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Abstract— This article proposes a multibody electromag-
netic (EM) model for the quantitative evaluation of the influence
of multiple human bodies in the surroundings of a radio link.
Modeling of human-induced fading is the key element for
the development of real-time device-free (or passive) localiza-
tion (DFL) and human presence-aware systems (HPS) based on
the processing of the received signal strength (RSS) data recorded
by radio frequency devices. The proposed physical–statistical
model is able to relate the RSS measurements to the position, size,
orientation, and random movements of people located in the link
area. This novel EM model is thus instrumental for crowdsensing,
occupancy estimation, and people counting applications for
indoor and outdoor scenarios. This article presents the complete
framework for the generic N-body scenario where the proposed
EM model is based on the knife-edge approach that is generalized
here for multiple targets. The EM-equivalent size of each target
is then optimized to reproduce the body-induced alterations
of the free-space radio propagation. The predicted results are
then compared against the full EM simulations obtained with
a commercially available simulator. Finally, experiments are
carried out to confirm the validity of the proposed model using
IEEE 802.15.4-compliant industrial radio devices.

Index Terms— Electromagnetic (EM) body model, radio prop-
agation, scalar diffraction, wireless sensor networks.

I. INTRODUCTION

HUMAN presence-aware systems (HPSs) are rapidly
growing as new services become available in various

areas of modern life [1], such as assisted living, ambient
intelligence, smart spaces, home automation, human–robot
collaboration, safety, and security, just to cite a few. Among
these applications, noncooperative, also known as passive,
HPS is the most attractive since it does not require the moni-
tored users to carry or wear any electronic device or specific
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sensors. Usually, these systems are vision-based [2]–[4]; how-
ever, the ubiquitous presence of wireless networks paves the
way toward the exploitation of wireless radio frequency (RF)
networks, not only as communication devices but also as
body proximity/location virtual sensors. Last but not least,
radio-based HPS are privacy-neutral since they do not reveal
any privacy information about the monitored people.

HPS systems exploit the fact that people, or obstacles, in the
surroundings of an area covered by a wireless radio network
induce signal alterations that can be detected and exploited
for body occupancy inference applications. For instance,
device-free localization (DFL) systems [5], [6] exploit a net-
work of RF nodes to detect the presence, to locate and track the
position of moving objects or people in a confined area covered
by the wireless network itself. However, a radio-based HPS is
not only able to localize and track [7]–[10] people, or objects,
but it has also been proven to efficiently perform other tasks
such as to count the number of people [11], to identify and
recognize patterns related to their activities [12], [13] and
intentions [12], to detect dangerous worker conditions and
safety status [14], [15], and to act as a proximity monitor [16].
This is made possible as the presence of targets (i.e., objects
or people) affects the propagation of the radio waves in the
covered area [17], [18], for example, by inducing predictable
alterations of the received signal strength (RSS) field that
depend on the targets position, in both static [19] and dynamic
[20] environments.

A. Related Works
The effect of the presence of people on the received RF

signals is a well-known topic [21], [22] and finds its roots in
the research activities about the electromagnetic (EM) prop-
agation phenomena caused by natural or artificial obstacles
during the first experimental trials at the dawn of the radio
era [23]. These studies have received a great impulse after
the middle of the last century, mostly for outdoor coverage
applications [24]–[27]. However, despite some recent attempts
to model the body-induced fading effects on short-range
radio propagation [28], these research activities are mostly
related to inter- [29], [30] and intrabody [31], [32] short-range
radio communications. The aim of these research activities
is to quantify the radio propagation losses in narrow [33]
or wideband [34] indoor scenarios with the main purpose
of mitigating these effects. Only a few research works [29],
[35], [36] focus their attention on the geometrical relations
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between the transmitter (TX) and the receiver (RX) location,
the position and composition of the body, and its size.

A general EM model for the prediction of the mathemat-
ical relations between location, size, and composition of a
single target and the corresponding EM field perturbation is
still disputable as shown in [37] and [38] or too complex
to be of practical use as based on ray-tracing techniques
[30], [39] or uniform theory of diffraction (UTD) [29],
[36]. Other EM methods [40]–[42], statistical [43], [44], and
physical–statistical models [39], [45]–[47] are simpler than
the previous ones but still limited to a single target. To the
authors’ knowledge and according to the current literature, an
analytical, or semianalytical, approach toward a true multibody
model has never been tackled before. Usually, multitarget
(i.e., multibody) problems have been solved by assuming the
linear superposition of the single-body extra attenuations [7],
[18]. However, the mutual effects induced by multiple bodies
moving concurrently in the same space must be accounted for.

In [8], [10], DFL systems have been proposed to track
two targets moving concurrently by using an EM model that
is fully described in [48]. On the contrary, in this article,
the model is generalized to an arbitrary number of targets.
A practically usable physical–statistical model is thus designed
for the prediction and the evaluation of the body-induced prop-
agation losses, namely the RSS field, found in true N-targets
scenarios with N ≥ 1. This N-body model is able to describe
both dominant static component and stochastic fluctuations of
the power loss as a function of the locations of the N targets,
their size, orientation, and random movements with respect to
the link path.

B. Original Contributions
This article proposes an EM framework where the field

perturbations induced by an arbitrary number of human bodies
are modeled as a superposition of diffraction and multipath
terms. The diffraction component is defined according to
the scalar diffraction theory and it is characterized by the
geometrical description (i.e., location, size, and orientation)
and the movement characteristics (i.e., rotations and ran-
dom movements around the nominal position) of N targets
according to the knife-edge hypothesis [25], [49]–[51]. The
multipath fading term is assumed to impair the radio link
due to the presence of the bodies placed inside the sensitivity
area [52] around the line-of-sight (LOS) path that connects
the transmitter and the receiver. However, unlike [52], where
RSS perturbations are predicted for a single small target [26],
[52], [53] moving only in the central part of the LOS path
according to the paraxial approximation [52], this novel model
provides a representation of the power losses induced by
multiple bodies having any size and placed anywhere in the
area surrounding the radio link. The model presented here
extends the dual-body case exploited in [8] and then presented
in [48], by considering a generic EM scenario with an arbitrary
number of human bodies in the surroundings of a radio link.
In the former reference [8], the dual-body model is neither
derived nor justified, but it is just introduced to perform
DFL tasks and compare the results against other methods.
In the latter reference [48], the dual-body model is derived

Fig. 1. (a) Generic layout of an HPS-based wireless network composed by D
nodes and L links where Tn is the nth target located inside the monitored area.
(b) Simplified representation of the single-link single-body scenario where the
human body T1 is sketched as a 3-D cylinder and then simplified as a 2-D
knife-edge surface S1.

from prime principles and then described and discussed in
detail. The experimental results presented here confirm that
the proposed model can effectively describe the mathematical
relations between the target positions and the measured RSS
values. Comparisons with the results obtained with the EM
simulator Feko also support the validity of the proposed model.

The novel contributions of this article are: 1) the definition
of a general EM framework for the multibody scenario;
2) the derivation, from prime principles, of the full equations
for the prediction of the global extra attenuation due to N
bodies, or objects, in the LOS area; 3) the derivation of
the analytical formulas in the case of paraxial hypothesis
for the general N bodies scenario; 4) the evaluation of the
extra attenuation predictions for the dual-body scenario (i.e.,
N = 2) and their comparison against the results obtained using
full EM simulations; and 5) tuning of the dual-body model
parameters based on field RSS measurements and comparisons
of the model predictions against the aforementioned RSS
measurements.

This article is organized as follows. The diffraction model
that accounts for the deterministic term of the multibody
induced extra attenuation is shown in Section II for any
number N of the targets. The complete physical–statistical
model for the prediction of the RSS field is illustrated in
Section III. In particular, the dual-body model is highlighted
as a practical case study. Section IV deals with the evaluation
of the proposed multitarget model featuring a comparative
analysis against experimental measurements and simulation
results. The concluding remarks are drawn in Section V.

II. DIFFRACTION FRAMEWORK FOR THE

MULTIBODY SCENARIO

As sketched in Fig. 1(a), a generic HPS consists of a
mesh of partially, or completely connected, wireless network
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Fig. 2. Geometrical representation of the same scenario shown in Fig. 1(b),
where an horizontal link of length d is positioned at distance H from the floor
and a 2-D knife-edge surface S1, with variable traversal size c1 and height h1
represents the body T1 that is placed on the floor.

composed of D RF nodes [5], [6] and L ≤ D(D − 1)/2
bidirectional links. The HPS-enabled network is composed
by RF nodes that are able to perform power measurements
on the RF signal and, after some processing steps, to extract
body occupancy-related information. We assume that all RF
nodes can measure the RSS field values at discrete time
instants. No specific additional RF hardware [6] is required
since RSS values are computed in the normal operations of
the networked RF nodes for channel estimation/equalization
and frequency/frame synchronization tasks.

Without any loss of generality, in what follows, we will
focus on the single-link scenario (i.e., L = 1 and D = 2) of
Fig. 1(b), by introducing the single target (T1 being N = 1)
first and then the multitarget (T1, . . . , TN with N > 1) cases.
However, the multibody model (MBM) presented here can
be exploited in a general multilink scenario with D nodes,
L links, and N targets by using electric field superposition.
In addition, it can be extended to make use of other physical
layer channel information measures, e.g., the channel state
information (CSI) and the channel quality information (CQI)
[6] as well. However, this discussion is outside the scope of
this work.

It is worth noticing that all the proposed models apply to
a generic link of the radio network; therefore, they could be
easily tailored to predict RSS over arbitrarily complex network
structures for more robust body positioning, as proposed in
almost all DFL methods such as [6], [7], [18]. In addition,
modeling of RSS is instrumental for link selection operations,
namely to identify an optimized subset of links that are most
influenced by the target presence [8], [10].

A. Single-Body Model (SBM)

The single-body model (SBM) [46] is briefly recalled in
this section since it is the starting point for the MBM that will
be described in Section II-C. As outlined in Fig. 2, a human
body (i.e., the only target T1 located near the single-link area)
is represented by a perfectly EM absorbing 3-D homogeneous
cylinder with an elliptical base of minor and major axes a1

and b1, respectively, that simulate the human head, torso, legs,
and arms (placed near the torso). Most references assume a
3-D cylinder with a circular base [36], [54] or a 3-D prism
[30], while only a few ones [35], [55] assume also that the

arms can freely move with respect to the torso. Considering a
dynamic scenario where the 3-D cylinder, modeling the body,
can freely move horizontally and rotate around its generic
nominal position (x, y, z) showing different views, the target
is reduced [46] to a 2-D rectangular blade (i.e., a knife-edge
surface) [50], orthogonal to the LOS path at distances d1

and d2 from the TX and RX, respectively. The knife-edge
surface is vertically placed close to the link area and can
freely rotate and move showing different body views during
its movements. The presence of the floor does not imply any
influence on the EM propagation and it is used here only
for geometrical reasons, i.e., to define the height of the link
and the placement constraints of the knife-edge surface rep-
resenting the body. Notice that the knife-edge approximation
ignores important EM parameters, such as polarization, per-
mittivity, conductivity, shape, radius of curvature, and surface
roughness [56].

According to Fig. 1(b), the radio link is horizontally placed
at distance H from the floor and the 3-D target T1, that
is placed on the floor, is free to move and rotate around
the vertical axis in the surroundings of the LOS path. The
corresponding first Fresnel’s zone ellipsoid [50], with radius
R = √

λd1d2/d, does not have any contact with all other
parts of the scenario (e.g., walls, ceiling, furniture, or other
obstacles) except for the aforementioned target. Being R ≤
Rmax = √

λd/2, where Rmax is the maximum value of the
radius R, λ is the wavelength, and d is the RX-TX distance
(i.e., the link path length), this constraint becomes 2H >√
λd . Notice that, as stated by standardized short-range indoor

propagation models [57], ground attenuation effects may be
safely ignored for a radio link inside a single indoor large
room/space, e.g., a hall.

The equivalent 2-D knife-edge surface S1 has height h1

and width c1, and it is placed orthogonal to the LOS path
at location X1 = [x1, y1]T . X1 coincides with the first two
coordinates of the barycenter G1 = (x1, y1, z1) of the knife
edge S1 since z1 assumes the constant value z1 = h1/2 − H .
The point G ′

1 is the intersection of the vertical axis passing
through G1 and the horizontal plane z = 0. In Sections III and
IV, the position of the target T1 (i.e., the position of G ′

1) is
thus identified by the off-axis displacement y1 and the distance
x1 = d1 of S1 from the TX. However, a true person can
also turn and make involuntary/voluntary movements while
standing on the floor. Therefore, the 3-D target T1, represented
by the 2-D knife-edge surface S1, can assume any orientation
χ1 ∈ [−π, π] with respect to the LOS path. It can make
also some small movements �X1 = [�x1,�y1]T around the
nominal location X1, thus showing a changing traversal size
c1 = c1(a1, b1, χ1), with a1 ≤ c1 ≤ b1, and a varying location
X1 +�X1.

According to the scalar theory of diffraction, the electric
field at the RX, which is generated by the isotropic source in
TX, is modified by the presence of the 2-D knife-edge surface
S1 located in the link area [46]. It can be predicted [26] as
being generated by a virtual array of Huygens’ sources located
on S1 but not belonging to the obstacle itself. In far-field
propagation conditions, the electric field d E at the RX, due
to the diffraction effects caused by the elementary Huygens’
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source of area d S1 with coordinates (x, y, z), is given by

d E = j
E0 d

λ r1 r2
exp

{
− j

2π

λ
(r1 + r2 − d)

}
d S1 (1)

where r1 and r2 are the distances of the generic elementary
area d S1 for the TX and RX, respectively. E0 is the free-space
electric field that is described by the following equation:

E0 = − j
η I�

2 λ d
exp

(
− j

2π d

λ

)
(2)

with η being the free-space impedance and I� the momentum
of the source. The electric field at the RX is given by [46]

E = − j
η I�

2λ d
exp

(
− j

2π d

λ

)
·
{

1 − j
d

λ

∫
S1

1

r1 r2
exp

{
− j

2π

λ
(r1 + r2 − d)

}
d S1

}
(3)

where the first term refers to the electric field (2) due to the
free-space propagation in the empty scenario and the second
term includes the diffraction effects due to the body presence
according to (1). The integral of the second term is computed
over the rectangular domain defined by the S1 region defined
as S1 = {(x, y, z) ∈ R

3 : x = x1 = d1, and y1 − c1/2 ≤
y ≤ y1 + c/2, −H ≤ z ≤ h1 − H }. Focusing on the extra
attenuation induced by the body with respect to the free space,
(3) can be written as

E

E0
= 1 − j

d

λ

∫
S1

1

r1 r2
exp

{
− j

2π

λ
(r1 + r2 − d)

}
d S1. (4)

In fact, according to (4), the presence of the body induces
an extra attenuation AdB = −10 log10 |E/E0|2 with respect to
the free-space propagation. Being a forward-only method, the
diffraction model holds only for the generic target T1 placed
in the area Y near the radio link where it is Y = {(x, y) ⊂
R

2 : 0 < x < d; −∞ < y < +∞}. Of course, as shown in
[46], the effect of the target presence vanishes for large but
finite values of |y|.

B. Paraxial Single-Body Model (PSBM)

By exploiting the paraxial approximation and the variable
substitutions u = y(

√
2/R1) and v = z(

√
2/R1), (4) reduces

to the paraxial single-body model (PSBM) equation defined
as

E

E0
= 1 − 1

2
j
∫ (

√
2y1+c1/

√
2 )/R1

(
√

2y1−c1/
√

2 )/R1

exp
(
− j

π

2
u2

)
du

·
∫ +√

2(h1−H )/R1

−√
2H/R1

exp
(
− j

π

2
v2

)
dv (5)

where Fresnel’s radius R1 = R(x1) is given by R1 =√
λ x1 (d − x1)/d . Here, we have specified that the generic

Fresnel’s radius R of Fig. 1(b) is equal to R(x1) to explicitly
highlight that it is related to the position x1 of target T1.
Equation (5) can be easily computed by using Fresnel’s
sine and cosine integrals [52]. The paraxial approximation
implies the following assumptions: max{|y1|, |z1|, h1, c1, λ} 	
min{x1, d − x1}, cosϕ 
 1, cos θ 
 1, cosψ 
 1, and
cosφ 
 1, where the aforementioned angles are shown in

Fig. 3. Single-link multitarget (N > 1) scenario composed by an horizontal
single-link of length d, placed at distance H from the floor, and N different 2-
D equivalent knife-edge surfaces S1, S2, . . . , SN corresponding to the targets
T1, T2, . . . , TN located in X1,X2, . . . ,XN , respectively.

Fig. 2. The model gives valid predictions in the same area Y
defined for the SBM model. The paraxial approximation is
mainly used for outdoor scenarios, namely for terrestrial radio
propagation applications [24], [25] where it holds gracefully.
However, it has also been employed in HPS applications [58],
even if this paraxial hypothesis limits the validity of (5) to
small bodies near the central area of the radio link. For more
details about single-target modeling derived from (4), e.g.,
for models that include vertical or horizontally polarization,
the interested reader can refer to [46].

C. Multibody Model (MBM)
According to Fig. 3, the multibody scenario is a general-

ization of the single-target case shown in Fig. 2. N knife-
edge surfaces stand vertically on the floor and are placed
orthogonally to the LOS path. They are numbered from 1
up to N according to their increasing distances from the
TX. Knife-edge positions are identified by the column vectors
Xn = [xn, yn]T that correspond to the projections G ′

n =
(xn, yn, 0) of knife-edge barycenters Gn = (xn, yn, zn) with
zn = hn/2 − H . The positions of all targets are thus identified
by the column vector X = [XT

1 XT
2 , . . . , XT

N ]T . The single
nth target Tn , with 1 ≤ n ≤ N , is described by the rotating
knife-edge surface Sn having height hn , traversal size cn =
cn(an, bn, χn) with constraint an ≤ cn ≤ bn, and orientation
χn ∈ [−π, π] with respect to the LOS path, with obvious
meaning of these terms already mentioned in Section II-A.
All geometrical and motion parameters are organized in the
following column vectors: c = [c1, c2, . . . , cN ]T collecting
the knife-edge traversal sizes, h = [h1, h2, . . . , hN ]T and
χ = [χ1, χ2, . . . , χN ]T , collecting both target heights and
the orientations, as well. It is also a = [a1, a2, . . . , aN ]T and
b = [b1, b2, . . . , bN ]T . Finally, ∀�xn,�yn ∈ [−B + B],
the column vector �X = [�XT

1 �XT
2 , . . . ,�XT

N ]T tracks the
involuntary/voluntary movements of the bodies in the position
interval [−B + B] (supposed symmetrically arranged) around
the nominal position vector X.

For N > 1 targets, the knife-edge diffraction model (1) still
holds true for each nth surface Sn , although (4) is no longer
valid. The LOS path is now divided into N + 1 segments
of length equal to d1, d1,2, d2,3, . . . , dN−1,N , dN with d =
d1+∑N−1

n=1 dn,n+1+dN . Generalizing the model of Section II-A
for N targets, the term rn,n+1 represents the distance between
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two consecutive elementary areas d Sn and d Sn+1, while the
terms r1 and rN represent the distance between the transmitter
and d S1 and the distance between d SN and the receiver,
respectively. The nth elementary area d Sn = dξndςn is located
on the nth plane Sn that is identified by its position Xn . The
coordinate axes ξn and ςn (for clarity not shown in Fig. 3)
have the origin in O ′

n and directed as the y and z axes. As an
additional hypothesis with respect to the ones of Section II-A,
only forward propagation from TX to RX is considered with
no backward-scattered waves between any surfaces Sn and the
RX (i.e., both single- and multiple-scattering effects between
knife edges are ignored).

In far-field conditions, by assuming only forward propa-
gation, ∀Tn with n = 1, . . . , N − 1, the elementary electric
field d En+1 due to the diffraction effects caused by the
elementary Huygens’ source of area d Sn is computed at d Sn+1

by considering the distance rn,n+1 between the elements d Sn

and d Sn+1 according to

d En+1 = j
d En d Sn

λrn,n+1
exp

(
− j

2πrn,n+1

λ

)
. (6)

The electric field E1, impinging on the first target, is

E1 = E0

(
d

r1

)
exp

(
− j

2π(r1 − d)

λ

)
(7)

while the electric field d E that is measured at the RX node
and generated by the area d SN of the target N closest to the
RX is given by

d E = j
d EN d SN

λrN
exp

(
− j

2πrN

λ

)
. (8)

Combining (6)–(8), it is

d E = j N d

λN rN rN−1,N , . . . , r1,2 r1
E0

· exp

{
− j

2π

λ

(
rN + rN−1,N + · · · + r1,2 + r1 − d

)}
· d S1 d S2, . . . , d SN . (9)

To obtain the electric field E , (9) must be integrated over the
domain S(c) = ⋃N

n=1 S(c)n where each region S(c)n corresponds
to the 2-D plane Pn ⊃ Sn that does not contain the points of
the knife-edge surface Sn . Equation (9) now becomes

E

E0
= j N

∫
S
(c)
1

∫
S
(c)
2

· · ·
∫

S
(c)
N

d

λN rN rN−1,N , . . . , r1,2 r1

· exp

{
− j

2π

λ

(
rN + rN−1,N + · · · + r1,2 + r1 − d

)}
· d S1 d S2, . . . , d SN . (10)

We now define E (n) as the value of the electric field at
the RX node when only one target, i.e., the n-th body or
obstacle, is present in the LOS area. Similarly, E (n,m) refers to
the electric field at the receiver when only two targets, i.e., the
nth and m-th obstacles out of N , are in the link area and so on.
The notation E (1,2,...,N) thus highlights the contributions of the
N targets to the link loss: this is the total electric field E at the
receiver given by (10). Considering the above definitions, (10)
may be rewritten to highlight the mutual interactions of the

targets, grouped by
( N

N−1

)
singles,

( N
N−2

)
pairs,

( N
N−3

)
triples,

and so on as

(−1)N E (1,2,...,N)

E0
= −1 +

N∑
n=1

E (n)

E0︸ ︷︷ ︸
singles

−
N−1∑
n=1

N∑
m=n+1

E (n,m)

E0︸ ︷︷ ︸
pairs

+
N−2∑
n=1

N−1∑
m=n+1

N∑
k=m+1

E (n,m,k)

E0︸ ︷︷ ︸
triples

+ · · ·

+�(S1, . . . , SN ) (11)

where the last term �(S1, . . . , SN )

�(S1, . . . , SN ) = j N
∫

S1

∫
S2

, . . . ,

∫
SN

d

λN rN rN−1,N , . . . , r1,2 r1

· exp

{
− j

2π

λ

(
rN + rN−1,N + · · ·

· · · + r1,2 + r1 − d
)} · d S1d S2, . . . , d SN

(12)

is the integral computed over the composite domain defined
by the union S(1,2,...,N) = ⋃N

n=1 Sn of the N rectangular
knife-edge surfaces Sn . The knife-edge surfaces (Fig. 3) have
the following definitions: for n = 1, it is S1 = {(x, y, z) ∈ R

3 :
x = x1 = d1, y1 − c1/2 ≤ y ≤ y1 + c1/2, −H ≤ z ≤
h1−H }, while ∀n = 2, . . . , N , it is also Sn = {(x, y, z) ∈ R

3 :
x = xn = d1 + ∑n−1

i=1 di,i+1, and yn − cn/2 ≤ y ≤ yn + cn/2,
−H ≤ z ≤ hn − H }.

Using (11), for a generic number of targets N , the electric
field ratio (E (1,2,..,N))/E0 due to N obstructing bodies is
composed by the single-target contributions (E (n)/E0), for
n = 1, . . . , N terms, the target pairs, (E (n,m)/E0), for n =
1, . . . , N −1,m = n+1, . . . , N, the triples, (E (n,m,k)/E0), for
n = 1, . . . , N − 2, m = n + 1, . . . , N − 1, k = m + 1, . . . , N ,
and so on, up to the contributions of the N − 1 target group.
Likewise PSBM and SBM, MBM gives valid predictions when
the targets are placed in the area Y near the LOS path,
as defined in Section II-A.

When two bodies are in the area Y , the received electric
field E (1,2) embeds the mutual effects of the two targets T1

(i.e., S1) and T2 (i.e., S2) on the radio propagation. E (1,2) is
computed from the single-target terms E (1) and E (2) as

E (1,2)

E0
= −1 + E (1)

E0
+ E (2)

E0
+�(S1, S2) (13)

where the mixed term that depends on both knife edges S1

and S2 is defined according to (12) as

�(S1, S2) = −
∫

S1

∫
S2

d

λ2 r2 r1,2 r1

· exp

{
− j

2π

λ

(
r2 + r1,2 + r1 − d

)}
d S1d S2. (14)

In particular, from (13), the term E (1) quantifies the effect of
the target T1 alone in the link area according to (4). It depends
on the corresponding target size c1, the target height h1,
the link height H from the floor, and the distances d1 and d −
d1 = d2+d12 of the body T1 from the TX and RX, respectively.
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Likewise, E (2) refers to the contributions of target T2 only,
according to its target size c2 and height h2, the link height H
from the floor, and the distances d1 + d12 and d2 of the body
T2 from the TX and RX, respectively.

For N = 1, the proposed MBM reduces to the single-body
model (SBM) as expected since all singles, pairs, triples,
and other high-order terms of (11) vanish except for the
term �(S1). The MBM model for N = 2 targets (13) has
been initially introduced in [48] along with some prelimi-
nary results. Further results obtained in DFL scenarios have
been presented in [10] as well. This dual-target model can
be directly obtained from (10) or, equivalently, (11). Model
comparisons are presented in Section IV.

D. Paraxial Multibody Model (PMBM)

For HPS applications, paraxial hypotheses are realistic only
for small target(s), namely for small enough ci and hi with
respect to the path length d . The approximation also requires
the subject to move nearby the LOS path, with small enough
yi and zi , or located in the central part of the LOS path. Carrier
wavelength λ is also much smaller than the distances xi and
d − xi (Section II-B). However, since the paraxial approxima-
tion is useful in several applications, mostly outdoor, in this
section, we will approximate the full (10) or (11) using
paraxial assumptions, namely the paraxial MBM (PMBM)
model.

Based on the paraxial approximation, (10) becomes

E

E0
=

(
j

2

)N ∫
S
(c)
1

∫
S
(c)
2

· · ·
∫

S
(c)
N

× d d1,2d2,3, . . . , dN−1,N(
d1 + d1,2

)(
d1,2 + d2,3

)
, . . . ,

(
dN−1,N + dN

)
· exp

{
− j

π

2

(
u2

1 + u2
2 + · · · + u2

N − 2α1,2u1u2 . . .

+ − 2αN−1,N uN−1uN
)}

du1du2, . . . , duN

· exp
{
− j

π

2

(
v2

1 + v2
2 + · · · + v2

N − 2α1,2v1v2 · · ·
+ − 2αN−1,N vN−1vN

)}
dv1dv2, . . . , dvN .

(15)

In the Appendix, we show how to rewrite (15) to reveal the
mutual interactions of targets as in (11).

For the case of N = 2 targets, (15) becomes now analyti-
cally tractable. Using the formulation shown in (13), adapted
in the Appendix for paraxial assumptions, it is

E (1,2)

E0
= −1 + E (1)

E0
+ E (2)

E0
− 1

4

d d1,2(
d1 + d1,2

)(
d1,2 + d2

)
·
∫ +√

2(h1−H )/R1

−√
2H/R1

∫ +√
2(h2−H )/R2

−√
2H/R2

× exp
{
− j

π

2

(
u2

1 + u2
2 − 2α1,2u1u2

)}
du1du2

·
∫ (

√
2y1+c1/

√
2)/R1

(
√

2y1−c1/
√

2)/R1

∫ (
√

2y2+c2/
√

2)/R2

(
√

2y2−c2/
√

2)/R2

× exp
{
− j

π

2

(
v2

1 + v2
2 − 2α1,2v1v2

)}
dv1dv2 (16)

where u1, u2, v1, v2, the constant terms R1, R2, and α1,2 are
defined in the cited Appendix. Notice that, some approximated
models are already available in the literature [25], [49] for the
evaluation of the extra attenuation due to multiple semi-infinite
knife-edge surfaces. These models can be obtained by using
the paraxial approximation over the semi-infinite domains
representing the targets (unlike the finite target size assumption
adopted here). They are typically effective in outdoor scenarios
for the prediction of propagation loss over nonregular terrain
profiles. The interested reader can refer to [27] and references
therein for a brief discussion and model comparisons.

E. Additive Models

Based on the analysis of Sections II-B–II-D, the term
|E (1,2,...,N)/E0| for N targets can be used to evaluate the
extra attenuation A(1,2,...,N)dB with respect to the free-space (i.e.,
unobstructed or empty) scenario as

A(1,2,...,N)dB = −10 log10 |E (1,2,...,N)/E0|2. (17)

From (11), it is apparent that the extra attenua-
tion terms |(E (1)/E0)|, |(E (2)/E0)|, . . . , |(E (N)/E0)| alone
or, equivalently, A(1)dB, A(2)dB , . . . , A(N)dB , are not sufficient
to evaluate |(E (1,2,..,N))/E0| since: 1) the phase relations
between the terms (E (n)/E0) are unknown; 2) the terms
(E (n,m)/E0), (E (n,m,k)/E0), . . . , are not available; and 3) the
interaction terms between the targets that are expressed by
the integral of the right-hand side of (11) are not known
as well. These facts limit the use of single-target measure-
ments for the multiple-target case. According to these consi-
derations, the additive hypothesis, namely A(1,2,...,N)dB = A(1)dB +
A(2)dB +· · ·+ A(N)dB , which is generally exploited in various forms
in the literature [7], [18], is a rather superficial approximation.
For the case of two targets (N = 2), in Section IV-C,
an additive SBM model is proposed where the individual
extra attenuations A(1)dB , A(2)dB, . . . , A(N)dB , follow the SBM model
described in (4). Limitations of such representation are high-
lighted by a comparison with the MBM and PMBM models.
Similar considerations apply also to the additive PSBM model.

F. Analysis of Model Limitations and Suitable Scenarios
The body models previously discussed have some limita-

tions due to the assumptions adopted for their derivation. For
the sake of convenience and to highlight the most suitable
scenarios where such models can be effectively applied, these
limitations are reviewed in the following.

General limitations common to all the defined models of
Section II-A up to Section II-D are listed in the following.

1) The scalar theory of diffraction does not include any
polarization effect.

2) Far-field propagation is assumed, i.e., d1, d2, . . . , dN 

λ: this implies that, when bodies are too close to the RF
nodes, the predicted values may have large errors. Given
the wavelength (
12 cm), this is usually not an issue.

3) All models represent true bodies as homogeneous and
perfectly absorbing 3-D cylinders [46] without including
any permittivity, conductivity [36], [54], shape, radius of
curvature, and surface roughness [56] effects.
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4) These 3-D cylinders are furthermore simplified by reduc-
ing them to 2-D knife-edge surfaces [26]: the dimensions
of the knife edges are model parameters that have to be
estimated (see Section IV-B).

5) All models hold only for generic body(ies) Ti placed in
the area Y near the radio link where it is Y = {(x, y) ⊂
R

2 : 0 < x < d; −∞ < y < +∞}.
Model-specific limitations should also be considered for

each identified model.

1) PSBM and PMBM exploit the paraxial approximation
(Section II-B) and are useful for outdoor scenarios
with long links [24], [25], where the target(s) (mostly
buildings or other artificial obstacles) are smaller w.r.t.
the link length d .

2) SBM and MBM do not exploit any paraxial approxi-
mations and can be applied to both indoor and outdoor
scenarios depending on the number of bodies that are
present in the link area.

3) MBM and PMBM assume only forward propagation
from the TX to the RX and ignores single and multiple
reverberations among bodies nearby: this means that
they may underestimate the number of body present in
crowded configurations, if too close to each other.

4) Additive SBM and PSBM compute the multibody extra
attenuation (in dB) by summing single-body attenuations
(in dB), but this is a very coarse approximation as
already shown in Section II-E.

Notice that, for all models, multipath effects due to log-
normal impairments [59] are ignored as introduced later on
in Section III. Within the considered hypotheses framework,
the MBM (for the multibody scenario) and the SBM (for
the single-body scenario) models can be considered, for their
simplicity, as the reference models for HPS systems.

III. PHYSICAL–STATISTICAL MULTIBODY MODEL

In this section, we propose a true multitarget physical–
statistical model that relates the RSS to the link geometry
(d , H ), the bodies locations X, and their geometrical sizes
(i.e., c and h). In addition to the diffraction, or physical,
component analyzed in Section II, the additional statisti-
cal component quantifies the uncertainty of body move-
ments, modeled here by small random voluntary/involuntary
motions �X and rotations χ around the nominal position
X, as well as multipath fading, multiple scattering between
bodies, backward propagation effects, and other random
fluctuations, not included in the diffraction terms. For the
sake of simplicity, in Section IV, all geometrical parameters
defined in Section II-C will be represented by the compact
set � = {a,b,h, d, H }.

Let P be the RSS measurement performed by the RX
and expressed in dBm, and the power measurement P can
be modeled as the sum of: 1) the deterministic term P0 =
EIRP − A0

dB + G R due to the free-space propagation, being
EIRP the equivalent isotropically radiated power (in dBm),
A0

dB = − 20 log10(λ/4 π d) the free-space loss (in dB), and
G R the receiver antenna gain (in dBi); 2) the extra attenuation
term w.r.t. the free-space loss AdB = A(1,2,...,N)dB (in dB),

as in (17), caused by the body-induced diffraction terms; and
3) the Gaussian random term w (in dB) that includes the
lognormal multipath effects [59], the measurement noise and
the other random disturbances assumed normally distributed.
Thus, it is

P =
{

P0 − A(1,2,...,N)dB + w, if f ∃ Xn ∈ Y
P0 +w0, elsewhere.

(18)

The free-space term P0 depends only on the geometry of the
scenario, the transmitted power, the gain and configuration of
the antennas, and the propagation coefficients [53]. The term
A(1,2,...,N)dB = AdB(X,�X,χ,�), evaluated according to (17),
is the extra attenuation expressed in dB due to the body-
induced diffraction with respect to the free-space scenario.
It is computed using (10) or (11) for MBM and (15) or (23)
for PMBM. Propagation effects not included in the diffraction
models (10) or (11) are modeled by the Gaussian noise w ∼
N (�μC, σ

2
0 + �σ 2

C) with �μC and �σ 2
C being the residual

stochastic body-induced multipath fading mean and variance
terms [52], [58]. The term σ 2

0 models the power fluctuations
induced by environmental changes outside the link area and
not attributable to body movements around the LOS link.

For the empty scenario, where nobody is present in the link
area, namely the background configuration, the RSS is simply
modeled as P = P0 + w0 with w0 ∼ N (0, σ 2

0 ). Notice that
in HPS systems, μ0 = Ew0[P] = P0 and σ 2

0 = Varw0[P] can
be evaluated from field measurements in the empty scenario
during a calibration phase. On the contrary, the presence of
people modifies both the mean μ1(X) = Eχ ,�X,w[P] and
the variance σ 2

1 (X) = Varχ,�X,w[P] terms. Based on (18),
the mean μ(P) and variance σ 2(P) are defined as

μ(P) =
{
μ1(X|�) = P0 +�μ(X|�), if f ∃ Xn ∈ Y
μ0 = P0, elsewhere

(19)

and

σ 2(P) =
{
σ 2

1 (X|�) = σ 2
0 +�σ 2(X|�), if f ∃ Xn ∈ Y

σ 2
0 , elsewhere

(20)

where it is emphasized the dependency of P from the position
Xn of at least one target Tn in the area Y and the geometrical
coefficients �. The RSS average �μ(X) = μ1(X) − μ0 and
variance �σ 2(X) = σ 2

1 (X)− σ 2
0 increments are defined as

�μ(X|�) = �μC − Eχ,�X[AdB(X|�X,χ,�)] (21)

and

�σ 2(X|�) = �σ 2
C + Varχ,�X[AdB(X|�X,χ ,�)]. (22)

The term AdB(X|�X,χ,�) highlights the fact that,
given the geometrical parameters � and the motion terms �X,
χ , the extra attenuation is only a function of the positions X
of the bodies. In the following, we assume that the bodies
are positioned in X, but each of them can slightly change
its location and posture making small random movements
�Xn with �xn,�yn ∼ U(−B,+B) and rotations χn ∼
U(−π,+π) around the vertical axis. U(α, β) indicates the
uniform distribution within the interval [αβ], while for each n,
the set [−B + B]×[−B + B] defines the 2-D area around the
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nominal coordinate position Xn where the nth target can freely
move. To determine (21) and (22), the mean Eχ,�X[·] and
the variance Varχ ,�X[·] are computed over the aforementioned
uniform distribution of �X and χ .

The residual body-induced multipath terms �μC and �σ 2
C

in (21) and (22), respectively, can be directly evaluated from
field measurements performed during the calibration phase.
However, these terms are marginally influenced by the specific
body locations, as also shown in [59] and [52], and are thus not
relevant for HPS applications. On the contrary, the diffraction
term AdB(X|�X,χ,�) provides a simple but effective method
to predict the power perturbation �μ(X|�) and �σ 2(X|�) as
a function of the body position and size.

IV. MODEL OPTIMIZATION AND EVALUATION

To confirm the validity of the proposed MBMs, several
EM simulations with the Feko software environment and
on-field experiments have been carried out according to the
same link scenario sketched in Fig. 3. Feko1 implements
time- and frequency-domain full-wave solvers, such as the
method of moments (MoM), the finite difference time domain
(FDTD) method, the finite element method (FEM) and the
multi level fast multipole method (MLFMM). For details about
the solvers, the interested reader may have a look at [60].

First of all, simulations have been carried out to compare
the results of the diffraction-based MBM and PMBM models
shown in Sections II-C and II-D, respectively, with the ones
obtained with Feko. Next, we have compared the aforemen-
tioned models against the RSS measurements obtained from
IEEE 802.15.4 devices [61], commonly used in industrial
applications [62]. Considering the application to multibody
localization featuring N = 2 targets, the MBM and PMBM
model parameters, namely the geometrical sizes (i.e., a, b
and h) of the knife-edge surfaces, are optimized using a
small subset of the experimental data so that they could
effectively model the obstructions induced by the true targets.
The proposed models using optimized sizes of the knife-edges
are then validated over different configurations, where both
targets move along the LOS link.

It is worth noticing that Feko simulations are related to
perfect electric conductor (PEC) configurations to describe
knife-edge targets. On the contrary, MBM and PMBM 2-D
models assume perfectly absorbing surfaces. The MBM and
PMBM models also ignore important EM parameters, e.g.,
polarization (see Section II-F), that, on the contrary, are
considered by Feko.

A. Model Comparison Against EM Simulations

The MBM and PMBM models are evaluated and compared
in this section with the results from EM simulations for a
path length d = 5.0 m and frequency fc = 2.4868 GHz.
To this aim, the free-space loss A0

dB in the empty scenarios for
both Feko simulations and MBM/PMBM predictions is set to
A0

dB = 54.33 dB. To simplify the EM simulation complexity
(mostly due to the long Feko runs), in what follows MBM

1The commercial EM simulator designed by Altair Engineering Inc.

Fig. 4. Feko PEC simulations for vertically (blue line) and horizontally
(magenta line) polarized source versus MBM (black line) and PMBM (red
line) A(1,2)dB predictions for targets T1 and T2 along the LOS path as shown in
the scenario on the top.

Fig. 5. Feko PEC simulations for vertically (blue line) and horizontally
(magenta line) polarized source versus MBM (black line) and PMBM (red
line) A(1,2)dB predictions for the target T1 along the LOS path and T2 across
the LOS path as shown in the scenario on the top. The dotted lines (with
the same colors adopted for the dual-target cases) show the extra attenuation
predicted by the previous models/simulations due to the presence of the target
T1 only.

and PMBM models are compared in a dual-target scenario
(N = 2) only. Figs. 4 and 5 show the predicted values of the
extra attenuation A(1,2)dB = −10 log10 |E (1,2)/E0|2 computed
according to the models described by (13) and (16), namely
MBM and PMBM, respectively. Thus, the total path loss AdB

in the dual-target scenario is equal to AdB = A0
dB + A(1,2)dB .

No movements/rotations are allowed and the two targets are
placed in their nominal positions; in both figures, the target T1

is fixed in the position X1 = [1.0, 0.0]T, while the other target
T2 changes its positions along and across the LOS path. In Fig.
4, T2 is placed in X2 = [x2, 0.0]T and moves along the LOS
path with 1.25 ≤ x2 ≤ d − 0.25 m and 0.25 m increments
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TABLE I

AVERAGE ERRORS AND STANDARD DEVIATIONS OBTAINED BY MBM AND
PMBM MODELS VERSUS FEKO PEC V. POL. SIMULATIONS

while, in Fig. 5, the target T2 is placed in X2 = [d/2, y2]T

with −2.5 ≤ y2 ≤ 2.5 m and 0.25 m increments, thus
crossing the LOS path in the middle. For symmetry reasons,
the results depend only on the distance |y2| from the LOS
line.

In these figures, we compare the results of the MBM and
PMBM against the ones of the EM simulations obtained with
Feko using vertically and horizontally polarized sources (i.e.,
Feko V. pol. and H. pol., respectively). For these simulations,
a 2-D PEC surface has been used as target instead of the
absorbing one defined in Section II for MBM and PMBM,
but with the same physical dimensions adopted for Fig. 1.
Thus, targets T1 and T2 have the same size c1 = c2 =
0.55 m and height h1 = h2 = 1.80 m, while H = 0.90 m
and d = 5.0 m.

The average error εMBM (and εPMBM) between the extra
attenuation values predicted by the MBM (and PMBM) and
simulated by the Feko PEC (V. pol.) is also summarized
in Table I. The corresponding standard deviation values σMBM

and σPMBM are shown as well. Table I also shows the average
errors as percentages of the total path-loss attenuation εR

MBM
and εR

PMBM, and the standard deviation, namely σR
MBM and

σR
PMBM. Notice that MBM model can be effectively used to

predict the total path-loss values although these are underes-
timated compared with the Feko simulations.

In Fig. 4, the target moves along the LOS positions. The
average errors are εMBM = −2.07 dB and εPMBM = −8.69 dB,
respectively, while the corresponding standard deviations are
σMBM = 3.36 dB and σPMBM = 4.37 dB as well. Assuming
the total path-loss attenuation values, the average percentage
relative errors are εR

MBM = −2.44% and εR
PMBM = −10.82%.

The difference between the values predicted by the MBM
(and PMBM) model and the Feko simulations are due to the
fact that the former employs absorbing targets and neglects
any polarization, while the latter exploits metallic plates and
includes the polarization effects. The positions with larger mis-
matches (i.e., up to 5 ÷ 6 dB) are visible in the right of Fig. 4
where the target T2 is very close to the receiver and the metallic
nature of the PEC is more evident. Even if some positions
of Fig. 4 show some relevant differences between MBM and
Feko results, the general trend is maintained. Finally, it is also
worth noticing the strong mismatches between vertically and
horizontally polarized results obtained with Feko.

In Fig. 5, the target T2 now moves along the orthogonal line
that crosses the LOS in the middle at x2 = d/2 = 2.5 m. The
predicted MBM values corresponding to the positions across
the LOS are very close to the Feko ones with a maximum error
of 1÷2 dB. Therefore, the errors σMBM and σR

MBM are smaller
than the corresponding ones along the LOS. In particular,
εMBM = −0.98 dB, σMBM = 0.74 dB, εR

MBM = −1.50% and
σR

MBM = 1.11%, considering all positions across the LOS line.
On the contrary, in the same figure, it is also apparent that
the PMBM predictions are less accurate than the MBM ones
with a maximum error in the order of 4÷5 dB with respect to
the Feko simulations. In particular, it is εPMBM = −4.00 dB,
σPMBM = 1.55 dB, εR

PMBM = −5.91%, and σR
PMBM = 2.12%.

Fig. 5 shows also the results corresponding to the
SBM/PSBM models for the single target T1 that are super-
imposed to other ones. In fact, when the target T2 moves
away from the LOS path, the effects due to this target vanish,
while the extra attenuation can be well predicted using only
the single-target body models for T1.

B. Model Optimization and Experimental Setup
DFL and, in general, HPS systems, rely on several calibra-

tion steps that include off-line measurements stages to collect
ground-truth measurements of RSS or CQI signals. Almost
all localization systems, e.g., [6], [9], [43], [44], [47], assume
free-space attenuation and propagation effects in the empty
scenario as known (i.e., measured during initialization and
updated periodically). On the contrary, superimposed body
effects are typically not known or require either modeling or
time-consuming calibration. Extra attenuation is thus obtained
by compensating the background effects on the full attenua-
tion. Thus, detection algorithms, e.g., based on finger-printing
approaches [6] or statistical methods [43], [44], require also
the presence of the target(s) in known locations, namely land-
mark points, to perform RF measurements with target(s) inside
the monitored area. These steps are very time-consuming
and error-prone since each RF node needs to perform noisy
RSS signal measurements for the assessment of body-induced
alterations of the radio propagation with the target(s) placed in
selected landmarks (i.e., 2–4 landmarks/sqm depending on the
network placement). In addition, systematic errors can be also
introduced in the experimental setup during target positioning.
Moreover, modifications of the environment involve frequent
recalibration steps to maintain a good level of localization
accuracy. In what follows, we investigate the use of the
MBMs of Section III optimized to replace, or simplify, such
calibration steps [10].

Model optimization, or tuning, is performed during an initial
calibration stage to estimate both MBM and PMBM model
parameters, i.e., the geometrical sizes c and h. We thus collect
a small set of measurements in selected landmark points [10]:
these are used to tune the geometrical parameters, i.e., the
EM-equivalent height hn and width cn ∈ [an, bn] of the nth
deployed subject. Using these optimized parameters, MBM
and PMBM models can be finally adopted to predict body
effects at arbitrary positions, replacing conventional calibration
stages [6].
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RSS data have been collected in a large hall by using two
IEEE 802.15.4-compliant radio devices based on the NXP
JN5148 system-on-chip (SoC) [63], which are employed as
transceiver (TX/RX) nodes. Link geometry is H = 0.9 m and
d = 5.0 m for all cases. Each device has a nominal EIRP
equal to 0 dBm and it is equipped with a vertical monopole
antenna having G R = 2 dBi. Every device is programmed to
send IEEE 802.15.4 standard-compliant frames at frequency
fc = 2.48 GHz corresponding to the IEEE 802.15.4 channel
#26 [61]. Each receiver decodes the IEEE 802.15.4 frames to
extract measurements of the RSS, namely the digital RSS Indi-
cator (RSSI) with 8 bit resolution [64] and 1 dB quantization.
Two sets of measurements have been gathered: the first dataset,
acquired in the empty scenario, has been used to compute the
reference values μ0 and σ 2

0 , whereas the second one has been
recorded with two targets placed in the link area and moving
concurrently. The second dataset has been used to measure
μ1(X) and σ 2

1 (X) for some known landscape positions X.
In particular, the subject T1 was placed at X1 = [2.5, 0.0]T

from the transmitter, and the second subject T2 covered four
different positions, X2 = [x2, 0.0]T, at distances x2 = 3.0 m,
x2 = 3.5 m, x2 = 4.0 m, and x2 = 4.5 m. These locations
have been used to optimize the EM-equivalent geometrical
dimensions c1, c2, h1, and h2 of the individual subjects using
a nonlinear least squares (NLS) approach similar to the one
shown in [65] and [10]. The optimization is iterative and uses
the nominal (i.e., the physical) size of the targets as initial
inputs, namely c1 = c2 = 0.4 m and h1 = h2 = 1.7
m (neglecting head). Optimized EM-equivalent target sizes
are c1 = c2 = 0.25 m and h1 = h2 = 1.35 m. The
EM-equivalent size is about 20% ÷ 40% smaller than the
physical size of the target as also shown in [36]; this might
be due to the fact that body-induced extra attenuations are
mostly due to torso and legs, while head and arms effects are
negligible, although they are responsible for some small RSSI
fluctuations.

C. Model Comparison With Measurements

Based on the experimental setup described in the previous
section, we compare in Fig. 6 the predicted extra attenua-
tion Eχ,�X[A(1,2)dB (X|�X,χ,�)] using the MBM and PMBM
models against the field measurements. RSSI measurements,
averaged over a period of 1 minute, are shown in Fig. 6 as
red cross markers. Horizontal error bars are also depicted to
account for positioning inaccuracies (± 0.25 m) during the
tests, while vertical bars and dots indicate the max-min and
mean RSSI values, respectively. The solid lines show the
predicted MBM (black line) and PMBM (blue line) extra
attenuations using the optimized EM-equivalent parameters.
For prediction, we consider two knife edges orthogonally
placed along the LOS path in fixed positions (B = 0) with
no rotation. In particular, subject T1, initially placed at X1 =
[0.5, 0.0]T from the TX, covers a distance of 1.5 m with 0.5
m increments in the direction of the RX (thus stopping at
X1 = [2.0, 0.0]T from the TX). Subject T2 moves toward the

receiver with 0.5 m increments and stops at 0.5 m from the
RX device.

To highlight the comparative analysis with measurements,
we neglect the residual stochastic body-induced multipath
fading terms by assuming �σ 2

C = 0 dB and �hC = 0 dB so
that (21) reduces to −�μ(X) = Eχ ,�X[A(1,2)dB (X|�X,χ,�)] =
A(1,2)dB (X|�). Besides MBM and PMBM models, based on the
discussion in Section II-E, for the same settings, we have also
compared the additive hypothesis, namely A(1,2)dB = A(1)dB + A(2)dB .
In particular, the additive SBM approximation is depicted in
black dashed lines; in this case, the predicted extra attenu-
ation reduces to −�μ(X) = Eχ1,�X1[A(1)dB(X|�X,χ,�)] +
Eχ2,�X2[A(2)dB(X|�X,χ,�)] = A(1)dB(X|�) + A(2)dB(X|�) where

A(1)dB(X|�) and A(2)dB(X|�) follow the SBM model described in
Section II-A and use the same optimized EM-equivalent target
size used for the MBM model.

In Fig. 6, the shaded areas indicate the ±1 dB uncertainty
zone around the mean values predicted by the MBM (i.e.,
beige area) and the additive SBM (i.e., light blue area)
models. Assuming Gaussian distributions, for each uncertainty
zone, 68.3% of the related events fall inside each shaded
area.

The discrepancies between the proposed models and the
measurements may be large for some target positions, config-
urations, and scenarios. This is due to some approximations
adopted for the MBM/PMBM, SBM/PSBM, and additive SBM
models that have been summarized in Section II-F. In addition
to the above, there are also some noisy effects introduced
during the RSS measurement process. First, the human bodies
are never fixed in specific positions but, while standing, they
perform both voluntary and/or involuntary movements around
the nominal position due to movements of the legs, torso, arms,
and head. This unavoidable experimental fact can introduce
variations in the order of 2 ÷ 3 dB for the single-target case
[46]. Due to the complex structure of the human body and the
difficulties to measure its true position [46], [65], the nominal
(i.e., measured) position of the target is only approximately
known with an error in the order of 10÷15 cm. Second, mea-
surements are taken in real scenarios where some unavoidable
multipath effects are present. These effects are modeled as a
lognormal distributed noise even if this is an approximated
behavior [59]. Finally, the RSS values measured by the IEEE
802.15.4 radio devices are corrupted by measurement noise
and nonlinearity effects [64] that cause further measurement
errors in the order of 0.5 ÷ 1.5 dB, depending on the adopted
device. Offset errors can be compensated due to the fact
that the extra attenuation is measured with respect to the
free-space scenarios but nonlinearity and quantization
cannot.

In Fig. 6, the MBM and PMBM predictions track the
average RSSI measurements with an average error of about 4
dB and 6 dB, respectively. Notice that most of the mismatches
between the models and the measurements are observed in
correspondence to one of the targets (or both) near the trans-
mitter or the receiver. In such cases, the RSSI measurements
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Fig. 6. Predicted extra attenuation values using MBM (black line), PMBM (blue line), and additive SBM (black dashed line) against the measured ones (red
cross, with vertical and horizontal error bars) considering four motion scenarios featuring N = 2 targets. The ±1 dB uncertainty zones are shown around the
additive SBM (light blue area) and the MBM (beige area) results. Each scenario is depicted in the corresponding subfigure.

might also be affected by larger communication errors due to
the increase of body-induced extra attenuation. Fluctuations
of RSSI around the average value cause residual stochastic
terms that can be quantified as a variance term �σ 2

C 
 3 dB
and negligible mean �hC 
 0 dB; these are mostly due to
voluntary/involuntary movements of the bodies around their
nominal positions. The additive SBM model is generally less
effective compared with MBM, particularly when the mixed
terms in (14), caused by the interacting targets T1 and T2,
could not be neglected. This is, for example, the case when
both subjects equally contribute to the extra attenuation.

V. CONCLUSION

Based on the EM scalar diffraction theory, this article
proposes for the first time an ad hoc physical–statistical

model to describe the fluctuations of the radio signal caused
by the presence of an arbitrary number of targets between
the transmitter and the receiver. The analytical model has
been specifically tuned and optimized to predict the effects
of multiple bodies placed near the link area. Therefore,
it is instrumental to DFL applications and HPS, including
people access monitoring and counting. The model results
have been validated experimentally by some field tests using
real industrial wireless devices and EM simulations as well,
for comparative analysis. The proposed MBM model is able
to predict the RSS measurements accounting for the size,
orientation, small movements, and positions of the targets.
It overcomes also some restrictions of the existing MBMs
based on the linear superposition of the subject effects, thus
showing improved prediction accuracy.
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APPENDIX

In what follows, we resort to a formulation of (15) similar
to that used in (11). It is

(−1)N E (1,2,...,N)

E0
= −1 +

N∑
n=1

E (n)

E0
−

N−1∑
n=1

N∑
m=n+1

E (n,m)

E0

+
N−2∑
n=1

N−1∑
m=n+1

N∑
k=m+1

E (n,m,k)

E0
+ · · · +

+ �̃(S1, . . . , SN ) (23)

with the last term �̃(S1, . . . , SN ) given by

�̃(S1, . . . , SN )

=
(

j

2

)N ∫
S1

∫
S2

, . . . ,

∫
SN

× d d1,2d2,3, . . . , dN−1,N(
d1 + d1,2

)(
d1,2 + d2,3

)
, . . . ,

(
dN−1,N + dN

)
· exp

{
− j

π

2

(
u2

1 + u2
2 + · · · + u2

N − 2α1,2u1u2 · · ·
+ 2αN−1,N uN−1uN

)}
du1du2, . . . , duN

· exp
{
− j

π

2

(
v2

1 + v2
2 + · · · + v2

N − 2α1,2v1v2 · · ·
+ 2αN−1,N vN−1vN

)}
dv1dv2, . . . , dvN .

(24)

The variables u1, . . . , uN , v1, . . . , vN are obtained from
the corresponding local coordinates ξ1, . . . , ξN , ς1, . . . , ςN by
using, for each nth term, the following substitution rules:
un = ξn(

√
2/Rn) and vn = ςn(

√
2/Rn). The constant terms

Rn and αn,n+1 are related to the the wavelength λ and the
geometric positions of the knife edges with respect to the LOS
path. The terms Rn are similar to the Fresnel’s radius R for
the single-target case. These constants are given by

1

R2
n

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1

λ

(
1

d1
+ 1

d12

)
, for n = 1

1

λ

(
1

dn−1,n
+ 1

dn,n+1

)
, for n = 2, . . . , N − 1

1

λ

(
1

dN
+ 1

dN−1,N

)
, for n = N

(25)

while coefficients αn,n+1 are defined, for n = 1, . . . , N −1, as

αn,n+1 = Rn Rn+1

λ dn,n+1
. (26)

For the single-target case, it is R1 = R, while all coefficients
αn,n+1 vanish. In addition, it is trivial to verify that (11) simply
reduces to (4), while (23) simplifies to (5). For N = 2, (11)
reduces to the dual-target case (13) and proves the results [8],
[10] exploited for DFL applications.
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