeed learn to translate a map of physics-based
information to a PL heatmap. The validation set error metrics
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TABLE II

CASE STUDIES: KNOWN AND UNKNOWN INDICATE INCLUDED OR NOT
INCLUDED IN THE TRAINING DATASET

are approximately 3 dB larger than these of the training set,
but they still assume low values. More importantly, the good
resemblance between the simulated and predicted data is also
preserved for the three different test cases, as is indicated by
the values of rp that are very close to 1. Also, Tests 1 and
2 yield approximately an RMSE of 5 dB and an MAE of
3.8 dB, while for Test 3 the respective values are 5.6 and
4.5 dB. Furthermore, the MAPE assumes very small values for
every scenario. Thus, in addition to learning to infer the signal
attenuation within a given geometry and frequency band, our
model is generalizable, and it can provide accurate estimates
of the PL for new indoor geometries and frequencies. By
exploring the generalizability of our model to buildings and
frequencies separately, it is easier to understand its potential
limitations, and to where these could be attributed. Also,
in Test 3, by studying the same buildings and frequency bands
as in Tests 1 and 2, we can be confident that any error is not
owning to the use of new unknown buildings or frequencies,
but it can be attributed to the simultaneous generalization over
new buildings and frequencies.

In Figs. 8–11, we visualize the results for a random sample
from the validation set and from test sets 1–3, respectively.
Figs. 8(a)–11(a) show the simulated ray tracing “ground-
truth” for each sample, while the corresponding PL heatmap
predicted by EM DeepRay is illustrated in Figs. 8(b)–11(b).
We note that DeepRay outputs solely the PL heatmap, and
to illustrate the input geometry we consequently impose its
blueprint on top of the PL heatmap. As can be observed, the
similarity between the simulated and predicted PL heatmaps
is very high for all the cases. The absolute error maps in
Figs. 8(c)–11(c) depict the absolute error, |yo(i,j) − ŷo(i,j)|,
at each spatial point (i, j) within the simulated indoor envi-
ronment. A common trend is that the predicted PL exhibits
the largest absolute errors at positions far away from the
transmitting device. For instance, as can be seen in Fig. 11(c),
the largest errors are found on the lower left area of the floor.
That is more than 40 and 10 m away from the transmitter,
in the horizontal and vertical directions, respectively. This is
encouraging, since when a user is located far away from a
transmitter it is likely that they are served by another device,
and thus these areas do not have significant impact on network
design decisions.

VI. COMPARISON WITH MEASURED DATA AND

CALIBRATION THROUGH TRANSFER LEARNING

In Section V, we demonstrated that EM DeepRay can
be trained with physics-based data of various indoor

TABLE III

EM DEEPRAY PERFORMANCE FOR EACH CASE STUDY

environments and eventually learn to predict the PL within
them. Once trained, EM DeepRay can be used as a standalone
propagation model to furnish estimates of the PL for an
arbitrarily complex indoor geometry at a given frequency. The
credibility of our model highly depends on the data used to
develop it. These data are only an approximation of the actual
signal attenuation and they are themselves subject to errors.
However, the purpose of an ML-based propagation model is to
deliver results that closely resemble actual rather than synthetic
data.

In this section, we address this issue by outlining a simple,
yet efficient, approach that allows the calibration of EM Deep-
Ray through transfer learning. The aim of transfer learning is
to leverage knowledge accrued to tackle a certain problem and
use it to solve a different problem, which is related back to the
initial problem [28]. In our case, the first problem is the design
of an ML-based propagation model that can predict the PL in
indoor environments, while the second problem is to make the
ML-based propagation model realistic. The motivation behind
the use of transfer learning, rather than training EM DeepRay
simultaneously with synthetic and measured data, is that the
measured data are scarce and sparse. Indeed, measurement
campaigns are time-consuming and expensive, and usually the
results from large-scale campaigns are not publicly available.
In addition, typically only a small number of measured RSS
values are available for each indoor environment, since these
campaigns are realized by moving the receiving device around
within the area of interest and recording the RSS at some
sparse points.

Hence, if a dataset with both the simulated and measured
data is used to train an ML propagation model, it would
comprise a limited number of measurement scenarios (com-
pared with the simulated ones) with only a few recordings
per scenario. That would render the training challenging, as it
would be necessary to find a balance between the importance
of the measured over the simulated data. Instead, treating the
calibration as a distinct problem enables handling a limited
quantity of sparse data in a more efficient manner. In particular,
to calibrate our model we use the same framework shown in
Fig. 4(a); however, the target output tensor is now different.
As shown in Fig. 12, for calibration, the target output tensor
comprises the recorded measurements at some points within
the simulated grid, instead of the simulated ray tracing PL val-
ues. To distinguish the target output tensors of the calibration
framework, we use the subscript c, referring to the initial and
the resized target output as yc,0 and yc, respectively. Thus, the
calibration process constitutes a retraining of the pretrained
model obtained in Section V to adapt its PL predictions to
match the measured PL values of yc.
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Fig. 12. Calibration framework; the dots in the target tensor correspond to
points in the indoor geometry at which the RSS is measured, and their color
represents RSS intensity.

A significant difference between the target output tensors of
the frameworks, as shown in Figs. 4(a) and 12, is that most
elements of yc,0 and yc are zeros, i.e., no measurements are
recorded for these points. For that reason, it is not possible
to use the same loss function as the one used in Section V.
More specifically, the operation of EM DeepRay is equivalent
to applying a mapping function f , parameterized through a set
of learnable weighs �, to the initial input tensor X to derive
the output PL image heatmap, i.e., ŷ = f (X |�). The values of
� are computed iteratively, such as to minimize the difference
between the pixel intensity of the ray tracing “ground truth”
and the predicted PL image heatmap

min
�
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⎝ 1
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(
y(n)(i, j) − ŷ(n)(i, j)

)2

⎞
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1/2
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where y(n)(i, j) and ŷ(n)(i, j), are the ray tracing and the pre-
dicted pixel intensity values, respectively, for the nth sample
at pixel (i, j). Evidently, if y is zero at most points, for (9)
to be minimized, the values of � should be selected such
as ŷ is also zero at these points. Thus, using the same loss
function for yc, which has a few nonzero points, will force
the pretrained EM DeepRay to breakdown. To overcome this
limitation, during the calibration when (9) is computed for yc

and ŷc, their difference is multiplied with a term Qc defined
as

Qc(i, j) =
{

1, if yc(i, j) �= 0

0, if yc(i, j) = 0
(10)

and hence the only elements that contribute to the loss function
are those for which measured data exist. This allows us
to slightly modify the preestimated weights � during the
calibration (retraining) of our model and compute some new
weights �′, in a way that ŷc = f (X |�′) matches only the
nonzero values of yc. We note that the role of Qc is to consider
only the nonzero points of yc during the computation of �′;
however, that does not imply that the predictions for other
points of the simulation grid will remain intact. That is to say,
that �′ is estimated based only on a few points, but the change
in the weights affects the predictions for the entire grid.

To demonstrate the effectiveness of our approach, we gen-
erate the indoor geometry of [39] and provide it as an input
to DeepRay. The operating frequency is 868 MHz. Note that
detailed information about the measurement setup can be
found in [39]. In the absence of detailed information regarding
the material types, all the walls found within the geometry
are assumed to be made of concrete and are 10-cm thick.
Again, the input geometry image is resized and it is used

Fig. 13. Predicted RSS, and comparison with measured data [39] (a) Deep-
Ray RSS prediction before calibration for the indoor geometry of [39].
(b) DeepRay RSS prediction after calibration for the indoor geometry of [39].
(c) Comparison between the simulated and measured RSS.

to derive the physics-based input tensor. The target output,
yc,o, is turned into an image and it is also resized to have
the same size as the input tensor. The target output tensor
has only 36 nonzero points, i.e., we have measurements for
36 points within the simulated geometry. We note that the
measurements usually depict the RSS, while EM DeepRay
predicts the PL. To account for that, the elements of yo,c

are calculated as T x power − RSSmeasured , where T x power is
the transmitting power. Then, the two tensors along with the
auxiliary vector are passed to the SDU-Net which performs
a pixel-to-pixel regression, updating its weights considering
only the nonzero points of the target output image tensor, yc,
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TABLE IV

ERROR OF EACH PROPAGATION MODEL COMPARED
WITH MEASUREMENTS

as discussed earlier. The SDU-Net is retrained using the Adam
optimization algorithm. To avoid abrupt changes in �, we train
the SDU-Net over fewer epochs and we use a smaller learning
rate than that of Section V. Expressly, the learning rate is equal
to 10−5 and the training lasts for 50 epochs. Finally, to prevent
overfitting, we add an L2 regularization at each convolutional
layer, setting the regularization parameter equal to 0.01 [28].
The calibration procedure takes 15 s, since the SDU-Net is
retrained over a single sample. Once the SDU-Net is retrained,
we obtain the predicted PL tensor ŷc,o and we subtract it from
the transmitting power to derive the predicted RSS values.

The predicted signal level by DeepRay is benchmarked
against ray tracing and the multiwall model (MWM) [39].
The RSS predicted by DeepRay before calibration is shown
in Fig. 13(a), with the blueprint of the input geometry
printed on top of it. The predicted RSS after calibration is
shown in Fig. 13(b). The red dots in Fig. 13(a) and (b),
numbered from 1 to 36, correspond to the points at which
the measurements were taken. The measured, simulated, and
predicted RSS for each point are shown in Fig. 13(c), where
the x-axis signifies the corresponding red dot position shown
in Fig. 13(a). A comparison of the error metrics for the three
propagation models is presented in Table IV.

Prior to calibration, ray tracing demonstrates the smallest
errors yielding an RSME and the MAE being equal to 5.2 and
4.3 dB, respectively. The calculated error values for EM Deep-
Ray and MWM are approximately 1 dB larger. We remark that
EM DeepRay is not trained in this geometry and it can directly
make predictions by just using a blueprint. Also, the fact that
our model can provide estimates of the PL that are in close
agreement with measurements can assure us that the number
of training samples used in Section V is sufficient to develop
a credible data-driven model. A significant advantage of EM
DeepRay over both ray tracing and MWM is the substantially
computational time required to compute the PL values. Indeed,
our model’s estimation is based solely on multiple matrix
multiplications that can be executed within a few milliseconds
in a GPU. On the other hand, ray tracing requires to determine
all the rays that can reach a receiving point, while MWM
needs to estimate the number of walls between the transmitter
and each point in the simulation grid through Bresenham’s
line algorithm [40]. The substantial difference in the compu-
tational time can be critical when it comes to optimal network
planning, where multiple simulations are conducted within the
same geometry, aiming at meeting certain quality of service
requirements.

After calibration, the predicted RSS values for EM Deep-
Ray show a close correspondence with the measured data,
exhibiting an RMSE and an MAE equal to 1.69 and 1.22 dB,

TABLE V

CALIBRATION RESULTS USING A SMALLER NUMBER OF RANDOM TRAIN-
ING POINTS, AND ESTIMATING THE ERROR WITH RESPECT TO THE

REMAINING MEASUREMENT POINTS

respectively. The computational time for the calibrated EM
DeepRay is shown in Table IV. Note that even if we include
the training time (15 s), it remains much lower than that of ray
tracing and MWM. More importantly, as pointed out earlier
and can be seen in Fig. 13(b), due to the new weights �′, the
predicted RSS values are different for the entire grid, and not
just for the few measurement points. For instance, the RSS
was underestimated for the entire outdoor area on the left side
of the building, but after the computation of �′ the signal for
the entire area (and not only for points 26, 27, 28, 29, and
30) assumes higher values. To further test our assumption that
due to calibration the predicted RSS values for the entire grid
are improved, we calibrate EM DeepRay using only a fraction
of the total 36 measurement points, and measuring the error
with respect to the remaining points. The results are shown
in Table V, where we consider cases in which EM DeepRay
is calibrated using randomly only 4, 8, 16, and 27 out of the
36 measurements, and the error metrics are estimated with
respect to the remaining 32, 28, 20, and 9 measurement points,
respectively. As can be seen, the predictions for the rest of the
grid are improved, and the accuracy of our model is increased
even using a small number of points during calibration.

VII. CONCLUSION

Wireless communication system design requires robust and
expedient propagation modeling tools to ensure an optimal
network performance. In this article, we introduced a gen-
eralizable and realistic ML-based radio propagation model-
ing framework for indoor environments. Our model exploits
physics-based information extracted from the blueprint of an
indoor environment to predict the PL within an indoor area of
interest. Unlike previous work in the field, the predictions of
our model are not restricted to indoor geometries included
in the training set, but it can be used to readily predict
the PL for an arbitrarily complex indoor environment. Our
results indicate that our model can very well replicate the
PL simulated by a ray tracer, with the distinct advantage of
a considerably lower computational time. More importantly,
in this work we presented a calibration method that allows
our data-driven model to adjust its weights to make predic-
tions that are closer to measured rather than synthetic data.
We demonstrated that after calibration, which only takes a few
seconds, our model can provide estimates of RSS that resemble
actual measured data with outstanding fidelity. Our work
tackles two fundamental problems of ML-based propagation
modeling (generalizability and credibility), and it paves the
way for the establishment of a family of completely automated
ML-based propagation models that will assist the deployment
of next-generation wireless networks.
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