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Abstract— Large bandwidth at millimeter wave (mm-wave) is
crucial for fifth generation (5G) and beyond, but the high path
loss (PL) requires highly accurate PL prediction for network
planning and optimization. Statistical models with slope-intercept
fit fall short in capturing large variations seen in urban canyons,
whereas ray tracing, capable of characterizing site-specific fea-
tures, faces challenges in describing foliage and street clutter
and associated reflection/diffraction ray calculation. Machine
learning (ML) is promising but faces three key challenges
in PL prediction: 1) insufficient measurement data; 2) lack
of extrapolation to new streets; 3) overwhelmingly complex
features/models. We propose an ML-based urban canyon PL
prediction model based on extensive 28 GHz measurements from
Manhattan where street clutters are modeled via a light detection
and ranging (LiDAR) point cloud dataset and buildings by a
mesh-grid building dataset. We extract expert knowledge-driven
street clutter features from the point cloud and aggressively
compress the 3-D building information using a convolutional
autoencoder. Using a new street-by-street training and testing
procedure to improve generalizability, the proposed model using
both clutter and building features achieves a prediction error
[root-mean-square error (RMSE)] of 4.8 ± 1.1 dB compared
to 10.6 ± 4.4 and 6.5 ± 2.0 dB for 3GPP line of sight (LOS)
and slope-intercept prediction, respectively, where the standard
deviation indicates street-by-street variation. By only using four
most influential clutter features, the RMSE of 5.5 ± 1.1 dB is
achieved.

Index Terms— Machine learning (ML), mesh grid, millimeter
wave (mm-wave), path loss (PL) prediction, point cloud, urban
street canyon.

I. INTRODUCTION

The fifth generation (5G) of mobile networks has adopted
a much broader spectrum at higher frequency bands, such
as millimeter-wave (mm-wave) bands, which promises very
high data rates. To unleash the full potential of mm-wave
communications, highly accurate channel modeling and path
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loss (PL) prediction are essential in foretelling cell coverage,
planning deployment of the base stations (BSs), and optimiz-
ing network performance [1]. However, high bands come with
the challenge of higher free space, scattering, and diffraction
losses from the propagation environment. For example, in a
typical urban street, buildings and street clutter, such as scaf-
folding, vehicles, and tree canopies, can significantly impact
PL compared to lower frequency bands (wavelength of tens of
centimeters). Although accurate PL estimation by employing
fast and straightforward models is pivotal in network planning
and optimization, they are yet to be fully understood in
mm-wave frequencies at various propagation environments.

Numerous PL prediction models have been established
in the literature, which can be classified into three major
categories: statistical-based [2]–[8], deterministic-based [9],
[10], and learning-based models [11]–[30]. Statistical mod-
els such as [2] provide a computationally efficient method
by fitting particular equations to measurements obtained in
different propagation environments [2]–[8]. The most widely
adopted heuristic channel models, referred to as slope-intercept
model hereafter, apply a linear fit to the measured PL data
against the logarithm of the Euclidean distance between the
transmitter (Tx) and the receiver (Rx). Deterministic models
such as ray tracing, on the other hand, are based on the
principles of physics to simulate wave transmission, reflection,
and diffraction. Its PL prediction depends not only on the
environment abstraction (geometry and material properties)
but also on subjective parameter settings (e.g., the number of
rays and the maximum number of reflections). Ray tracing at
the mm-wave band is especially challenging [9], [10] since the
detailed characterization of foliage and street clutter and asso-
ciated reflection/diffraction calculation at short wavelengths all
require customized approximations (such as empirical reflec-
tion coefficients, rough surface, and the inclusion of diffuse
reflection and diffraction), making “tuning” (i.e., parameter
adjustment against field measurement [32]–[34]) an essential
part of the commercial ray-tracing tools in mm-wave network
planning. Therefore, machine learning (ML)-based techniques
have appeared as a promising alternative.

A. Previous Work

PL prediction can be considered as a regression problem
in ML, where the features extracted from the propaga-
tion environment become its input and PL as a continu-
ous variable output. We summarize some of the ML-based
approaches for propagation environment modeling and PL
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TABLE I

COMPARISON OF LEARNING-BASED PL PREDICTION [11]–[30]

prediction [11]–[30] in Table I, highlighting the propagation
environment, frequency, key features, training and testing
procedures, PL data source, and ML tools such as artificial
neural networks (ANNs), random forest (RF), convolutional
neural network (CNNs), autoencoder (AE), and support vector
regression (SVR). These works showcased the capability of
ML-based methods and their potential in improving PL pre-
diction accuracy. A more comprehensive review on ML-based
PL prediction can be found in [31].

Many of the ML-based approaches [11]–[23], [29] focus
on prediction for nearby links (i.e., interpolation). For studies
(see [24]–[28], [30]) that do predict PL for new streets/areas
(i.e., extrapolation), the influence of street clutter, such as trees
and street furniture on PL, is either minimal or nonexistent.
Besides, in most previous works, complex ML models are
adopted as a black box, making it hard to interpret the con-
nection between features and PL prediction. These complex
ML models also make PL prediction vulnerable to overfitting
since the training data size from measurements is usually too
small compared to adjustable parameters in ML models.

Compared to studies such as [11]–[28] that are dedicated to
the sub-6 GHz bands, ML-based PL prediction for mm-wave
bands requires a much finer level of details in the environ-
ment description as scattering by small objects (tenths of
wavelength) and material absorption loss are more significant
for mm-wave signals. For example, about 30 dB street-by-
street variation in median PL has been observed from field
measurements in urban street canyons at 28 GHz [8]. Recently,
ML-based PL prediction at mm-wave bands in urban street
canyons has been proposed using CNN-based models [29],
[30]. Both models are trained using ray-tracing simulated
PL data and thus provide computationally efficient ways to
approximate ray-tracing prediction. However, ray tracing itself
at the mm-wave band in a cluttered environment needs to
be improved to better match field measurements [32]–[34].
For example, a ray-tracing calculation was found to predict

about 10 dB stronger received power than observed in urban
street canyons at 28 GHz [8]. This is thought to be due
to difficulty in representing and modeling street clutter and
foliage in traditional ray tracing. Therefore, accurate and
practical models are still needed.

B. Our Contributions

We address three key challenges in ML-based PL prediction
for mm-wave bands: 1) reliability due to no/insufficient mea-
surement data; 2) generalizability due to weak/no capability
of extrapolation; and 3) interpretability due to complex ML
models and high-dimensional features.

1) Reliability: We utilize a large-scale dataset from 28 GHz
field measurements [8] in urban street canyons, consisting
of 1028 continuous-wave links from 13 streets in Manhattan
from multiple rooftop sites colocated with commercial BS. The
street clutter information, such as tree canopies and lampposts,
is obtained from the open-source light detection and ranging
(LiDAR) point cloud dataset [35], and the building information
is obtained from the open-source 3-D mesh grid [36], which
includes building height, facade shape, separation between the
buildings, roads, and elevation information.

2) Generalizability: The generalizability we address it from
three aspects.

1) Street-by-Street Training and Testing Policy: Thirteen
independent training–testing combinations are created
by choosing one street at a time for testing and the
rest 12 streets for training. Such policy would test
extrapolation of trained models to “never seen” streets.

2) Aggressive Street Clutter and Building Feature Com-
pression: For each link, the high-resolution point cloud
raw data are compressed to two numbers using heuristic
approaches devised from expert knowledge in wave
propagation, and the 3-D building information is com-
pressed to a length-12 vector using CNN-based AEs to
preserve the spatial characteristics.
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Fig. 1. Methodology adopted in this work.

3) Reducing Adjustable Parameters for PL Prediction:
Simple ML-based regression algorithms, such as Lasso,
Elastic-net, RF, and SVR, are adopted to mitigate
overfitting.

3) Interpretability: We adopt human-friendly environment
features and quantify the significance of each feature in the
PL prediction. We define only seven expert knowledge-driven
propagation environment features, referred to as clutter fea-
tures hereafter, where each feature has a physical meaning
attached. We quantify the importance of each clutter feature by
the Lasso weight analysis and by comparing the PL prediction
accuracy when only one feature is excluded.

To the best of our knowledge, this is the first time that
both street clutter information and building information are
used collectively for mm-wave PL prediction using a large-
scale real-world propagation measurement at 28 GHz in urban
streets. We show that our proposed model achieves the root-
mean-square error (RMSE) of 4.8 dB averaged over all
13 streets with a 1.1 dB standard deviation that reflects the
street-by-street variation. By only using the top four most
influential features, our model achieves the prediction RMSE
of 5.5 ± 1.1 dB (mean ± std). In contrast, the heuristic
slope-intercept method and the 3GPP line of sight (LOS)
model-based prediction have the RMSE of 6.5 ± 2.0 and
10.6 ± 4.4 dB, respectively. For the first time, we show that
the ML-assisted PL predictions are more accurate than a
measurement-based slope-intercept model with much smaller
street-by-street variation. The methodology adopted in this
work is summarized in Fig. 1.

C. Article Organization

The datasets of PL, point cloud, and 3-D building are
described in Section II. Expert knowledge-based feature
extraction from point cloud is presented in Section III and
3-D building feature compression using CNN-based AE is
presented in Section IV. ML algorithms for PL prediction
and the street-by-street training and testing methodology are
elaborated in Section V. Performance evaluation is presented
in Section VI and conclusions are drawn in Section VII.

II. PL DATA COLLECTION AND FEATURE

SETS PREPROCESSING

In this section, we present an overview of the PL mea-
surement in Manhattan and preprocessing of the point cloud
dataset and the 3-D building mesh-grid dataset.

A. 28 GHz PL Measurement in Manhattan

The measurement campaign [8] is designed to characterize
coverage in an urban street canyon, which can be coarsely
defined as a straight road in an urban area that has buildings
on both sides, with street clutter such as trees, vehicles, and
lampposts placed along the road. Measurement was done from
roof edge-mounted BS (i.e., urban macro) to user equipments
(UEs) (1.5 m high) in the center of a sidewalk along the street,
with no attempt to incorporate or eliminate blockage due to
street clutter. The purpose is to resemble coverage of the street
in the presence of such obstructions.

Measurements were performed from 7 building rooftops
covering 13 streets from multiple areas of Manhattan of
different street widths and widely varying amount of foliage,
from the Pike Street in the lower east side to W 126th Street
in West Harlem. The propagation environment differs signifi-
cantly among the 13 streets. For example, street width ranges
from 15 to 38 m, whereas building height varies from 11 to
93 m. Tree distribution along streets ranges from nothing to
sparse, to very dense, and some streets even have road dividers
with trees/bushes separating driveways. We summarize the
diverse characteristics of the 13 streets in Table II.1

In total, 1028 links were measured from over 3800 m of
street side walks with over 10 million individual power mea-
surements, which were locally averaged per link to eliminate
small-scale fading. In Fig. 2(a), we show the measured links
and the slope-intercept fit to PL versus logarithmic Euclidean
distance (d), which is given by

P = A + 10n log10(d) + N (
0, σ 2

)
(1)

where A = 46.9 dB is the 1 m intercept, n = 3.1 represents the
slope, σ = 6.3 dB is the RMSE between fit and actual values,

1Details of clutter per street and clutter per link are deferred to Section III-A.
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TABLE II

DIVERSE CHARACTERISTICS OF 13 MEASURED STREETS AND THEIR POINT CLOUD-BASED CLUTTER FEATURES

and N (·) is the normal distribution representing shadow
fading. Comparing our data against standard PL models such
as 3GPP UMa LOS and Non LOS (NLOS) [38] leads to the
RMSE of 11.3 and 18.1 dB, respectively. Fig. 2(b) shows the
distributions of path gain2 for individual streets, with median
spanning over a range of about 30 dB.

The presence of street clutter may be the cause for about
10 dB excess loss compared to the UMa LOS model in
Fig. 2(a) and the large street-by-street variations in Fig. 2(b).
This is due to the short wavelengths of mm-wave signals,
approximately 1 cm at 28 GHz, making them more susceptible
to intense diffused scattering and poorer rough surface reflec-
tion [39]. Furthermore, mm-wave has a tighter first Fresnel
zone directly proportional to its wavelength, causing objects
as small as tens of centimeters to appear to be substantial
in impairing link quality [40]. This motivates us to capture
detailed environment features, such as street clutter and 3-D
building.

B. Street Clutter Modeling Using LiDAR Point Cloud Dataset

Let us consider the measurements done from the same
rooftop for two Manhattan streets, the 7th Avenue with a
handful of young trees and the W 11th Street with many
tall tree canopies, as shown in Fig. 3(a) and (b), respectively.
Measured PL and their slope-intercept fits are shown in
Fig. 3(c). The distance exponent of the W 11th Street is
significantly higher, 8.7, compared to 3.4 on the 7th Avenue,
with a 23 dB gap in average PL at 500 m. Therefore, street
clutter information, which includes tree canopies, cars, and
lampposts, plays a crucial role in PL prediction.

To capture the street clutter, we use the USGS CMGP
LiDAR point cloud repository [35], where each object is
described by a set of points on its external surfaces acquired
at 1 cm resolution. For each street, we change the origin to the
ground location of the Rx position and align the X-axis with
the street along which the Tx is moving, the Y -axis along the

2Path gain, instead of PL, is shown in Fig. 2(b) to emphasize the deterio-
rating link quality at lower percentile rank.

Fig. 2. Manhattan measurement data and street-by-street variation (different
colors per street). (a) Measured PL of 1028 links from 13 streets. (b) Large
street-by-street variation.

width of the street, and the Z -axis pointing to the Rx placed at
the top of the building. We also utilize a k-nearest neighbor-
based point cloud denoising [41]. The processed point cloud
representing the street clutter for the 7th Avenue and the
W 11th Street is shown in Fig. 3(d) and (e), respectively.
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Fig. 3. Two streets covered from the same rooftop with diverse street clutter density. (a) Seventh avenue, Manhattan. (b) W 11th street, Manhattan.
(c) Comparison of measured PL. (d) Point cloud for seventh. (e) Point cloud for W 11th.

Fig. 4. Aerial view of W 11th street.

C. 3-D Building Mesh Grid

Reflection and scattering from urban buildings can be
significant and impose a wave-guiding effect on the sig-
nals. We extract the 3-D building mesh grid from the
Cadmapper [36]. The aerial view of the W 11th Street is
shown in Fig. 4 and the extracted 3-D buildings are shown in
Fig. 5(a). We first convert the high-dimensional mesh grid into
a Euclidean space by assigning each 1 ×1 ×1 m cube a value
1/0 indicating the presence/absence of a mesh grid. We then
reposition the origin such that Rx is at (0, 0, Rx height) and
align the X-axis along the street and the Y -axis along street
width (i.e., align the coordinates with those used for point
cloud). To reduce the dimensionality of the dataset while
preserving height information, we collapse it along the Z -axis
into 2D grids (of 1×1 m) and assign the entry of each grid the

height of building at that location (0 if there is no building),
as shown in Fig. 5 for the W 11th Street where the color bar
indicates the height.

Remark 1: Please note that accurate point cloud and 3-D
mesh-grid datasets collected along with the PL measurements
are desirable, but they would significantly increase the cost
and overhead. Since we are interested in capturing the gen-
eral characteristics of the street clutter and 3-D buildings
rather than the fine details, we find it is sufficient to use
publicly available point cloud and 3-D mesh-grid datasets
from [35] and [36], respectively, independent of the PL
measurements [8].

III. STREET CLUTTER FEATURE EXTRACTION

FROM POINT CLOUD

The LiDAR point cloud dataset [35] contains a massive
amount of data that cannot be directly used for training or
interpretation. Thus, we focus on expert knowledge-driven
feature extraction from the point cloud dataset for modeling
the street clutter.

A. Street Clutter Feature Compression

We compress all the LiDAR point cloud information for
each link into two numbers using heuristic approaches devised
from expert knowledge in wave propagation, where each
number is proportional to the count of points in a 3-D volume.

1) Street-Specific Clutter Density (Clutter per Street): Aver-
aged point cloud density in a 3-D volume defined by
(along-the-street distance between Rx and furthest Tx) ×
(street width) × (Rx height above ground).

2) Link-Specific Clutter Density (Clutter per Link): Total
number of points contained in a string of contiguous



GUPTA et al.: ML-BASED URBAN CANYON PL PREDICTION USING 28 GHz MANHATTAN MEASUREMENTS 4101

Fig. 5. Example of 3-D building mesh-grid data. (a) 3-D building (mesh
grid) acquired for the W 11th street. (b) 2-D collapse for the W 11th street
mesh-grid buildings.

Fig. 6. Illustration of point cloud-based clutter features.

1×1×1 m cubes traversed by the straight line connecting
Tx and Rx.

The clutter per link represents the accumulated clutter
density along the direct path within the first Fresnel zone
(about or smaller than the 1 m × 1 m cross section) and
thus may be interpreted as a blockage indicator of the direct
path for each link. The clutter per street represents the overall
clutter density of the entire street and remains the same for
all links from the same street.

B. Point Cloud-Based Expert Street Clutter Features (Clutter)

The following seven expert street clutter features are defined
for PL prediction.

1) Clutter 1 (Log 3-D Distance): Euclidean distance (log
scale) between the Tx and Rx.

2) Clutter 2 (Log 1-D Distance): Along-the-street distance
(log-scale) between the Tx and Rx.

3) Clutters 3 and 4 (Clutter per Street and Clutter
per Link): Clutter density information as defined in
Section III-A.

4) Clutter 5 (Street Width): It spans from 15 to 38 m.
5) Clutter 6 (Buildings on Both Sides): Indication of guid-

ing effect from street canyon.
6) Clutter 7 (Rx Height): It spans from 15 to 54 m.
Among the defined seven clutter features, four of them have

been used in different 3GPP models: 1-D distance (d1D), 3-D
distance (d3D), street width, and the BS or Rx height (h),
as shown in Fig. 6. Such features provide us a way to interpret
the trained models and compare them against the 3GPP and
slope-intercept models. The other three features capture street-
specific (clutter per street) and link-specific (clutter per link)

clutter information as well as the street canyon information
(building on both sides of the street).

We summarize the defined expert features in Table II,
in which we omit the details of log 3-D distance, log 1-D
distance, and clutter per link features because they have a
separate entry for each link. We also report the range of build-
ing height, terrain variation, and the number of measurement
links on each street. Please note that the ten-time variation in
the clutter per street feature (0.51–5.04) indicates the diverse
nature of street clutter in the measurement streets, consistent
with the 30 dB street-by-street variation seen in Fig. 2(b).

We standardize the defined clutter features before training
and testing. For feature f , we compute its mean μ and
variance σ 2 on the training dataset; then, we rescale the feature
in both the training and testing datasets as f̂ = ( f − μ)/σ .

IV. AE-BASED FEATURE EXTRACTION FROM

BUILDING DATASET

Although we have converted the 3D building mesh grid
into a 2-D matrix representation, as explained in Section II-C,
the building features are still much richer than the PL data.
We further reduce the 2-D collapse of buildings to a size
of (500, 40) by removing buildings beyond the maximum
measurement distance of 500 m and by including the building
facade only (taking grids 20 m from the center of the street
on each side). As the Tx–Rx distance increases, the number
of 2-D grids in between the two also increases. We append
zero to the 2-D matrix representation at shorter distances to
preserve the distance dependency and avoid information loss
by downsampling.

We then use CNN-based AE to compress the extensive
building facade data to a few most relevant features for
PL prediction. CNN captures the spatial dependencies with
the help of kernels and filters, and AE learns an efficient
encoder (for feature compression) and a matching decoder
(to reproduce the original input signal) in an unsupervised
manner. Therefore, a combination of CNN and AE, as shown
in Fig. 7, can help us to reduce the massive feature dimension
of the building data to 12 features while preserving the spatial
characteristics.

The encoder in the CNN-based AE, as shown in Fig. 8(a),
takes 2-D buildings I ∈ R

(500,40) as input and reduces it
to compressed features X ∈ R

(12). This is achieved by the
convolutional and max-pooling layers that help to reduce
the dimension while preserving the spatial characteristics,
whereas the dense layers extract compressed nonlinear fea-
tures. After the first max-pooling layer, we perform grouped
convolutions—convolutions in parallel, in which two identical
CNNs (Conv-Net-1 and Conv-Net-2) are processed in parallel
before their addition.

Then, the decoder in the CNN-based AE, as shown in
Fig. 8(b), takes X as its input to reconstruct the 2-D buildings
Y ∈ R

(500,40). This is achieved by the dense layers that decode
information from the compressed feature representation and
the convolutional and upsampling layers that revert the build-
ing information to its original form.

We design a loss function L(·) based on the log-cosh loss
instead of MSE to increase its robustness against outliers in
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Fig. 7. Proposed CNN-based AE for building feature compression.

Fig. 8. Neural network architectures for the proposed CNN-based AE. (a) Architecture of CNN-based encoder of AE. (b) Architecture of CNN-based decoder
of AE.

the building data and also reduces the impact of appended
zeros in the input I. Note that the values in 2-D matrix
representation is standardized between 0 and 1 before feeding
to the AE. For a grid (a, b), we find the maximum and
minimum values for that grid in all the training data and
denote it by max(a, b) and min(a, b). Then, we rescale all
the values in the training and testing data for the (a, b)th grid
as (value in (a,b) − min(a, b))/(max(a, b) − min(a, b)). The
details of the designed loss function L(·) and the CNN-based
AE architecture can be found in Appendix A.

We implement the AE in Keras [46] with TensorFlow as
a backend. We keep the learning rate of 0.0012, the batch
size of 16, and the total number of epochs 100. We train the
network end-to-end using the Adam optimizer [47] over the
time, to reconstruct the input 2-D collapse of the building
at the output of the decoder. Once the AE is converged,3

3The designed AE with parallel Conv-nets (CNNs) converges after
50 epochs and has better reproducibility than using a single or two serially
concatenated Conv-nets, shown in Appendix B.

we utilize the encoder to design compressed building features
X ∈ R

(12) and then feed them to PL prediction.

V. ML-BASED MODELS AND TRAINING–TESTING

METHODOLOGY

We utilize the extracted clutter and compressed building
features and compare the following regularized linear and
nonlinear ML algorithms [45] for PL prediction using a
street-by-street training and testing methodology to emphasize
generalizability.

A. ML-Based Models for PL Prediction

Let P denote the true PL value, F(·) represent the input
feature vector, and w indicate the designed weight matrix. The
following ML algorithms are used for PL prediction.

1) Lasso Regression (Lasso): It optimizes the regression
weights by minimizing the least-square error, including
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Algorithm 1 Links-Shuffle-Split Training and Testing Procedure
Require: F(·) and P for 1028 PL measurements. � Collection of all the measurements from 13 streets.
Ensure: D = [x := F(·), y := P]. � This symbolizes our total dataset.
1: for i = 1 to i terations do � Loop for varying shuffle and split of dataset.
2: Randomly shuffle and split D in 4 : 1 ratio to form [xi

train, yi
train] and [xi

test, yi
test].

3: Train ML-based PL models (detailed in Section V-A), using [xi
train, yi

train] to obtain trained model Mi .
4: Test model Mi using xi

test to predict PL yi
pred.

5: Calculate RM SEi in PL between ground-truth PL yi
test and predicted PL yi

pred.
6: end for
7: Mean RMSE := μ(RM SE {1,2,...,iterations} ) and std. deviation := σ(RM SE {1,2,...,iterations} ).

a supplementary l1-norm penalty on the regression coef-
ficients (weights)

min
w

(
1/2nsamples

) × ∥∥F(·)w−P
∥∥2

2 + α‖w‖1 (2)

where nsamples is the sample size and α > 0 imposes the
l1 penalty on the weights.

2) Elastic-Net Regression (Elastic-net): It imposes both
l1- and l2-norm penalties on the weights, where convex
combination of l1 and l2 penalties is controlled by
parameter δ

min
w

(
1/2nsamples

) × ∥∥F(·)w−P
∥∥2

2 + αδ‖w‖1

+ (α(1 − δ)/2) × ‖w‖2
2. (3)

3) RF: It is an ensemble learning method, where multiple
decision trees’ average is utilized to predict the PL.
We consider 20 estimators with a maximum tree depth
of 25.

4) SVR: It solves the following primal problem:

min
w,b,ζ

(
wT w

)
/2 + C

T∑
n=1

ζn

s.t. Pn
(
wT φ

(F(·)n

) + b
) ≥ 1 − ζn

ζn ≥ 0, ∀ n ∈ [1, T ] (4)

where C denotes the penalty term, ζn indicates the
distance of the nth sample from the decision bound-
ary, and b represents the bias term and φ(F(·)n) maps
F(·)n to a higher dimensional space. We train the SVR
with an radial bias function (RBF) kernel, given by
exp(−γ ||F(·)i − F(·) j ||2) for any two samples i and j ,
and γ > 0.

All the PL prediction methods are implemented using
scikit-learn [48]. We use grid search with fivefold cross
validation [45] over the training set to obtain the best
parameters. In particular, the hyperparameter α in Lasso
and Elastic-net and C, γ in SVR is grid-searched from
{10−4, 10−3, . . . , 103, 104} during the training and the best fit
parameter is used for testing.

B. Feature Vectors

The proposed ML-based PL prediction models can be
implemented using either of the following descriptive features.

1) Point Cloud-Based Expert Street Clutter Features (Clut-
ter) Only: It consists of the seven expert features extracted
from the street clutter information (in Section III-B), which is
represented as

FClutter = {log-3-D distance, log-1-D distance, street width,

Clutter-per-link, Clutter-per-street, Rx height,

buildings on both sides}. (5)

2) Combination of Clutter and Building Features (Clutter +
Building): Here, we first use the encoder of the trained
AE (proposed in Section IV) to obtain compressed features
X ∈ R

(12) and concatenate with the clutter in (5), denoted by
FClutter_Building = [FClutter, X].

C. Training and Testing Methodology

In conventional ML-based training–testing, the 1028 PL
measurements (collection of all the measurements from
13 streets) dataset is randomly shuffled and divided into a
4:1 ratio for training and testing sets. We refer to it as
links-shuffle-split training and testing, briefly described in
Algorithm 1. To capture the impact of random shuffling and
splitting, we perform the process multiple times and obtain the
mean RMSE and standard deviation in RMSE due to random
shuffling and splitting of the dataset. Data in the testing set
are statistically similar to those in the training set, and the
focus of trained models is on interpolation. Since links that
are close to each other have similar PL values, shuffling the
data impacts negatively on the generalizability of the model
given the limited amount of PL measurements.

Motivated by the large street-by-street variation of measured
PL observed from Manhattan measurements [8], we propose
a new way of training–testing referred to as street-by-street
training and testing, focusing on the extrapolation capabilities.
We group the measurement links based on streets where they
are collected and formulate 13 groups, one for each street.
We then create 13 train–test combinations, in which for each
combination, one street is selected for testing and the rest for
training. A model is trained and tested 13 times, using the 13
train–test combinations independently, producing 13 RMSE
values. We summarize the procedure briefly in Algorithm 2.

Remark 2: In Algorithm 2, the street-by-street variation in
prediction is quantified by the standard deviation in RMSE of
the 13 tested streets. It is the metric chosen to measure the
generalizability to unseen streets. Thus, the lower the standard
deviation, the better the generalizability.
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Algorithm 2 Street-by-Street Training and Testing Procedure

Require: F(·){1,...,13} and P{1,...,13} for each of the 13 streets.
1: for k = 1 to 13 do � Loop for each of the 13 streets as testing.
2: Testing Street := k th street, Training streets := All the 13 streets except k th street := {1, . . . , 13} − {k}.
3: xtest := F(·)k , xtrain := F(·){1,...,13}−{k}, ytest := Pk and ytrain := P{1,...,13}−{k} � Measurements of k th street becomes testing

data, while all the other measurements form training data.
4: Train ML-based PL models (detailed in Section V-A), using [xtrain, ytrain] to obtain trained model Mk .
5: Test model Mk using xtest to predict PL ypred.
6: Calculate RM SEk in PL between ground-truth PL ytest and predicted PL ypred for k th testing street.
7: end for
8: Mean RMSE := μ(RM SE {1,2,...,13}) and std. deviation := σ(RM SE {1,2,...,13}).

TABLE III

RMSE IN PL PREDICTION

D. Model Applicability and Generalizability
The measurement campaign [8] focused on rooftop-to-same

street measurements in urban street canyons. Thus, the trained
ML-based PL prediction models proposed in this work are
applicable to similar urban street canyons, where BS is placed
on the rooftop and UEs move along the same street. The direct
path between them would have been in LOS if there were no
street clutter/foliage.

The generalizability of the trained model to unseen streets
depends on the similarity of street canyons and street
clutter density. We have introduced three measures (see
Section I-B) to enhance the “generalizability” of trained
ML models, namely, street-by-street training and testing
to force extrapolation, aggressive feature compression to
improve robustness, and simple prediction models to reduce
overfitting.

The applicability and generalizability of the trained ML
models to new urban street canyons can be assessed from three
aspects.

1) Ranges of Features: The trained ML model is expected
to work best/well when the ranges of the fea-
tures in unseen streets are within or close to the
ranges of the training features [52], as summarized in
Table II.

2) Feature Importance and Sensitivity: Not all features are
equally important in PL prediction and not all features
of unseen streets have a similar range as training data.
Thus, it becomes pivotal to analyze feature importance

and feature sensitivity [53]. We defer the analysis to
Section VI-D and Appendix C.

3) Distribution of Measured PL: When sparse PL mea-
surements are available from target streets, we can
check whether the measured PL distribution is similar
to the distribution of training PL samples, as shown in
Fig. 2(b). The trained ML model is expected to work
best/well only if the distributions are similar.

Remark 3: If the feature ranges of future streets and/or the
distribution of measured PL do not align well with the existing
training datasets, we can employ transfer learning [54], [55]
to fine-tune the existing ML model with very few measure-
ments, instead of training the new ML model from scratch by
leveraging the trained ML model.

VI. PERFORMANCE EVALUATION AND ANALYSIS

In this section, we evaluate the performance of the proposed
PL prediction models using the street-by-street training and
testing. The key performance metric is the mean and standard
deviation of the 13 RMSE values obtained in street-by-street
PL prediction. Our benchmarks are the 3GPP UMa LOS
prediction model (P = 28.0+22 log10 d3D+20 log10 fc), 3GPP
UMi NLOS prediction model (P = 22.4 + 35.3 log10 d3D +
21.3 log10 fc), where fc = 28 denotes carrier frequency (in
GHz), as well as the slope-intercept model described in (1)
where the slope and intercept parameters are obtained using
the same training data subsets as used by the ML-based meth-
ods. All of the three models only use the 3-D Tx–Rx Euclidean
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Fig. 9. Street-by-street variation of the average RMSE over 25 runs using
Clutter + Building.

distance d3D as the input feature and their performances are
evaluated using the same testing data subsets as used by
ML-based methods.

Simple ray-tracing-based PL prediction, which includes up
to ten reflections from the wall and the ground but ignores
street clutter, has predicted stronger signal power than in free
space [4], [8], which itself is 10 dB hotter than the measured
data in urban canyons [8]. Several works [32]–[34] have
focused on (3-D) ray-tracing-based prediction for mm-wave
in urban street canyons, where the accuracy of ray tracing is
shown to be strongly dependent on modeled wave propagation
mechanisms [33] and environmental feature description [34].
Therefore, an in-depth proper investigation of street clutter
approximation and modeling is needed to bring ray-tracing
prediction up to a reasonable level of accuracy. We leave
improvements of ray-tracing-based PL prediction for future
work.

A. PL Prediction Accuracy (RMSE)

We summarize in Table III the RMSE in PL prediction of
linear and nonlinear ML algorithms proposed in Section V-A
with street-by-street training–testing methodology (shown in
Algorithm 2), where the standard deviation of RMSE repre-
sents robustness against street-by-street variation over all 13
training–testing combinations.

The 3GPP UMi NLOS and 3GPP UMa LOS channel models
have the mean RMSE of 18.0 and 10.6 dB, respectively, not
suitable for describing street canyon channels with clutters.
The slope-intercept model produces a mean RMSE of 6.5 dB
with a standard deviation of 2.0 dB across different testing
streets. With the clutter feature set (FClutter), both regularized
linear Elastic-net model and the nonlinear SVR model simul-
taneously reduce the mean RMSE by about 1.1 dB and the
street-by-street standard deviation by about 0.7 dB, creating a
more generalizable model with better PL prediction accuracy.

The PL prediction performance can be further improved
using the FClutter_Building feature set. Unlike the clutter feature
set that is deterministic, the FClutter_Building feature set contains
compressed building features extracted from a CNN-based
AE, which is inherently a random process and the resulting
performance can change significantly [51]. We run the AE
25 times and generate 25 unique FClutter_Building feature sets.

For each of the 25 feature sets, we test the ML algorithms
using the street-by-street testing, reporting both the best4 and
the average over all 25 runs. The street-by-street variation of
the average RMSE over all 25 runs is shown in Fig. 9 using
a box plot, where the average RMSE over 25 runs for each
testing street is represented as a color-coded o symbol. The
median and mean over 13 streets are given by line inside each
box and the red + symbol, respectively, and the edges of the
box mark the quartiles, with whiskers extending outside the
box indicating the minimum and maximum over all 13 testing
streets. By searching for a better AE out of 25 runs for each
testing street, the mean RMSE can be further reduced by about
0.6 dB and street-by-street standard deviation by about 0.2 dB
for both Elastic-net and SVR. The gain of RF-based prediction
over the slope-intercept model is small, which is likely because
it is not good at extrapolation when the statistics of the training
and testing sets differ [50].

To verify and compare the capability of interpolation of
various prediction models, we also run the classical links-
shuffle-split training and testing approach detailed in Algo-
rithm 1 with iterations = 25, i.e., randomly shuffle-and-split
25 times. The results are also shown in Table III, where the
0.2 dB standard deviation in RMSE for Clutter + Building
comes from both the inherent randomness of shuffling and
splitting the dataset and AE compression out of 25 independent
runs. The best result out of 25 runs for all the proposed
ML-based PL prediction achieved over 1.7 dB reduction in
mean RMSE compared to the slope-intercept prediction and
over 0.4 dB reduction compared to the street-by-street testing.
However, caution has to be taken to differentiate extrapolation
and interpolation for site-specific PL prediction given limited
measurement datasets.

B. Robustness Against Street-by-Street Variation and
Distance

We evaluate the robustness of PL prediction against street-
by-street variation in Fig. 10 using Elastic-net-based prediction
for both the clutter feature set and the best Clutter + Building
(FClutter_Building) feature set out of the 25 options. Compared to
the two 3GPP models and the classical slope-intercept model,
the two ML-based PL prediction models reduce both the
mean RMSE and the street-by-street variability. This clearly
demonstrates the importance of incorporating street-specific
features, such as street clutter and building into PL prediction
models and the robustness of linear ML-based models in
extrapolation to unseen streets.

The mean RMSE in PL prediction as a function of the
3-D distance is shown in Fig. 11. All the links are grouped
into 100 m intervals, and within each interval, we calculate
the mean RMSE for street-by-street testing. Here, the X-axis
denotes the ending position of an interval (e.g., 200 m denotes
the interval spanning from 100 to 200 m). Our proposed mod-
els outperform the slope-intercept model for all the distance
ranges. The improvement in mean RMSE is about 1.2–2.7 dB

4Both the mean and standard deviation of the best RMSE converge within
25 runs as shown in Appendix B.
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Fig. 10. Street-by-street variation.

using Clutter + Building feature set compared to the classical
slope-intercept model.

C. PL Prediction Versus Measurement

We compare the measured PL values with the predicted
PL values in Fig. 12. We analyze the street-by-street testing
using Elastic-net prediction (regularized linear regression) with
Clutter + Building features for the best case (smallest RMSE,
Street 1) and the worst case (largest RMSE, Street 13) in
Fig. 12(a) and (b), respectively. The linear model derived from
the Elastic-net prediction (red solid line) is very close to the
slope-intercept fit to measured data (black solid line), with
marginally increased RMSE ranging between 0.2 and 0.7 dB.
This indicates that our proposed Elastic-net is highly generaliz-
able and effective in capturing street-by-street variation. While
the trained model is good at capturing the overall PL trend
per street, its capability of tracking link-by-link variation is
modest, as shown by the marginal improvement (0.1–0.2 dB in
RMSE) over the linear models derived from the corresponding
prediction. In Fig. 12(c), we also analyze the links-shuffle-
split testing over 20% of measured data from all 13 streets
using the trained RF with clutter features. This shows that our
proposed RF (nonlinear regression) model is highly effective
in generalizing to nearby links.

D. Feature Importance for the Point Cloud-Based Street
Clutter Features

The Lasso regression imposes an l1-norm penalty that
minimizes the weights of least relevant features to improve the
accuracy, and therefore, the relative magnitude of the resulting
weights can be interpreted as the feature importance in PL
prediction. We perform the Lasso regression on the clutter
feature set with street-by-street training–testing methodology
and present the obtained weights in Fig. 13, where each bar
represents the mean value of the weights corresponding to each
feature. The error bar indicates the minimum and maximum
weight values obtained for that specific feature when tested
separately for 13 streets. The amplitude of each weight indi-
cates the importance of that feature, and the opposite signs (in
amplitude) of the weights help balance the clutter features in
PL prediction. As expected, the 3-D distance has the highest
weight, followed by the clutter per street, which quantifies how

Fig. 11. Mean RMSE versus distance.

TABLE IV

TRAINING AND TESTING COMPLEXITY OF PL PREDICTION ALGORITHMS

cluttered each street is based on the normalized point cloud
densities of the whole street. The “building on both sides”
binary indicator and the clutter per link , which quantify
accumulated clutter density along the direct path, also have
notable importance. This aligns with the understanding that
reflection from buildings on both sides of the canyon increases
signal strength, and that clutter intruded into the direct path
has an adversarial effect on propagation.

Feature importance can also be observed by comparing
the change of prediction accuracy when each clutter fea-
ture is excluded individually from prediction, as shown in
Appendix C using Elastic-net regression, where the same top
four most important features are identified (in descending
order): clutter per street, 3-D distance, clutter per link, and
building on both sides.

By only using the top four most influential features, the
RMSE of 5.5 ± 1.1 dB can be achieved using Elastic-net
regression. For almost all the ML-based prediction results
using the reduced clutter feature set, both the mean RMSE and
standard deviations are within 0.2 dB from the results shown
in Table III obtained using all the seven clutter features (see
Appendix C for details).

E. Computational Complexity

Let us denote the number of training samples by n, the
number of features by p, the number of trees by nt and depth
of the tree by nd , and the number of support vectors by nsv ;
the training and testing complexity can be summarized in
Table IV where T is the number of outer iterations used in
the coordinate descent solver. Given the low dimensionality
of the features (7 in clutter and 12 in building) used in
our PL prediction models, the PL prediction is very fast.
The prediction time per link is less than 3 μs for Lasso
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Fig. 12. Measured PL data versus prediction PL data. For the street-by-street testing in (a) and (b), we employ Elastic-net on Clutter + Building features.
For the links-shuffle-split testing in (c), we employ RF on clutter features. (a) Street by street—best case (Street 1). (b) Street by street—worst case (Street
13). (c) Link shuffle split with 80%–20% split.

Fig. 13. Average feature importance for clutter feature set using the
Lasso regression in street-by-street testing, where the error bars indicate the
minimum–maximum range over 13 streets.

and Elastic-net and less than 40 μs for RF and SVR when
implemented using scikit-learn [48] running with Intel Core
i7–6700 CPU with 64 GB RAM and Ubuntu 18.04.4 LTS OS.

VII. CONCLUSION

We have proposed an ML-based PL prediction model for
urban street canyon using the 28 GHz measurement data
collected from Manhattan. The feature set contains street
clutter obtained from LiDAR point cloud and buildings from
a 3-D mesh grid. The PL dataset has 1028 PL measurement
links from 13 streets. Although the PL dataset is massive
for the classical slope-intercept PL modeling, it is small
for ML-based approaches when compared to massive point
cloud and 3-D building feature sets and parameters in AE
and learning algorithms. To mitigate the risk of overfitting,
we defined seven expert features with physical meaning from
the point cloud. We also compressed 3-D building features to a
length-12 vector for each link using CNN-based AE. Instead of
interpolation to nearby links, we focused on the extrapolation
by introducing a street-by-street training and testing approach.
Using linear ML algorithms for PL prediction, we achieved
the RMSE of 4.8 ± 1.1 dB compared to 10.6 ± 4.4 and
6.5 ± 2.0 dB for 3GPP LOS and slope-intercept prediction,
respectively, which demonstrates the superior capability of our
model in extrapolation.

Intuitive interpretation of feature importance was obtained
using the Lasso regression-based analysis and feature exclu-
sion analysis. By only using the top four most influential
features, namely, distance, street clutter density (clutter per
street and clutter per link ), and street canyon indication
(building on both sides), the RMSE of 5.5 ± 1.1 dB can be
achieved using Elastic-net regression.

Among the four learning algorithms used in this article,
the nonlinear RF regression has achieved the worst prediction
performance under street-by-street testing but is the best
under links-shuffle-split testing. This may be attributed to the
reduced similarity in statistics between training and testing
sets in street-by-street testing compared to the links-shuffle-
split testing, and the lack of extrapolation capabilities of RF
regressions. Regularized linear Elastic-net regression has the
best performance, which is in line with the intuition that
regularization on linear algorithms is more robust against
overfitting with limited training dataset. The nonlinear SVR
with RBF kernel performs well (second best) for both links-
shuffle-split testing and street-by-street testing, at the cost of
higher complexity.

APPENDIX A
CNN-BASED AE DESIGN TO COMPRESS

BUILDING FEATURES

We design CNN-based AE for feature extraction from the
building dataset, as shown in Fig. 7, where an encoder e(·)
compresses the input 2-D building collapse I ∈ R

(500,40) to an
representation X ∈ R

(12), which is then fed to the decoder d(·)
to reconstruct original input 2-D building collapse I. We briefly
describe next the network layers shown in Fig. 8.

1) 1-D Convolutional Layer (Conv 1-D): It employs vari-
ous kernels to convolve the 2-D image, preserving the
spatial characteristics of the input image while extracting
relevant features.

2) 1-D Max-Pooling Layer (Max-Pooling 1-D): Pooling is
a sample-based discretization process utilized to down-
sample the input image by making assumptions in the
binned subregion. In max pooling, we take the maximum
value in the binned subregion.
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3) 1-D Upsampling Layer (Up-Sampling 1-D): Upsampling
layer has no weights, which helps increase the input
dimensions when followed by a convolutional layer.

4) Fully Connected Layer (Dense): The nonlinear process-
ing is performed via dense layers in which each neuron
is fully connected to all the neurons in the previous layer.

Please note that 1-D in the above layers means that we
have kernels (in Conv layer) and factor (for upsampling and
downsampling) [45] in only one dimension.

A. Designing the Encoder

The input to our network is 2-D collapse of buildings
given by I ∈ R

(500,40), which is normalized between 0 and
1. Let e(I|�e) be the mapping from the input buildings to
compressed representation when the parametric transformation
of encoder is given by �e, which denotes the weight, filters,
and bias terms. Thus, the encoder can be denoted as

X = e(I|�e) = eLe

(
. . .

(
e2

(
e1

(
I|�e1

)|�e2

)
. . . |�eLe

)
(6)

where Le denotes the number of layers in the encoder.
For the convolutional layers, the operation of the lth layer

can be represented as follows:
Xl = el

(
Il |�el

) = h(Wl ⊗ Il + bl), �el = [Wl, bl] (7)

where ⊗ indicates the convolutional process, Wl represents the
1-D kernels used for feature extraction, bl denotes the bias
vector, h(·) is the activation function, Il=Xl−1 comes from
layer concatenation, and I1 equals the 2-D building matrix I.

We apply several Max-Pooling 1-D layers in between
for improving the region covered by the following receptive
fields. Moreover, as shown in Fig. 8(a), we introduce grouped
convolutions in the encoder, in which we take the output of
the first Max-Pooling 1-D and make two branches of it, with
separate Conv 1-D and Max-Pooling 1-D layers, and then
add the output of both branches (inspired by AlexNet [45]).
The convolutional layer’s output is then flattened to K and
used as input of several stacked dense layers, where the first
dense layer in the encoder can be given by

Xl = el
(
Il |�el

) = h(Wl K + bl), �el = [Wl, bl]. (8)

B. Designing the Decoder

The input to our decoder is the output of the encoder
given by X ∈ R

(12). Let d(X|�d) be the mapping from
the compressed representation to input buildings when the
parametric transformation of decoder is given by �d , which
denotes its weight, filters, and bias terms. The decoder can be
represented as follows:

Y = d(X|�d) = dLd

(
. . .

(
d2

(
d1

(
X|�d1

)|�d2

)|�dLd

)
(9)

where Ld denotes the number of layers in the decoder.
It performs a reverse operation of encoder here to generate
the output Y ∈ R

(500,40) of the same size as the input I.
As shown in Fig. 8, we use the Tanh activation function

tanh(x) = (ex −e−x/ex +e−x) for all the layers because Tanh
activation function performed the best compared to the other
nonlinear activation functions, except for the last layer, where

Fig. 14. Convergence of CNN AE for 13 testing streets. (a) Training loss.
(b) Validation loss.

we used the ReLU activation function ReLU(x) = max(0, x)
to ensure a positive real-value output. Moreover, a × b on
each Conv 1-D layer indicates the filters and kernel size.
The value on each Max-Pooling 1-D and Up-Sampling 1-D
denotes the factor by which downsampling and upsampling are
performed on the first dimension. Also, value on each dense
layer indicates the number of neurons considered in that layer.
The symbol + indicates the addition of the outputs of two
previous layers.

C. Designing the Loss Function

We use log-cosh loss, which is the logarithm of the predic-
tion error’s hyperbolic cosine. Also, we have I as the input
to the encoder in the AE as well as the ground truth to be
predicted from the decoder and Y as the predicted output
of the AE. Thus, the difference between the input and the
output of the AE can be given by θi, j = Yi, j − Ii, j , ∀ (i, j),
where i = {1, . . . , 500} and j = {1, . . . , 40} denote the length
and width of the streets (with building facades). We choose
the log-cosh loss to help stabilize the training performance
with fewer epochs (iterations) because the outliers minimally
impact the log-cosh loss compared to the MSE loss [45]. Also,
since we have appended zeros in the input I, there have many
zeros appended for shorter distances, which makes it difficult
for the AE network to learn nonzeros values in closer distance
ranges. Thus, we introduce a matrix Ŷ ∈ R

(500,40), where for
the nth training sample, given by

Ŷn
i, j =

{
0, if In

i, j = 0

Yn
i, j , otherwise

, ∀ (i, j). (10)

Then, the combined loss function for the nth training sample
can be given by

L = μ
(
log

(
cosh

(
Ŷn − In

)))
+ 0.1 × μ

(
log

(
cosh

(
Yn − In

)))
(11)

where μ(·) is the mean. The loss function has two parts. The
first part focuses on the reconstruction error of the nonzero
values. The second part focuses on the reconstruction error of
all the values, whereas the weight 0.1 helps us in reducing the
impact of the appended zeros.
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TABLE V

RMSE IN PL PREDICTION USING THE FOUR MOST IMPORTANT CLUTTER FEATURES (CLUTTER4)

Fig. 15. Evaluation of grouped CNNs and iterations needed for reproducibil-
ity. (a) μ(RMSE) versus runs. (b) σ (RMSE) versus runs.

APPENDIX B
LOSS CONVERGENCE AND REPRODUCIBILITY OF THE

PROPOSED CNN-BASED AE

We utilize the designed AE to extract the compressed
feature vector X ∈ R

(12) from the 2-D collapse I ∈ R
(500,40)

of the 3-D building dataset. Then, we train the AE in an
end-to-end manner by minimizing the designed loss in (11).
The convergence of the training and validation losses for
13 models created for street-by-street training and testing is
shown in Fig. 14, in which the loss converges within 50 epochs
(iterations utilized by the Adam optimizer to converge).

In Fig. 15, we evaluate the compressed features (X) by
making three types of AEs, in which only the grouped CNNs
in the encoder as proposed in Fig. 8(a) is replaced by:
1) grouped Conv-Nets—as proposed; 2) single Conv-Net—
remove Conv-Net-2 from the encoder; and 3) concatenate
Conv-Nets—concatenate Conv-Net-1 and Conv-Net-2 serially,
to obtain their respective feature set FClutter_Building. Further-
more, we show the best RMSE performance achieved by the
Elastic-net regression to predict the PL, with a varying number
of iterations. Grouped CNNs perform the best with smoother
convergence compared to others. Furthermore, Fig. 15 also
shows that with 25 iterations, we can achieve the reproducibil-
ity for the best PL prediction RMSE performance.

APPENDIX C
ANALYzING THE IMPORTANCE OF DESIGNED CLUTTER

IN PL PREDICTIONS

In Fig. 13, we utilized the l1-norm based Lasso regression
to determine the importance of the individual clutter feature if
all seven clutter features are provided for the PL prediction.

Fig. 16. Importance of each feature in the Elastic-net-based PL prediction
model.

The importance of features, as quantified by their Lasso
weights, in the descending order is given as: log 3-D distance,
clutter per street, building on both sides, clutter per link, Rx
height, street width, and log 1-D distance.

Feature importance can also be observed by comparing the
change of prediction accuracy when each clutter feature is
excluded individually from prediction. This approach works
for all ML-based prediction algorithms and thus provides an
alternative way of assessing feature importance.

In Fig. 16, we remove one feature at a time from the seven
clutter features and determine the RMSE in Elastic-net-based
PL prediction using street-by-street testing in Algorithm 2.
Removing the clutter per street feature has the strongest
consequence, degrading the mean RMSE by as much as
1.3 dB. Thus, based on the degradation of mean RMSE, the
importance of the features5 in descending order can be given:
clutter per street, log 3-D distance, clutter per link, building
on both sides, street width, log 1-D distance, and Rx height.

Based on observations from Figs. 13 and 16, we conclude
that the most important features are the log 3-D distance,
street clutter information given by clutter per street and
clutter per link, and canyon status (buildings on both sides),
referred to as Clutter4. We analyze the RMSE in PL predic-
tion using Clutter4 for both street-by-street and shuffle-split
testing, as shown in Table V. By only using the top four
most influential features, the RMSE of 5.5 ± 1.1 dB can be
achieved. When using Clutter4, both the mean RMSE and

5The potential correlation among multiple features may underestimate the
importance of a feature if it has high correlation with others.
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standard deviations of almost all the ML-based predictions
are within 0.2 dB from the results where all seven clutter
features are used.
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