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Abstract—This article presents a thorough study of spherical
probe-corrected phaseless near-field measurements with the two-
scans technique. Such technique is based on retrieving the
antenna under test radiation pattern from the measurement of
the near-field amplitude signals on two spheres of different radii.
The postprocessing of this type of measurements results in a
highly nonlinear algorithm, prone to get trapped in local minima
and provide incorrect solutions when the measurement condi-
tions are not properly selected. Through a series of numerical
simulations, the influence of different measurement parameters
on the phaseless technique is analyzed. It will be shown how
both the relative and absolute values of the measurement spheres
highly affect the convergence of the phase retrieval algorithm.
The type of AUT and its radiation pattern characteristic also play
a fundamental role in the feasibility of phaseless measurements.
Other parameters such as sampling rate, noise, probe correction,
polar truncation, and measurement offsets are also investigated.
The conducted study allows to extract a set of guidelines to
improve the accuracy of phaseless spherical near-field algorithms.
In addition, purely phaseless antenna measurement examples are
given to demonstrate the algorithm capabilities and limitations,
and to validate the developed numerical investigations.

Index Terms— Amplitude-only, antenna measurements, phase
retrieval, phaseless measurement, spherical wave expansion.

I. INTRODUCTION

PHERICAL near-field measurements [1]—-[3] are a well-
S stablished technique for antenna testing. Scanning the field
radiated by an antenna under test (AUT) on a spherical surface,
followed by efficient postprocessing techniques, leads to the
determination of the radiation pattern. For a successful far-field
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transformation, an accurate amplitude and phase characteri-
zation of the AUT near-field is required. Obtaining a stable
phase reference can be impractical or even unfeasible, espe-
cially at high frequencies, due to inaccuracies of measurement
equipment or probe positioning, cable bending and thermal
drift, among others. On the other hand, the field magnitude
possesses a higher robustness against these factors, leading
to the rise of “phaseless” or “amplitude-only” measurement
techniques [4].

The improved robustness of amplitude measurements comes
with the price of providing very limited information about
AUT radiation pattern. Therefore, the lack of phase must be
compensated by other means, resulting in different phaseless
techniques which rely on extra hardware such as interferom-
etry circuits [5], [6] and holography [7], or multiple scan
surfaces [8]. The common objective of such approaches is
to measure only the amplitude field in different radiation
conditions, so enough independent signals are acquired to
extrapolate the phase. An excellent study of state-of-the-art
phase retrieval methods is provided in [9]. A major conclusion
drawn from it is that the phase retrieval constitutes a non-linear
and non-convex mathematical problem, which makes it prone
to get trapped in local minima or false solutions. The only way
of avoiding local minima is the use of advanced optimization
techniques [10] and adding measurement redundancy (over-
sampling [11], multiple surfaces [12], partial knowledge of
phase [13], field spatial derivatives [14], different probes [15]).

From the different phaseless techniques, those based on
multiple scan surfaces constitute an attractive alternative
because they can be implemented in traditional measurement
setups without any hardware modification. This led to the
development of the two-scans planar [16]-[19] and spheri-
cal [20]-[22] techniques, in which the AUT radiation pattern
is extrapolated from the measurement of near-field intensities
over two planes or two spheres, respectively.

The two-scans planar technique has been thoroughly studied
by different authors, showing a high dependence on the
availability of a phase initial guess for a successful transfor-
mation [17]. In some cases, the classical plane wave spectrum
formulation [23], commonly used to address the processing
of the planar near-fields, is replaced by equivalent current
approaches solved with method of moments [24], [25]. Even
though the computational efficiency is reduced, enforcing
unknown currents over the antenna aperture or shape brings
additional information to the phase retrieval problem.
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The use of equivalent currents can be extended to arbitrary
scanning geometries, including cylindrical [26] and spheri-
cal [9] surfaces. In the latter case, however, the use of spherical
wave expansion (SWE) [3] as a field expansion basis becomes
appealing with several advantages over the equivalent cur-
rent approaches. First, an improved computational complexity
becomes evident with the use of heavily optimized fast Fourier
transform techniques for the processing of fields. Secondly,
the SWE constitutes a compact basis representing all degrees
of freedom of the AUT field, keeping the number of unknowns
to the minimum. Finally, no a priori knowledge about the AUT
is required apart from its minimum sphere.

In this sense, the two-scans spherical technique has been
comparatively less studied, but it has been applied to sophisti-
cated antennas showing low transformation errors and promis-
ing capabilities [21]. Parametric studies report that the differ-
ence between measurement sphere radii in terms of wavelength
is the key for a good phase retrieval convergence. However,
it is expected that other parameters like the antenna dimension
and its radiation pattern will have a significant influence. Given
the nonlinear nature of the problem, such study becomes a
critical tool to assess the conditions required for a successful
far-field transformation of a given AUT.

This article presents a continuation of the work introduced
in [21], by performing a thorough analysis of the two-scans
spherical phaseless technique. On Section II, a theoretical
background is given to revisit the two-scans phaseless iterative
algorithm formulation. In Section III, the influence of the
spheres measurement radii, AUT electrical dimensions and
type, sampling rate, truncation, probe radiation pattern, and
noise are studied by means of simulation antenna models.
The derived analysis can be used to design the phaseless
measurement conditions for an arbitrary antenna. This will be
demonstrated in Section IV with the application of the phase
retrieval algorithm to measurements performed in anechoic
chamber. Section V concludes this article.

II. THEORETICAL BACKGROUND

Considered it is a spherical near-field measurement scenario
with an AUT placed at the coordinate system origin. The field
radiated by the AUT is measured by a single-order probe
in the coordinates (r, 0, ¢) pointing to the origin and with
a rotation angle y respect to . Under such circumstances,
the signal measured by the probe is given by the well-known
transmission formula [3]

w(r, x,0,9) = Z Qsmnejmwdzm (e)ej,u)( Ps,un (r) (D

smnu

being Qg the AUT Spherical Wave Coefficients (SWC),
dy,,,(0) a rotation operator, and Ps,,(r) the probe response
constants. The summation in (1) spans for s € [1,2],n €
[1,N], m € [-n,n], and u € [—1,1]. N is the expansion
truncation number given by the following rule of thumb for
8-digit accuracy [27]:

N = [kry] + 10 (2)
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where k is the wavenumber, 7 the radius of the smallest sphere
circumscribing the AUT and the brackets indicate the largest
integer smaller than or equal to the number inside them.

If w is sampled on an equiangular grid for two orthogonal
polarizations, an algorithm exists [3] for obtaining Qj,,, with
the same computational complexity than that of summation
(1): O(N?). Once these coefficients are known they can be
inserted back in (1) to compute the field at any other distance,
including the far-field.

When only the amplitude of the probe signal is acquired,
a phase retrieval algorithm must be used. Several techniques
have been proposed for different applications and antenna
measurement configurations. For phaseless spherical near-
field measurements, iterative Fourier techniques have been
proposed [20], [21] analogous to the ones used in phaseless
planar measurements. These techniques are based on the fine-
up [28] reduction method, a generalization of the Gerchberg-
Saxton algorithm [29] that can be used in any problem in
which partial constraints are known in each of two domains.
These domains are usually the object to be measured and its
Fourier transform, while the constraints are given in terms of
amplitude measurements or a priori information. The com-
plex information from the object is retrieved by transforming
back and forth between the two domains and satisfying the
constraints in one before returning to the other.

In phaseless spherical measurements, the two domains cor-
respond to the near-field on each of the measurement spheres,
and the constraints are given by the magnitude information
of the fields. The magnitudes are denoted by w; = |w(r;)|
and w; = |w(ry)|, while the spherical surfaces are S| and ;.
Note that w; and w, both contain the measured near-field for
two probe orthogonal orientations. Optionally an initial phase
guess can be added to the first measurement to generate a
complex field w; = |w(r1)|e~/®'. Then, an iterative algorithm
is started:

1) w, is propagated from S; to S, by means of the SWE

formulation, obtaining a new calculated complex field,
Wy = |yle™ /%

2) i, is compared to the measured magnitude w, by a

certain near-field error metric;

3) |iy| is discarded and substituted by w,, resulting in

complex field @) = wye™/¥2;

4) @) is then propagated back to S; and the analogous

amplitude substitution is performed.
This iterative process of propagation and magnitude substitu-
tion is continued after the error metric drops below a given
threshold or a specified number of iterations is reached.

Two error metrics will be used along this article. The first
one is the amplitude error, and is the one that can be used in

the iterative algorithm as a stopping criterion
rms (|| — wy)
Eamp = (3)
max (wy)

where rms denotes the computation of the root mean square
error over all angular points of the measured field. In addition,
a complex error metric will be defined too

rms(Qsmn - Qsmn)

max (Qsmn)

“)

Ecomp =
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where Oy, denotes the retrieved SWC of the AUT at a
given iteration of the iterative algorithm and Q,, are the
true coefficients. Of course, this metric can only be computed
when the SWC of the AUT are a priori known, so it is not
applicable on a real phaseless measurement scenario. However,
it will be used to assess the performance of the phase retrieval
technique in different experiments through this article.

III. NUMERICAL DISCUSSION

On this section, the two-scans spherical phaseless tech-
nique is tested using a simulation model based on dipole
antennas [30]. By arranging electric and magnetic dipoles
in array configurations, different AUTs of arbitrary size can
be simulated using analytical formulation to emulate aperture
antennas. The same principle may be applied for designing
probes with the desired directivity. The flexibility of this
model will be exploited to analyze the influence of different
parameters of the measurement setup over the performance
of the phase retrieval technique. For convenience, the AUTs
will be simulated as planar arrays of equi-spaced Huygens
sources (crossed magnetic and electric dipoles) with horizontal
polarization. The Huygens sources produce a unidirectional
pattern canceling the back radiation. Separation between Huy-
gens sources is set to 0.14 forming a uniform grid, while the
number of them and its amplitude and phase distribution will
be adjusted according to the different experiments. Therefore,
the AUT pattern is adjusted by controlling the array factor
weights and the number of individual sources. To refer to the
size of such arrays, the truncation number N corresponding to
its minimum sphere will be used. All measurement radii will
be normalized to the Rayleigh far-field distance of each AUT:
Vfar = 2%

In every experiment presented in this section, a near-field
measurement will be simulated in an equiangular grid of
increments Ap = Af = 7, being s an angular oversampling
ratio, greater than or equal to 1. This oversampling ratio
is defined so that s = 1 corresponds to the sampling rate
of standard spherical near-field measurements [3]. For each
measurement point two orthogonal polarizations are measured.
The measured field is simulated on two spheres of radii r;
and r,, and the proposed phase retrieval technique is applied
for 1000 iterations using amplitude-only information. In all
simulations, the initial guess will be the phase of an Hertzian
dipole with the same polarization as of the AUT. Finally,
the accuracy of the retrieved result will be assessed by the
complex error metric &comp-

A. Error Assessment and Influence of the Scan Radii

As an initial test, the two-scans technique is applied to an
antenna defined by arranging the dipoles in a square array
with uniform amplitude and phase excitation. The size of the
array is 164 x 164 (thus a truncation constant N = 80)
and the angular oversampling s = 2. First, the set of
distances r; = 0.16ry, and r» = 0.24rp, is selected.
A second experiment is performed setting to 2 = 0.2r,,.
As already discussed in previous publications [20], [21], with
an increasing separation between spheres, the amplitude fields
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Fig. 2. Comparison of the retrieved radiation patterns from phaseless
measurement using r; = 0.16r7,- and two different radii for the second
sphere.

of the two surfaces become different, which improves the
convergence of the algorithm to low error levels. This can
be seen in Fig. 1 where the two introduced error metrics are
depicted for each iteration of the algorithm. The amplitude
error drops to —70 and —50 dB for the first and second
experiments, respectively. However, this metric only gives a
partial information because it does not consider the phase
of the retrieved solution. When the SWC of the antenna are
a priori known, as in this simulation example, the complex
error can be calculated obtaining much higher values, —35 and
—22 dB, respectively. The reason of the discrepancy between
both error metrics is that there are at least two sets of SWC
(i.e., with differences in the order of —35dB in the first
simulation) which radiate relatively similar amplitude fields
(differences of —70 dB) on the two measurement spheres.
The far-field of the retrieved coefficients for both experi-
ments is calculated and compared with the true far-field of the
AUT in Fig. 2. The error curves are computed by subtracting
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Fig. 3. Complex error map for each combination of normalized measurement
radii for the AUT of size N = 80.

the complex far-fields. For the first experiment, this error goes
as high as —35 dB. However, the amplitude values seem to be
in closer agreement with the true far-field, even for values as
low as —50 dB. The source of this discrepancy is due to the
phase. A similar trend is observed for the second experiment
but have higher error levels. In general, it has been observed
that the phaseless technique retrieves better the amplitude
than the phase values in the far-field, but this has not been
thoroughly investigated. Note that this is not a trivial property
as the far-field amplitude is influenced by both amplitude and
phase in the near-field.

For better understanding of the influence of the measure-
ment radius, both r; and r, are swept for different values,
and the phaseless technique is applied for each combina-
tion. Fig. 3 depicts a 2-D plot of the complex error for
the last iteration. From this figure some conclusions can be
drawn. First, the optimum region for r, is around 0.17,,
and 0.157,,. In this region, even for small separations with
respect to r; the retrieved coefficients show low errors. This
may be due to the fact that, in that interval, the radiated
amplitude fields experiment rapid variations with respect to
the radial coordinate (this means higher differences between
the two measured fields, thus more information). However, for
values of r,/re lower than 0.1 the error experiments abrupt
increases for reasons not yet studied. Considering that the
minimum sphere has a normalized radius of 0.01, any issue
of AUT-probe colliding spheres is discarded.

B. Influence of AUT Size

The previous experiment is repeated reducing the array size
so that its new truncation index is N = 60, obtaining an
analogous 2-D error map depicted in Fig. 4. The obtained
error distribution shows good agreement with the previous
case, suggesting that the same trend may be extrapolated for
other AUT sizes. This has been verified for N = 40 and
100 obtaining similar agreement. To further demonstrate this
property, and additional test is conducted for N = 120 but
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Fig. 4. Complex error map for each combination of normalized measurement
radii for the AUT of size N = 60.

fixing ry/rer to 0.5. Fig. 5 depicts the obtained errors for all
simulated N values as a function of ry/rg,. All curves for
the different sizes show the same behavior confirming that the
influence of the measurement radius is relative to the Rayleigh
distance. The center of the plot (0.5) corresponds to the case
where r; = rp, so the error is the highest. When r; starts
to differ, the error decreases, but not in a symmetric way:
Setting r; closer to the antenna offers superior performance
as we are approaching to the previously mentioned area with
strongest variations with respect to the radial coordinate.
Another noticeable issue is the irregular behavior of the curves
showing ripples. This, along with the abrupt changes present
in this figure and Figs. 3 and 4 are due to the non-linear nature
of the phase retrieval algorithm, trapping it in suboptimal
solutions which depend on the given measurement scenario.
Finally, it is also observed that for bigger AUTs, the retrieved
errors tend to be smaller. In general, electrically large AUT
experiment a significant variation of the near-field amplitude
with respect to the radial coordinate due to the high number of
harmonics involved in the propagation. This has the effect of
an increased diversity between the two measurement spheres
leading to a better convergence.

C. Influence of AUT Type

Due to nonlinear nature of the phase retrieval problem,
the previous results cannot be generalized to other antenna
types without performing further experiments. The radiation
characteristics over the two measurement spheres strongly
depend on the specific AUT. This influence is investigated by
simulating alternative AUT models typically encountered in
near-field measurements scenarios. Six types of antennas will
be simulated as follows.

1) A 20 dBi square planar array with a Taylor amplitude

distribution with a sidelobe level (SLL) of —20 dB.
In addition, a linear symmetric tapper up to 20° of phase
is added along the columns.
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Fig. 5. Complex error for different values of ry/rgy with a constant value
of ra/rge = 0.5 for several AUT sizes.

2) A 32 dBi circular reflector antenna modeled as a 404
radius aperture with an edge illumination of —10 dB
and a circular blockage of 4/.

3) A 25 dBi square planar array with uniform amplitude
illumination and linear phase so the main beam is
pointed to 8, = 20°.

4) The difference channel of a 2-D monopulse planar
104 x 104 array. The monopulse is generated by dividing
the aperture in four subarrays fed with 180° phase
difference.

5) Three rectangular arrays of dimensions 154 x 74, 154 x
54 and 154 x 34 with uniform excitation.

6) A linear array of printed dipoles with uniform excitation.
The Huygens source is considered as a printed dipole.

The following test is conducted for the introduced antennas.
Two spherical near-field measurements are simulated sweeping
r1 and fixing ry/rg, to 0.5 and the angular oversampling is set
to s = 2. Fig. 6 depicts the complex error after 1000 iterations
of the phase retrieval algorithm. In the case of the square
and circular arrays, the same behavior of Section III-B is
observed. The monopulse difference pattern shows a signif-
icantly different performance, obtaining lager errors than the
other types of antenna, especially for large values of r;. The
abrupt phase changes on the aperture may be the reason for
the poor obtained results. Finally, the lower plot shows how
the retrieved solution is degraded as the array aspect ratio
changes in the rectangular arrays, reaching to the point that
the algorithm gets trapped in a local minimum for all values
of r; when the AUT is a linear array. The latter case has been
re-simulated for all r; and r, combinations, without showing
any significant improvement in the retrieved solution.

The conducted experiments show that the findings of
Section III-A and III-B can be generalized for other AUT
types with circular and square apertures with typical pencil
beam patterns. For the case of linear and rectangular AUTSs or
special radiation patterns like monopulse, the phase retrieval
degrades or even becomes totally unreliable, showing results
difficult to generalize.
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D. Oversampling Assessment

In previous contributions, the effects of oversampling on
phaseless techniques have been analyzed [9], [19], [22],
proving to be a helpful or even mandatory tool to obtain
a good level of convergence for the phase retrieval. The
reason for this is that removing the phase from the field
doubles its bandwidth. Therefore, experiments conducted so
far have been performed with an angular oversampling of
s = 2, which means that both angular increments (0, ¢) are
divided by 2 with respect to the ones of a standard near-
field measurement. This definition differs from the one used
in other contributions [9] based on the number of degrees
of freedom of the AUT radiated fields. Here we note that
standard spherical near-field measurements usually acquire
around twice as much samples as numbers of degrees of
freedom of the AUT. Considering that we are measuring in
two surfaces, in which the number of samples is doubled
on each dimension, the total of samples amounts to roughly
16 times with respect to the number of degrees of freedom.
This may seem an excessive number of measurement points
and indeed becomes a drawback leading to long measurement
times. However, even far higher values have been reported to
improve other phaseless algorithms convergence [9].

The influence of this parameter is here analyzed for the
spherical case using as AUT a 104 x 104 square array with
uniform amplitude and phase distribution. Several experiments
are carried out sweeping the angular oversampling between 1
and 3.25 for different orientations keeping the sphere radii
r1/rear = 0.16 and rp/rg; = 0.48. The orientation is adjusted



RODRIGUEZ VARELA ez al.:

. €comp at 1000th iteration

Error (dB)

45 L L L L
1 1.5 2 25 3

Angular oversampling

Fig. 7. Complex error as a function of the sampling rate for different AUT
orientations.

by rotating the antenna around the £ axis so the main beam
points to a given angle @,. This parameter is of significant
relevance because the equiangular sampling commonly used in
spherical near-field measurements samples more densely the
poles than the equator. Depending on the antenna pointing,
the near field will be better sampled in some regions than
others, which may impact the phase retrieval process.

The retrieved errors are depicted in Fig. 7. Disregarding the
irregular behavior characteristic of this technique, the main
trend is a reduction of the error with increasing sampling rates.
The error also increases as the antenna is rotated, which is an
effect that cannot be compensated by adding more samples.
We conclude that the loss in accuracy is not due to the main
lobe becoming sparsely sampled. As in the previous section,
a loss of AUT axial symmetry may be the reason for this
degradation. In all cases, the minimum error tends to saturate
for values higher than s = 2, so an angular oversampling
around this value is welcomed for a more reliable phase
retrieval.

E. Influence of Probe Directivity and AUT Offset

Single-order probe correcting capabilities are implicit in
the proposed phase retrieval technique. All simulations per-
formed so far have been obtained using an Hertzian dipole
as ideal probe, so the measured signal is exactly the electric
field in the probe location. Standard spherical measurements
are performed usually with conical horns as probes with
directivities ranging from 10 to 15 dBi. Depending on the
measurement distance, the probe itself may influence signifi-
cantly the measured signal. It is of interest to investigate its
potential effects over the phase retrieval algorithm. This has
already been studied for the planar case [15], showing how
the probe influence can be exploited to perform phaseless
measurements using two different probes instead of changing
the measurement distance. It is well-known that the probe
influence is far less significant in the spherical case; however,
it is worth performing such analysis.

A square array of size N = 80 measured with angular
oversampling s = 2 is simulated with ry/rp, = 0.5 and

NUMERICAL AND EXPERIMENTAL INVESTIGATION

8835

-20 -

-25

Error (dB)

No offset
X-offset 70% ||
X-offset 100%
Z-offset 100%
40 | | . 1 I | N N 1

0 0.1 02 03 0.4 05 06 07 0.8 0.9 1

r /rfar

=35
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probes.

sweeping r;. The simulation is performed twice, one for a
Hertzian dipole probe and the other for a 15 dBi antenna. The
latter is obtained arranging several Hertz dipoles in a vertical
array, as in a Yagi-Uda antenna, increasing its directivity while
keeping its single-order nature. To further emphasize the probe
effects, the AUT is simulated with different offset values with
respect to the center of the measurement sphere. As a result,
the probe “sees” the AUT from a different angle for every
measurement point. This has also the effect of increasing the
AUT minimum sphere, thus the truncation index and sampling
rate are increased accordingly for the experiments. The offset
values are denoted as percentages of the displacement from
the center relative to the AUT diameter. The simulated offset
values are: 70% and 100% in the X axis direction, and 100%
in the Z direction.

Fig. 8 depicts the retrieved errors from all the conducted
experiments. For displacements along the % axis, the offset
breaks the AUT axial symmetry, which degrades the perfor-
mance of the algorithm. In the case of the Z axis, the symmetry
of the antenna is kept but the offset adds an additional phase
variation to the measured near-field, which complicates the
phase retrieval and also degrades the results but to a lesser
extent. On the other hand, the probe shows no significant
impact on the results, which makes it impossible to derive any
relationship between the probe directivity and the algorithm
convergence. This confirms that the influence of the probe
has a small contribution which neither can be exploited nor
can degrade the algorithm performance. For this experiment,
a 15 dBi mono-mode probe has been selected as it is a typical
on standard near-field measurements scenarios. Higher order
probes with more complex radiation patterns may introduce
a significant influence on the results. However, the phase
retrieval technique employed here is not applicable in these
cases.

F. Robustness Against Noise

Finally, the proposed technique is tested including noise to
assess its robustness on real measurement scenarios. For this
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test we go back to the scenario of Section III-A with the
AUT of size N = 80 with r{/rg, = 0.16 and ry/repe = 0.24.
For this configuration, complex additive white Gaussian noise
is added to the measured signals before removing the phase.
The phase retrieval technique is applied sweeping the signal-
to-noise ratio (SNR) between 20 and 60 dB. This experiment
has been repeated for two values of angular oversampling,
s = 1.5 and s = 2.5. The retrieved errors have been depicted
in Fig. 9 showing a high robustness even for poor SNR
values. The complex error remains around the same value of
the noise-free experiment for SNR values as high as 35 dB.
Therefore, adding noise lower than this level will have little
effect over the retrieved SWC. The effect over the amplitude
error is more significant, but it also presents a good robustness
achieving a saturation value around 40 dB of SNR. In addition,
the complex measurements are processed to retrieve the SWC
using traditional field transformation techniques [3] and &com
is computed for each SNR value as well. This is also depicted
in Fig. 9 to compare the noise-filtering capabilities of both
approaches.

Increasing the sampling rate has small effect on the noise
robustness of phaseless measurements as compared with the
complex case. In the phaseless case, the convergence values
for e,p; do not show a significant improvement. In the case
of &comp, the obtained errors are lower, because increasing
the sampling rate allows the phase retrieval algorithm fall
in a local minimum closer to the optimal solution. The
presence of noise then becomes a secondary issue, and a better
SNR does not translate in lower errors as in the complex
case. We conclude then that the proposed technique shows a
well-conditioned response against noise, so for scenarios with
good SNR values its effect will be negligible compared with
the more problematic local minima issue.

G. Truncation of the Sphere

Truncated spherical measurements [32], [33] are common in
scenarios where the full spherical surface cannot be acquired
due to physical limitations, like in the case of automotive
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measurements. Alternatively, truncated acquisitions can be
employed to reduce measurement times by just scanning
the solid angle where most of the significant radiation is
of interest. The most common case is the polar truncation,
in which the near-field is only measured up to a given 6 = 6.
This has the effect of limiting the retrieval of the trans-
formed far-field up to a given reliable angle slightly smaller
than 6, [3].

The truncation effects are investigated here for phaseless
spherical near-field measurements. The same test of Fig. 5
is conducted again for the array of size N = 40, but
this time, the input field on the two spheres is truncated
to several values 6. Fig. 10 depicts the evolution of the
different complex errors as a function of the first sphere radii.
For moderate levels of truncation, its effects are negligible
in comparison to the inherent errors of the phase retrieval
process. When a significant part of the near-field power is
truncated, the accuracy of the phase retrieval is reduced in
those radial regions where the separation between spheres
was high enough. This loss in accuracy is proportional to
the truncation value in a stable way, which suggests that the
phase retrieval is well conditioned against truncation errors in
a similar way as conventional complex measurements.

The truncation effect has also been evaluated in the far-
field. Fig. 11 depicts the retrieved far-field from the phaseless
experiment for r;/rg = 0.2, which is around the optimal
performance region. The true analytical far-field has been
depicted too. It can be observed that the different patterns
show perfect agreement with the reference for smaller angles
than 6.

H. Antenna Parameters Assessment

The error metric &c,mp gives an overall description of
the accuracy of the retrieved solution but its relationship
with the quality of the reconstructed radiation pattern is
not straightforward. Antenna parameters such as directivity,
beamwidth (BW), and SLL are of high interest because they
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directly affect the performance of the antenna application.
Therefore, it is worth performing a specific analysis on the
quality of these parameters obtained from the phase retrieval
algorithm.

The experiments performed on Section III-C are repeated
here for the tapered array and reflector antennas. For each
simulation, the directivity, first SLL, and —10 dB BW are
calculated. The errors of these parameters with respect to the
reference solution are computed and depicted in Fig. 12, in the
same way as Fig. 6. It is noticeable that the algorithm can
retrieve the —10 dB BW with perfect accuracy in all cases,
even for the region where the spheres are too close resulting in
high &ecomp values. The directivity value is mostly influenced
by the main lobe, so it is retrieved with good accuracy in
all cases too. The first SLL constitutes a more challenging
parameter to retrieve, as both antennas are designed for a
level around —20 dB. For both antennas, the SLL curves
show an empty region where the error is not shown. This
corresponds to the region with high &, values, where the
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retrieved patterns where so distorted that the SLL calculation
was giving meaningless results.

1. Guidelines for Phaseless Spherical Measurements

From the analysis performed in the previous subsections,
it becomes evident that the two-scans phaseless technique
requires a careful choosing of some parameters in order to
obtain a successful near-field to far-field transformation. As a
summary, the main conclusions are summarized here to give
a set of guidelines to consider when performing such type of
measurements in real anechoic chambers.

1) The spherical phaseless retrieval method is an ill-posed
technique prone to problematic behavior. Convergence to
acceptable error levels is not guaranteed for an arbitrary
antenna, so the specific AUT type must be considered
carefully.

2) AUTs with good axial symmetry around Z and pencil
beam patterns are the best candidates for accurate phase-
less measurements. Beam steered and rectangular aper-
ture antennas with some level of symmetry show good
convergence capabilities too. On the other hand, linear
arrays or specific antennas with unconventional radiation
patterns, poor symmetries, high aspect ratios, significant
offsets with respect to the minimun sphere, or abrupt
aperture phase changes become problematic or even
impossible to process with the introduced technique.

3) Relative separation between spheres is a critical para-
meter, but the absolute radii are also relevant. The best
results are obtained with the smallest sphere having a
radius of 10%-15% of the Rayleigh distance, and at
least 20%—-30% respectively for the second sphere.

4) Some degree of angular oversampling, ideally around
200% with respect to standard spherical measurements,
significantly reduces the retrieved errors.

5) Probe correction, polar truncation and thermal noise play
a minor role on the accuracy of the retrieved solution
if they remain on the margins of standard spherical
near-field measurements.

6) The use of an initial guess improves the algorithm
convergence. This has already been shown in previous
publications [20], [21], so it has not been repeated here.
The investigations performed in this article are intended
to be generic without need of any prior information
about the AUT. Therefore, the initial guess used in
this study uses only the polarization type information
about the AUT, so it has a small influence. Some of the
previous tests have been repeated without such guess
obtaining slightly worse convergence levels.

The limitations imposed by the used iterative Fourier algo-
rithm should be considered too. Because the alternating projec-
tions between the two spheres are performed using a classical
near-field transformation approach, the introduced technique
shares the same limitations. Measurements are restricted to
single-order probes and equiangular sampling, so it is not
possible to take advantage of the benefits provided by higher
order probes [33] and nonuniform sampling [34]. This could
be solved by use of modern techniques, but they are less
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computationally efficient, and the implementation of the algo-
rithm becomes more complex.

Finally, the two-scans phaseless technique can be addressed
by use of alternative phase retrieval algorithms. During the
last years, multiple techniques [10] have been proposed that
could be implemented in the spherical case. An interesting
feature of such techniques is the incorporation of initializers
which estimate a good starting point for the iterative process
to alleviate local minima issues. This could improve the
convergence values of the introduced method, especially in
the cases of antennas with complicated radiation patterns.
The implementation of these techniques requires the use of
matrix formulation following a different approach than the one
presented in this article, which can lead to a more complex
and computationally demanding alternative.

IV. ANECHOIC CHAMBER PHASELESS MEASUREMENTS

Finally, the two-scans spherical phaseless near-field to
far-field transformation technique is tested using measured
data. Some preliminary measurements done at the DTU-ESA
facility were discussed in [21]. In that measurement campaign,
physical limitations of the positioner equipment inhibited the
use of adequate separation between spheres, so the more
relevant examples were done using partially synthetic data.
In this section, however, pure measured data will be used
obtaining positive results. This time the measurements have
been performed in the anechoic chamber of the Technical Uni-
versity of Madrid (UPM). The used spherical range consists in
a roll-over-azimuth positioner with a translation stage so that
spherical measurements can be performed with radii ranging
between 3 and 5.5 m. Two different antennas will be tested,
a 20 GHz parabolic reflector and the mmVAST at 37.8 GHz.

A. 20 GHz Reflector Antenna

The first antenna to be tested is a 20 GHz reflector antenna
of 60 cm diameter with linear polarization and around 40 dBi
of gain. According to its electrical dimensions, the truncation
index for this AUT has a value of N = 120 whereas the
far-field distance is around 38 m. Two spherical measurements
at 3 and 5.5 m of distance are performed so that the complete
range of movement of the translation stage is exploited. These
radii correspond to the 8% and 15% of the Rayleigh distance
respectively, which is somewhat close to the optimal range
according to the previously derived criteria. The spherical
measurements are performed with angular increments of 1°
so that an angular oversampling of 1.5 is obtained. The
probe consists of a smooth-walled conical horn with axial
corrugations and 15 dBi of directivity, which is rotated 90° on
each measurement point to measure both field polarizations.

Both spherical near-field measurements are performed
recording amplitude and phase of the received signals on the
probe. From the complex measurement at 5.5 m, the far-field
and the SWC are computed using the commercial software
SNIFT [35]. The SWC are used to perform near-field simu-
lations at arbitrary measurement distances. Multiple combina-
tions of r| and r, are used to simulate virtual measurements of
the AUT with the same probe and angular sampling. For each
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ment radii for the measured 20 GHz reflector antenna.

(ry, r2) pair, the phase retrieval technique is applied using the
amplitude of the simulated fields. The obtained convergence
values are depicted in Fig. 13, where nice agreement with
the analytical simulations is observed. It can be confirmed
that the selected measurement distances lie in the region
of optimal performance, although with little margin. This
becomes possible for this particular AUT and measurement
range, but for other frequencies and antenna dimensions,
the required measurement radii for an optimal performance
may be unfeasible due to mechanical limitations.

Now, the two-scans phaseless technique is applied using the
amplitude information of the two pure measurements without
any prior postprocessing. The algorithm is evaluated for 1000
iterations using as initial guess an Hertzian dipole with the
same polarization as the AUT. Fig. 14 depicts a comparison
between the complex far-field processed by SNIFT and the
one obtained using the phaseless iterative algorithm. A point-
by-point far-field error metric is given by the equivalent error
signal (EES), as specified by

HE(H’ (D)comp’ - }E(G, (D)th (5)
max(’E(@, go)comp‘)

being E@,¢)comp and E(0,¢),, the far-field patterns
retrieved from the complex and phaseless data, respectively.
Good agreement is exhibited by the co-polar pattern, yet the
cross-polar EES is relatively high.

In addition, the same process is repeated but instead of using
the pure amplitude measurements, the simulated amplitudes
obtained from the SWC in the same spheres are used. This
showcases the effect of the different sources of errors affecting
both measurement spheres independently. The corresponding
radiation pattern and EES are depicted in Fig. 14 as well, and
it can be appreciated how the use of postprocessing to generate
the fields on the two spheres gives a result with significantly
lower errors. When pure phaseless measurements are consid-
ered, amplitude drifts, spurious reflections, and mechanical
misalignments between the two measurement surfaces lead
to degradation. Yet these are normal sources of uncertainties

EES@,¢p) = ZOIoglo(
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in standard complex measurements one should expect an
increased robustness for amplitude-only measurements. How-
ever, the ill-condition nature of the phaseless problem can
amplify these errors compromising its reliability.

B. mmVAST 40 GHz Measurements

The DTU-ESA millimeter-wave validation standard antenna
(mmVAST) [36] is an offset single-reflector antenna with an
astigmatic paraboloid having different focal lengths in the
orthogonal offset and transverse planes. This asymmetry gives
rise to different beam widths in these planes and thus a non-
circular misaligned main beam, which becomes a challenging
pattern to measure. The antenna has an aperture dimension
of 230 mm x 230 mm with an enclosing box of 530 mm
x 230 mm x 440 mm. The reflector is fed by a cluster of
four Pickett-Potter horns, one for each of the four operational
frequencies (19.76, 30.04, 37.80, and 48.16 GHz).

For this test, the 37.8 GHz frequency is selected with
circular polarization. Considering its electrical dimensions at
the selected frequency, the truncation index for the mmVAST
is N = 250 and its Rayleigh distance 91 m. Once again,
the measurement radii are set to 3 and 5.5 m but in this

8839

Phaseless FF
Complex FF
10+ — — —EES

-20 - {

30+ i

o] I "i‘ ’v‘“‘m

Amplitude (dB)

e
I FI'\ l? \'\'”u

diihe o
i o iy
I glm! iuﬂl]‘uj{,b“!l,:‘h }‘TIIH
A e ;
aoidtl n “ II\I"I:IH! !\!Ml'&l‘
-40 -20 0 20 40 60 80 100 120

Lt
| bl I | M)
;b ' 15 ﬂ\ ; ul,‘ ﬂ w
i di

(a)
0 T T : T T T T
— Phaseless FF
I Complex FF
10 —— —EES ]

Amplitude (dB)
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(b) H-planes. Coordinate rotations have been applied to align the H cut with
the main beam.

case, they correspond to a 3.3% and 6% of the far-field
distance. These are very low values, far from the optimal
region derived in the previous section, but the best ones
that can be obtained due to the mechanical limitations. This
means that the two spheres are not separated enough, and all
propagating spherical waves cannot experiment the required
variations to ensure a good convergence of the phaseless
technique. However, it is interesting to study the behavior
of the technique under such circumstances, especially for a
challenging antenna like the mmVAST. The measurements
are also done with two orthogonal orientations of a similar
probe, and angular increments of 0.5° are selected providing
an angular oversampling ratio of 1.44.

As in the previous case, two complex measurements are
performed, and the reference far-field pattern is obtained from
the largest sphere. Then the two-scans spherical phaseless
technique is applied using the amplitude information of both
measurements using as initial guess two crossed Hertz dipoles
generating circular polarization. Fig. 15 depicts the obtained
radiation pattern along with the reference solution for the
two principal cuts, which have been obtained by means of
coordinate system rotations, due to the AUT off-axis beam
pointing direction. In addition, the far-field pattern for the
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phaseless far-field O-component patterns for the mmVAST antenna.

forward hemisphere in UV coordinates has been depicted
in Fig. 16. The agreement is not as good as in the previous
case, but the main lobe is well retrieved and there is a high
similarity in the secondary far-lobes.

Unlike in the previous case, the far-field cuts are plotted
only in magnitude and not by co and cross-polar components.
The reason for this is that the algorithm is not able to retrieve
properly the phase of both # and ¢ components, which is
critical to correctly generate the circular polarization compo-
nents. Fig. 16 depicts the phase of the far-field & component
for both complex and phaseless cases. There is not agreement
whatsoever between both plots so it can be concluded that the
algorithm is unable to retrieve the phase for this antenna.

V. CONCLUSION

The two-scans phaseless spherical near-field measurement
technique has been reviewed and thoroughly investigated. The
lack of phase must be compensated with amplitude measure-
ments adding enough “field information” so the algorithm can
reach a good level of convergence. Such additional information
is generated by separating the spheres well enough. It has
been shown how this separation is relative to the Rayleigh
distance of the corresponding AUT, and certain combinations
of sphere radii tend to provide the best results. In addition,
the influence of the AUT has been studied, showing how
the technique provides better results for centered antennas
with good axial symmetry. In the case of linear arrays or
complicated radiation patterns, the technique becomes unre-
liable. It has been confirmed that the use of oversampling
with respect to conventional complex measurements helps to
improve the accuracy of the algorithm. The robustness of the
technique with respect to noise, polar truncation, and probe
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influence has been demonstrated as well. Finally, the previous
observations have been considered to perform pure near-field
phaseless measurements in the Technical University of Madrid
of two different antennas, obtaining results in agreement with
the conducted numerical studies.

Future work includes the study of alternative phase retrieval
methods with different initializers, to assess its influence on
the convergence values and processing times. The effect of
the expansion basis for the problem will be also investigated.
Some contributions follow approaches based on equivalent
currents which can give additional information about the AUT
structure, but they can lead to worse conditioned problems.
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