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Physical Limitations of Phased Array Antennas
Andrei Ludvig-Osipov , Jari-Matti Hannula , Member, IEEE, Patricia Naccachian , and B. L. G. Jonsson

Abstract— In this article, the bounds on the Q-factor, a quan-
tity inversely proportional to bandwidth, are derived and inves-
tigated for narrowband phased array antennas. Arrays in free
space and above a ground plane are considered. The Q-factor
bound is determined by solving a minimization problem over the
electric current density. The support of these current densities is
on an element-enclosing region, and the bound holds for lossless
antenna elements enclosed in this region. The Q-factor mini-
mization problem is formulated as a quadratically constrained
quadratic optimization problem that is solved either by a semi-
definite relaxation or an eigenvalue-based method. We illustrate
numerically how these bounds can be used to determine tradeoff
relations between the Q-factor and other design specifications:
element form factor, size, efficiency, scanning capabilities, and
polarization purity.

Index Terms— Q-factor, antenna theory, current distribu-
tion, electromagnetic radiation, Floquet expansions, optimization
methods, periodic structures.

I. INTRODUCTION

ONE of the most important antenna design parameters
is the impedance bandwidth, for which an antenna

satisfies its design criteria. Directly optimizing the bandwidth
performance of an antenna or an array is difficult as it is
closely related to shape optimization. In particular, it may be
hard to determine whether a global optimum has been reached.
A class of tools addressing this problem are the fundamental
bounds (limitations imposed by physical principles), and they
have been instrumental for determining optimal performance
for small antennas [1]–[3].

In this article, we use the Q-factor [4], [5] to determine the
bounds for narrowband phased array antennas in free space
and above a ground plane. Such phased arrays have a long
history (see [6]) and have recently been applied to above
20 GHz 5G communication [7]–[9]. The Q-factor model is a
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good tool for estimating the impedance bandwidth of phased
arrays, as it allows the formulation of tractable optimization
problems. Here, we determine lower bounds on the Q-factor
under various design constraints. The aim here is to examine
how well the Q-factor bounds predict the bandwidth and to
investigate the impact of different kinds of design constraints.
The unit-cell representation of the arrays is used.

The Q-factor approach was used to derive bounds for
small antennas contained in a sphere or a cylinder in the
works of Chu [1] and Wheeler [10] in the late 1940s. The
Q-factor bounds received a renewed interest, and many useful
results in the last decade for small single-port antennas con-
tained in arbitrarily shaped volumes [3], [11]–[18]. For small
antennas, the Q-factor bounds have been used to construct
tradeoff relations between the Q-factor and the size [19],
the form factor [17], the medium losses [18], and the radiation
characteristics [20].

The Q-factor is defined to be proportional to a ratio of
energies, stored and dissipated per cycle [21], and can hence be
represented in the electromagnetic fields [22]–[26], the current
densities [27]–[33], and the system-level quantities [1], [34],
[35]. A suitable representation is a key for obtaining Q-factor
bounds. The Chu bound [1] (see also [36], [37]) was obtained
from a Q-factor of a circuit model for spherical wave expan-
sion of the fields outside a spherical volume containing an
antenna. Collin and Rothschild [26] separated the total energy
into stored and radiated by subtracting radiating spherical (or
cylindrical) modes at the field level, which was extended by
Fante [25] to obtain Q-factor bounds. These results, although
powerful and insightful, have a drawback—the majority of
the antennas do not conform to the shapes (sphere or cylin-
der) used in these bounds. Such bounds depend only on
the antenna’s electrical size (the radius/length of antenna’s
circumscribed sphere/cylinder normalized to wavelength). To
overcome this disadvantage, the precise but implicit connec-
tion of the Q-factor to antenna geometry was proposed by
Vandenbosch [28], with the Q-factor expressed in terms of
antenna currents. This work was a generalization of small-
antenna expressions by Geyi [31] and was further investigated
by Gustafsson and Jonsson [38] and Jonsson and Gustafsson
[39]. These antenna-current representations [28], [38], [39]
were used to obtain the bounds for antennas in arbitrarily
shaped volumes [11], [12], [15]–[17], [40].

For periodic structures, Edelberg and Oliner [41], [42]
investigated Q-factor expressions for arrays of slots and
dipoles. A different approach was considered by Tomasic and
Steyskal [43], [44]. They proposed a lower bound for the
Q-factor of a 1-D array of infinitely long cylinders in free
space and above the ground plane. Their result is based on the
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dominant cylindrical mode and they express the stored ener-
gies in terms of field densities in a unit cell (the fields of the
propagating Floquet mode are excluded from stored energies).
This approach can be seen as a periodic-structures counterpart
of Collin and Rothschild’s method [26]. Kwon and Pozar [45]
derived the results for arrays of dipoles in free space, above a
ground plane, and above a grounded dielectric substrate. These
results provide good qualitative and quantitative analysis for
Q-factor dependence on array parameters, such as periodicity
or scanning angle. An assumption in [45] is that the current
shape is known. To determine Q-factor bounds, it is interesting
to consider a larger range of geometries and to dispense with
the known current assumption.

In this article, we apply optimization methods to the pre-
viously derived current density representations for the array
Q-factor [4], [5] to minimize the Q-factor over the current
densities. These current densities are confined to an arbitrarily
chosen geometry. By imposing optimization constraints on
the shape, medium losses, and polarization characteristics,
we obtain the tradeoff relations. The bounds for beam-
scanning capabilities are presented. We use two different
optimization methods providing global minima to optimization
problems. One of the optimization approaches is based on
semidefinite relaxation (SDR), and the other is based on a
small-sized eigenvalue problem associated with critical points
to the Lagrangian of the original problem.

As mentioned above, it is known that the Q-factor can be
used to estimate the bandwidth both for single-port antennas
and for arrays. In [4] and [5], it was shown that Q-factors
equal to or greater than 5 tend to predict the bandwidth of
the tested array antennas. In this article, we compare the
Q-factor bounds with a sequence of numerically simulated
array antennas with specified port positions. The comparison
focuses on narrowband antenna elements.

The rest of this article is organized as follows. Section II
defines the array geometries, gives Q-factor expressions for
arrays in terms of current density both with and without
a ground plane, and provides a matrix form for stored
energy kernels in numerical implementation. In Section III,
two approaches for Q-factor optimization are proposed: SDR
and the eigenvalue-type-problem-based method. Examples of
physical bounds obtained numerically by the optimization
methods are provided in Section IV. This article ends with
conclusions in Section V.

II. STORED ENERGIES AND Q-FACTOR

The Q-factor is proportional to the ratio between the stored
energy and the total dissipated power [21]

Q = 2ω max{We, Wm}
Ptot

(1)

where ω is the angular frequency and We and Wm are electric
and magnetic stored energies, respectively. In the case of
radiating systems, the total power Ptot is the sum of the
radiated power Pr and conductive losses POhm.

The radiation efficiency is

erad = Pr

Pr + POhm
= 1

1 + δ
(2)

Fig. 1. Example of an array geometry for current density optimization. The
optimization is performed over all possible electrical current densities on the
surface of an array element (cuboid in this example) within a unit cell.

where δ = POhm/Pr is the dissipation factor [36]. The radiation
Q-factor is Qrad = Q/erad.

A tractable Q-factor optimization problem can be obtained
by expressing both the stored energies and the radiated and
dissipated powers in terms of the current densities. This
process starts in Section II-A for array elements in free space
and arrays with a ground plane in Section II-B.

A. Free-Space Case

Consider a 3-D array of perfectly electric conducting (PEC)
elements on a 2-D rectangular grid (see Fig. 1). The PEC
elements are of finite size, sufficiently regular, and support an
electric current density J(r) on their surface. The periodic
solution satisfies the condition

J(r + ζ mn) = J(r)e−jkt00·ζ mn (3)

where r ∈ R3 is a coordinate vector, ζ mn = am x̂ + bn ŷ;
m, n ∈ Z, and kt00 = k sin ε0 cos φ0 x̂ + k sin ε0 sin φ0 ŷ is
a phase shift vector with the polar ε0 and azimuthal φ0

angles and the wavenumber k. The unit cell is defined as
U = {(x, y, z) ∈ R3 : x ∈ [0, a], y ∈ [0, b]} with a and b
being the respective grid periods.

The stored energies in (1) are typically defined in terms
of the electric and the magnetic fields [4], [43], [45], [46].
They are reformulated as quadratic forms of unit-cell’s electric
current density in [4] and rewritten here using the dyadic-
kernels notation. For a PEC structure, as considered here,
it serves to investigate the surface currents

We = �
�

�
� J∗(r1) · Ke(r1, r2) · J(r2)dS1dS2 (4)

Wm = �
�

�
� J∗(r1) · Km(r1, r2) · J(r2)dS1dS2 (5)

where � is the maximal spatial support of current density
in a unit cell, and the coordinates r1 and r2 are integration
variables corresponding to the surface elements dS1 and dS2.
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The dyadic kernels are

Ke(r1, r2) = μ

4
Re

�−1

k2
∇1∇1G(r1, r2) + Hg(r1, r2)

�
(6)

Km(r1, r2) = μ

4
Re

�
G(r1, r2)1 + Hg(r1, r2)

�
(7)

where ∇1 is a Jacobi matrix,1 ∇i is a gradient with respect to
r i , i = 1, 2, 1 is a unit dyadic, k is the wavenumber, and μ
is permeability of free space. The free-space periodic Green’s
function G is given by (50) and the function g is given by (51).
The dyadic-valued operator H =

�
k21 + ∇1∇1

�
is introduced

for brevity.
Note here that both Green’s function and the function g

depend on the scan angle. Consequently, so do the stored
energy kernels.

The radiated power in terms of the current densities is

Pr = 1

2

	
�

	
�

J∗(r1) · Kr(r1, r2) · J(r2)dS1dS2 (8)

with the kernel

Kr(r1, r2) = η

k
Im

�
HG(r1, r2)

�
(9)

where η is the free-space impedance.
Dissipation losses are here estimated by a perturbation

approach [18], [47] with a surface resistance model

POhm = 1

2

	
�

Rs(r1)|J(r1)|2dS1 (10)

where Rs is a surface resistance.

B. Ground Plane Case

The unit-cell geometry for the case with a ground plane
is similar to the unit cell of the free-space case. The array
consists of 3-D PEC elements placed on a 2-D rectangular
grid at positions z > 0, with the infinite ground plane placed
at z = 0. The unit cell is given by U = {(x, y, z) ∈ R3 : x ∈
[0, a], y ∈ [0, b], z ∈ [0,∞)} and the phase shift condition (3)
holds. The stored energies for this configuration are derived
in [5] and written here using the dyadic-kernel notation. The
utilized mirroring approach results in quadratic forms [see (4)
and (5)] with updated U , where the kernel dyadics are given by

Ke(r1, r2)

= μ

4
Re

�−1

k2
∇1∇1G(r1, r2) + 1

k2
∇1∇1G(r1, r2i)1z

+Hg(r1, r2) −


Hg(r1, r2i)

�
1z

�
(11)

Km(r1, r2)

= μ

4
Re

�
G(r1, r2)1 − G(r1, r2i)1z

+Hg(r1, r2) −


Hg(r1, r2i)

�
1z

�
. (12)

The extra terms in (11) and (12) compared to the free-space
case (6) and (7) represent the contribution due to the

1If G = G(r1, r2), then − ��
J∗(r1) · ∇1(∇1 G) · J(r2)dS1dS2 = ��

(∇1 ·
J∗(r1))G(∇2 · J(r2))dS1dS2 for currents with support inside the unit cell.

ground plane (given here in the form of the mirrored image
terms). The dyadic 1z = x̂ x̂ + ŷ ŷ − ẑ ẑ inverts the sign of
z-component, and r2i = 1z · r2 is an image coordinate. The
radiated power kernel is

Kr(r1, r2) = η

k
Im

�
HG(r1, r2) − [HG(r1, r2i)]1z

�
. (13)

The calculation of losses with the ground plane remains an
open problem.

C. Polarization

To incorporate the polarization-related constraints into the
Q-factor optimization problem, in this section, we derive and
formulate the polarization in terms of the current density.

Starting from the dyadic Green’s function representation,
the electric field due to a surface electric current density J is

E(r1) = jη

k

	
�

�
−HG(r1, r2)

�
· J(r2)dS2. (14)

The contribution, associated with (m, n)th Floquet mode of
Green’s function (50), is

Emn(r1)

= −η

2kab

	
�

�
H

e−jktmn ·(ρ1−ρ2)e−jkzmn |z1−z2|

kzmn

�
· J(r2)dS2. (15)

Here, the wave vector and the coordinates are separated in
the longitudinal and transverse components (see Appendix ).
Calculating the expression within {·} in the integrand (15)
reduces the mode to

Emn(r1) = η

2S
e−jktmn ·ρ1 e∓jkzmn z1 Fmn± (16)

where Fmn± is proportional to the polarization of the (m, n)th
Floquet mode. The + (−)-sign applies to observation points
r1 above (below) the array, i.e. , such that z1 ≥ z2 (z1 ≤ z2)
for all r2 ∈ �. These factors have the form

Fmn± = K± ·
	

�

ejktmn ·ρ2 e±jkzmn z2 J(r2)dS2. (17)

The dimensionless dyadics K± are given by

K± = 1

kkzmn

⎡
⎣ k2

xm − k2 kxmkyn ±kxmkzmn

kxmkyn k2
yn − k2 ±kynkzmn

±kxmkzmn ±kynkzmn k2
zmn − k2

⎤
⎦. (18)

Recall that the wave-vector components ktmn = x̂kxm +
ŷkyn, kzmn depend on the angles φ0, ε0 associated with the

direction of propagation of the Floquet modes. Thus, K±
depend both on the electrical sizes ka and kb of the unit
cell and the angles φ0 and ε0 associated with the propagation
direction of the investigated Floquet mode, as specified in kt00,
see the Appendix.

The co- and cross-polarized components of a Floquet
mode in a given direction are (analogous to the far-field
definition [48])

Fco,mn± = Fmn± · ê∗
co, Fcx,mn± = Fmn± · ê∗

cx (19)

where the reference polarizations êco and êcx are the chosen
co- and cross-polarization unit vectors.



LUDVIG-OSIPOV et al.: PHYSICAL LIMITATIONS OF PHASED ARRAY ANTENNAS 5515

For the ground-plane case, there is no radiation below the
array, that is, Fmn− = 0. The factor Fmn+ of the Floquet-
modes above the array with ground plane is

Fmn+ = K+ ·
	

�

ejktmn ·ρ2 ejkzmn z2 J(r2)dS2

−Kim ·
	

�

ejktmn ·ρ2 e−jkzmn z2 J(r2)dS2 (20)

where K+ is given in (18) and

Kim = 1

kkzmn

⎡
⎣k2

xm − k2 kxmkyn −kxmkzmn

kxmkyn k2
yn − k2 −kynkzmn

kxmkzmn kynkzmn k2 − k2
zmn

⎤
⎦. (21)

The co- and cross-polarized components are found similar to
the free-space case from (19).

D. Matrix Formulation

To efficiently determine these electromagnetic quantities
numerically, all the above linear and quadratic forms are
reduced to finite-dimensional linear and quadratic forms with
matrix kernels. To this end, the current density is approximated
by a set of surface basis functions { f u(r)}N

u=1 over the array
element �

J(r) ≈
N�

u=1

Iu f u(r). (22)

Here, the Rao–Wilton–Glisson basis functions are used for
{ f u(r)}N

u=1. The stored-energies and radiated-power kernels,
in both free-space and ground-plane cases, can be represented
as matrices with elements (the upper index u, w ∈ [1, N]
below corresponds to element indices in the corresponding
matrix)⎧⎨
⎩

W(u,w)
e

W(u,w)
m

R(u,w)

⎫⎬
⎭=

	
�

	
�

f u(r1) ·
⎧⎨
⎩

Ke(r1, r2)
Km(r1, r2)
Kr(r1, r2)

⎫⎬
⎭ · f w(r2)dS1dS2.

(23)

The stored energies (4) and (5) and radiated power (8) are
thus approximated as

We ≈ IHWeI, Wm ≈ IHWmI, Pr ≈ 1

2
IHRI (24)

with the current density basis coefficients vector I =
(I1, I2, . . . , IN )T, and {.}T and {.}H denote a transpose and
a conjugate transpose, respectively. The process of computing
the stored-energies and radiated-power matrices has a similar
structure to the impedance-matrix computation in the method
of moments (MoM) and can be implemented by marginal
modifications of a MoM code [4], [5]. The Ohmic losses (10)
are represented as a quadratic form POhm = (Rs/2)IH�I,
where � is the Gram matrix [18]. The Gram matrix has
elements

�(u,w) =
	

�

f w(r1) · f w(r1)dS1. (25)

The polarizations of the Floquet modes (17) and (20) are
vector-valued linear forms of the surface current density J .

The projections (19) of the Floquet-modes on the co- and
cross-polarized unit vectors are approximated as

Fco,mn± ≈ Fco,mn±I Fcx,mn± ≈ Fcx,mn±I. (26)

The elements of vectors Fco,mn± and Fcx,mn± are given by
(here demonstrated for co- and cross-polarized waves in the
free space)�

F(u)
co,mn±

F(u)
cx,mn±

�
=

�
ê∗

co
ê∗

cx

�
· K± ·

	
�

ejktmn ·ρ2 e±jkzmn z2 f u(r2)dS2.

(27)

III. OPTIMIzATION METHODS

A. Q-Factor optimization

In Section II, the operator representation of the stored ener-
gies and radiated power was reduced to finite-sized matrices.
This reduction simplifies the Q-factor representation (1) to
a ratio between two finite-dimensional quadratic forms. A
Q-factor optimization problem for a given shape and scanning
direction can be formulated as

Q∗ = minimize
I∈CN

Q(I) (28)

where Q(I) is the Q-factor, expressed in terms of the current
coefficients. The optimization is over all currents that can be
represented by the coefficients In in I. The above problem is
scaling invariant under the transformation I 
→ aI, a ∈ C\{0}
[15]. Thus, the amplitude of the current and its overall phase
does not change the Q-factor. This implies that a degree
of freedom in the optimization problem can be removed; it
suffices to investigate all currents for which the unit cell
radiates half a watt. Consequently, this allows (28) to be
written as

Q∗ = minimize
I∈CN

Q

s.t. 4ωIHWeI ≤ Q

4ωIHWmI ≤ Q

IHRI = 1. (29)

The above Q-factor optimization gives the minimum Q-factor
at a preferred scan direction and enclosing shape, as deter-
mined by the support of the set of basis functions.

Additional design constraints can now be added to (29). For
example, the constraint on efficiency

Rs

2
IH�I = δ (30)

can be added to (29). Here, δ = POhm/Pr is the dissipation
factor [see the discussion below (2)]. Similarly, a constraint
on the polarization purity for a specified direction φ0 and ε0

can be formulated as (with ξ ∈ (0, 1))

|Fcx,mn±I| ≤ ξ |Fco,mn±I|. (31)

This can in turn be reformulated as a quadratic constraint

IHFH
cx,mn,±Fcx,mn,±I ≤ ξ2IHFH

co,mn,±Fco,mn,±I. (32)

The above problem (29) with (and without) the optional
constraints (30) and/or (32) is a quadratically constrained
quadratic program (QCQP), which is a well-studied class of
optimization problems (in the context of Q-factor optimiza-
tion, see [20], [32], [49]).
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B. Semidefinite Relaxation

One method to solve QCQP is the SDR [50]. It is based on
the identity

IHAI = tr(IHAI) = tr(AIIH) = tr(AX) (33)

where X = IIH and tr(·) denotes the trace. The Q-factor min-
imization problem (29) is then with help of the identity (33)
reformulated as an SDR program

Q∗ = minimize
0�X∈H

Q

s.t. 4ω tr(WeX) ≤ Q

4ω tr(WmX) ≤ Q

tr(RX) = 1 (34)

where the condition rank X = 1 is dropped and H denotes the
class of N × N Hermitian matrices. Whenever the solution
has rank(X) = 1, one can reconstruct [51] the current
density I from the nonzero eigenvalue λ and the corresponding
eigenvector u of X. The corresponding optimizing current
density coefficients vector is obtained as I∗ = λ1/2u.

The constraints (30) and (32) are formulated as

1

2
Rs tr(�X) = δ (35)

tr(FH
cx,mn,±Fcx,mn,±X − ξ2FH

co,mn,±Fco,mn,±X) ≤ 0. (36)

C. Eigenvalue Method

An alternative and less memory demanding approach is
based on a Lagrangian formulation of the optimization prob-
lem. An alternative form of (29) is

Q∗
4ω

= minimize
I∈CN

max(IHWeI, IHWmI)

s.t. IHRI = 1. (37)

The maximum of the stored energies is an upper bound for the
convex combination (α ∈ [0; 1]) of the electric and magnetic
stored energies [3]

max(IHWeI, IHWmI) ≥ IHWαI (38)

where

Wα = αWe + (1 − α)Wm, α ∈ [0, 1]. (39)

The minimization problem (37) is then relaxed to

QR

4ω
= max

α
min

I
IHWαI

s.t. IHRI = 1. (40)

The Lagrangian functional associated with this problem is

L(α, λ) = IHWαI + λ(1 − IHRI). (41)

Critical points of the Lagrangian are found as zeros of the
variational derivative of the Lagrangian, i.e., the solutions to
equation

WαI − λRI = 0. (42)

Such critical points provide candidates with the solution to the
dual problem. Here, the minimum generalized eigenvalue and

eigenvector solution (λ∗, I∗) minimizes the ratio IHWαI/IHRI,
which with the help of (38) provides a lower bound to
the Q-factor. Maximizing over the parameter α gives us the
maximal lower bound QR ≤ Q∗.

A straightforward solution of the resulting generalized
eigenvalue problem (42) is usually ill-conditioned, due to the
low rank of R, corresponding to the number of the propagating
Floquet modes. This is mitigated by an eigendecomposition of
the radiated power matrix R = UR̃UH, where U is a unitary
matrix, composed of the eigenvectors of R, and R̃ is a diagonal
matrix with few nonzero entries due to the low rank of R

R̃ = UHRU = diag(d1, . . . , dr , 0, . . . , 0) =
�

R̃11 0
0 0

�
. (43)

Here, r = rank R. The currents can be represented as

I = UĨ. (44)

Multiplication of the eigenvalue problem (42) by UH from the
left gives

UHWαUĨ = λUHRUĨ. (45)

The transformed stored energy matrix is then partitioned
according to the eigendecomposition R̃ of the radiated power
matrix

W̃α = UHWαU =
�

W̃11 W̃12

W̃21 W̃22.

�
. (46)

The generalized eigenvalue problem is then rewritten as a
system of equations�

W̃11Ĩ1 + W̃12 Ĩ2 = λR̃11Ĩ1

W̃21Ĩ1 + W̃22 Ĩ2 = 0.
(47)

The stored energies are positive definite in the considered
cases, and thus, the second equation provides the relation
between the parts of Ĩ

Ĩ2 = −W̃−1
22 W̃21Ĩ1. (48)

Direct substitution in the upper equation of (47) gives an
eigenvalue problem of the size of R̃11, which is r × r

(W̃11 − W̃12W̃−1
22 W̃21)Ĩ1 = λR̃11Ĩ1. (49)

The lowest eigenvalue and its corresponding eigenvector in
(49) are denoted as (λ∗, Ĩ1∗). The best solution current I∗
to (42) is found from Ĩ1∗ via (48) and (44). After rescal-
ing to comply with the radiated-power constraint in (40),
it solves the minimization problem in (40) for a given α.
The reduction (48) is essential to improve the accuracy of the
solution (λ∗, Ĩ1∗).

Additional constraints in the eigenvalue approach are
included by adding the constraints with their associated
Lagrange multiplier to the Lagrangian (41). The eigenvalue
approach tends to be faster than the SDR since it has fewer
unknowns compared to (34). It, however, comes with an
overhead of maximizing with respect to α and resolving
possible degenerate of eigencurrents. In our investigated cases,
we find that the SDR method and the eigenvalue method
give the same minimum value, indicating that these problems
do not have a duality gap, i.e., Q∗ = QR. This follows
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Fig. 2. Lower bound on the Q-factor for a sequence of rectangular plates
with varied aspect ratio, constant total plate area S = p2/9, period p, and
wavelengths λ. The optimal normalized current densities are in the insets,
with the color bar showing the amplitude in dB.

since the SDR method finds the true minimum with three or
fewer constraints [52]. Both methods have been applied in
Section IV.

IV. NUMERICAL EXAMPLES

Above, all the theories required to obtain the Q-bounds from
current density optimization have been discussed. To investi-
gate the Q-factor bounds, the following shapes and scenarios
are considered: cuboids and planar rectangular structures of
horizontal and vertical orientation and for different aspect
ratios with and without a ground plane. All these examples
have a square-sized unit cell with side p, and the array
elements are relatively small to focus on the narrowband
regime. Both the broadside case and scanning are discussed.
The impact of efficiency and different demands of polarization
purity is also considered next.

In all the examples, except where otherwise stated,
the numerical approximations of the stored energies, radiated
power, the Gram matrix, and the polarization vectors are
computed as described in Section II-D using RWG basis
functions on a triangular mesh, representing considered array
element geometries. These numerical approximations are then
used in conjunction with the optimization methods described
in Section III to obtain the Q-factor bounds with different
constraints.

A. Rectangular Plates in Free Space

First, consider a sequence of flat periodically spaced rec-
tangles, �x × �y, with constant area: �x�y = p2/9 (see Fig. 2).
Here, p is the length of unit cell in both the x- and the y-
direction, i.e., p = a = b. The minimum Q-factor at broadside
scan for an array of rectangular PEC plates is shown in Fig. 2
as a function of the normalized length of the plate, �x/p.

Observe in Fig. 2 that for this fixed small area result, it is
clear that a larger length �x gives a lower Q-factor, that is,
the best-Q-factor design enclosed in a square surface has a
larger Q-factor than the best design enclosed in an oblong

Fig. 3. (a) Q-factor-predicted −10 dB fractional bandwidth for rectangular
plates of varying aspect ratios over a ground plane when λ = 2p and �x�y =
p2/9. (b) Corresponding Q-factors as a function of �x for heights marked in
(a) with (A), (B), and (C).

rectangular surface. Hence, to design a planar array with larger
bandwidth (i.e. , lower Q-factor) with a limited surface area
of the element, one should look into oblong element designs,
rather than the ones that are more fitted for the square shape.
Consequently, this narrowband design result with a fixed small
area is different from the large wideband ones where self-
complementary designs are common. It is also interesting to
note that optimal current solutions have their highest amplitude
along the edge of the rectangle (see the inset in Fig. 2), and
as the rectangle becomes more narrow, the whole structure is
utilized.

B. Horizontal Plate Over a Ground Plane

Next, a ground plane is added at z = 0 to the structure in
Section IV-A [see the inset in Fig. 3(b)]. This is an interesting
case since a Q-based bandwidth estimate can be compared
with the array figure of merit for lossless antennas. It is known
that the array figure of merit tends to well predict the available
bandwidth for wideband arrays [53], [54]. The figure-of-merit
result is based on a sum rule [55] for planar arrays over a
ground plane.

In all investigated cases, the area p2/9 is fixed, and the
wavelength at the center frequency is λ = 2 p. To convert the
Q-factor into bandwidth, the Yaghjian and Best relation [56]
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is used with a −10 dB reflection coefficient. The Q-factor-
estimated bandwidth for different aspect ratios of rectangles,
as a function of the distance from the ground plane, is shown
in Fig. 3(a). The dashed horizontal lines of the corresponding
color show the estimated bandwidth for the equivalent rectan-
gle in free space (no ground plane). Depending on the distance
from the ground plane, the ground plane can either enhance or
degrade the bandwidth compared to the free-space case. The
widest Q-factor bandwidth estimate is obtained at h = (1/4)λ
for all aspect ratios of the fixed area. This is consistent with
the common rule of thumb of locating the antenna at a quarter
of a wavelength above the ground plane.

The bandwidth for �x ∈ [1, 2, 4]�y is equal to the free-
space case when the height is h = (1/8)λ and h = (3/8)λ.
Below h = (1/8)λ and above h = (3/8)λ, the ground plane
reduces the available bandwidth. The more wideband case with
�x = 8�y is here predicted to be better than the free-space case
for a slightly smaller region, at the same time observe here,
that the Q-factor is rather small. At h = (1/2)λ, the Q-factor
predicted bandwidth becomes essentially zero.

Comparing Fig. 3(b) with the result in Fig. 2 shows that
the results for the plate above a ground plane follow the same
trend as for the free space. The larger the ratio of the two
sides of the rectangle, the lower Q-factor is obtained. This is
the case for all distances above the ground plane.

From a comparison of the Q-factor predicted bandwidth
with the array figure of merit [sum rule in Fig. 3(a)], it is
clear that the Q-factor predicts a smaller bandwidth. The sum
rule, as used here, does not account for a particular shape of
the element but only the volume of the array above the ground
plane. Initially, the sum-rule-based bound grows linearly with
the height h illustrating that a good utilization of the unit-cell
volume can have a wide bandwidth.

With a focus on narrowband arrays, it is therefore interesting
to examine how certain realized resonant antenna elements
behave compared with the Q-factor and sum-rule bounds.
A partial enlargement of Fig. 3(a) with the simulation results
is shown in Fig. 4.

Here, three dipole-like antenna elements with different
aspect ratios (see Fig. 4) have been simulated both with the
CST frequency-domain solver and an in-house MoM-code.
The obtained impedance is then tuned to resonance with a
single reactive lumped element and the −10 dB bandwidth
is determined. The single-element tuned bandwidth2 is a
measure of antenna bandwidth that can be compared with
the Q-factor predicted bandwidth [56]. The tuned CST- and
MoM-bandwidths are shown in Fig. 4 with the -marked
dashed lines and by �-markers, respectively. These different
software results agree well. The MoM-calculated currents of
these gap-feed antennas are used to calculate a Q-factor by a
substitution of the current into (1). The resulting bandwidth
is shown in Fig. 4 with circle-marked solid lines. Note that
they, as expected from the optimization problem formulation,
are slightly below the bandwidth from optimal Q-factor (solid
lines).

2More advanced impedance tuning naturally results in a wider bandwidth,
and such improvement factors are similar for these elements.

Fig. 4. Enlargement of Fig. 3(a) with a comparison between bandwidth
prediction and realized bandwidth. The dipoles to the right are the distance h
above the ground plane. The color of the designs corresponds to the curves
colors.

Fig. 5. Considered array element geometries. (a) Horizontal two-by-one
plate. (b) Vertical two-by-one plate with constant width. (c) Cuboid with
constant gap to the ground. (d) Vertical plate with constant gap to the ground.
Dimensions p, �x , and h are equal in all four cases. The element area of
(a) and (b) is p2/9.

Fig. 4 shows that the Q-factor bounds here tend to well
predict the obtained bandwidth. As the element gets more
wideband, e.g., Q � 5, the bandwidth predicted by the single-
resonant-Q-factor model gradually starts to underestimate the
available bandwidth. These results remain well below the
sum-rule-based bound, as expected with the small utilization
of the unit-cell area. The Q-factor bounds presented here
thus provide a better prediction for small resonant-type array
antenna elements.

C. Ground Plane With Additional Elements

Fig. 5 shows three shapes in addition to the horizontal plate:
a vertical plate, a cuboid, and a varying height vertical plate.
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Fig. 6. Minimum Q at broadside as a function of ground plane distance for
the four geometries shown in Fig. 5.

All shapes are over a ground plane. For Fig. 5(a) and (c), �x =
2�y, �x�y = p2/9. Fig. 5(b) has �x = 2�z and the same area
as in Fig. 5 (a), d = (1/24)λ for Fig. 5(c) and (d). Broadside
radiation is considered. The frequency is chosen so that λ =
2 p. The horizontal plate in Fig. 6 (see Fig. 2) has a minimum
Q-factor at (1/4)λ and maximum at (1/2)λ.

When the plate is rotated vertically [see Fig. 5(b)], a dif-
ferent result is obtained. While there still is a minimum at
h = (1/4)λ in this case as well, there is another minimum
when the lower edge of the plate is at quarter-wavelength
height h ≈ 0.37λ. The reason for this is that the currents
are not confined to one height only, as in the horizontal case,
and the rapidly increasing Q-factor at h = (1/2)λ does not
occur for the vertical plate. There is a more gradual increase
when the center of the plate is at a half-wavelength distance
from the ground plane.

The Q-factor of the plate with varying height [see Fig. 5(d)]
is smaller than the fixed-area vertical plate [see Fig. 5(b)].
From this, it is clear that a higher volume usage of the unit
cell has the potential to improve the bandwidth. The thicker
cuboid [see Fig. 5(c)] remains below all the other curves
in Fig. 6, providing a larger estimated bandwidth for antenna
elements designed to fit within this shape. These two latter
results remain fairly insensitive to the distance, d , above the
ground plane and only the choice d = (1/24)λ is shown.

D. Scanning in Free Space

The results in this section examine the impact of scanning.
The scan direction (φ0, ε0) appears in kt00 [see (3)] and
consequently in G and g (50) and (51) and, therefore, in stored
energies and radiated power. Here, we examine the optimum
Q-factor for any antenna element that fits within an array of
the horizontal plates each with �x = 2�y and �x�y = p2/9, and
λ = 2 p. Fig. 7 shows the minimum Q-factor as a function
of the scan angle ε in two different planes, φ = 0◦ and
φ = 90◦ (see the coordinate system in Fig. 5). The results
are symmetric in each plane crossing the z-axis. The colored
curves in Fig. 7 correspond to the current of an optimized
Q-factor at the scan angles shown in the legends, and this
current is used to determine the Q-factor for a sweep of scan

Fig. 7. Q-factor at different scan angles with no ground plane and (a) φ = 0◦
and (b) φ = 90◦ . The lowest curve is the optimized Q-factor bound at each
scan angle. The colored curves illustrate the impact on the Q-factor under
scanning utilizing a current density associated with the optimal Q-factor for
scan angles ε shown in the legend.

angles. The dashed curve is the optimal Q-factor at each scan
angle. It is interesting to examine for what range that the local-
angle-optimized (colored) graph is similar to the dotted black
curve. The range of angles where the Q-factor for the scan-
angle specific optimization remains close to optimal is large,
in particular for the locally optimized scans at [0◦, 30◦, 70◦].

In the φ = 0◦ plane, one can observe that the minimum
Q-factor is obtained at broadside, with the Q-factor increasing
as the array is steered away. However, at around ε = 53◦,
the Q-factor begins to decrease again. Fig. 8 shows the current
distributions in the φ = 0◦ direction with ε shown every 15◦.
The broadside result shows two dipole-like currents on the
long edges of the plate. For small deviations from broadside,
e.g., 15◦, this current distribution remains similar. However,
as the scan angle is increased, one of the currents on a long
edge disappears. The remaining currents extend further into
the short edges, eventually converging on the other long edge
to form a loop-like current distribution. The loop current is
imbalanced, remaining stronger on one long edge compared
to the other. After 53◦, where the Q-factor begins to decrease,
the strongest current can be found on one of the short edges
instead. This current distribution remains stable across the
entire >53◦ scan range. From the current distributions, it is
clear that an optimal current is an interaction between different
current modes.

E. Scanning With a Ground Plane

In this section, consider the horizontally oriented rectangular
plate with �x = 2�y = p/9 at height h over a ground plane at
z = 0. In Fig. 9, the same idea as for Fig. 7 is repeated, for
three different heights, h = [(1/8), (1/4), (3/8)]λ, above the
ground plane. Colored curves are optimized at a given angle,
as stated in the legend, the black-dashed curve is the minimum
Q-factor at each angle.
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Fig. 8. Optimal current distributions for scan angles shown in Fig. 7(a).

From the black-dashed curves for the three different heights,
it is clear that for the heights (1/8)λ, (1/4)λ, and both
scan directions, the minimum Q-factors are higher for small
h and they tend to increase as the array becomes thinner.
In contrast, note that at h = (3/8)λ, there is a decrease in
the optimal Q-factor away from the broadside scan direction.
Indeed, in both planes for scan angles above 40◦, the plate at
(3/8)λ outperforms the otherwise superior (1/4)λ-case. This
suggests that while the traditional (1/4)λ height is optimal
for narrowband arrays at broadside, a larger height actually
provides the possibility for better scanning performance for
small narrowband elements.

Despite the different values of the Q-factor when compared
between different heights and also the case without the ground
plane, the current distributions with the ground plane are
similar to those shown in Fig. 8. In all cases, a similar
transition can be seen: lengthening dipole current into a loop,
which eventually orients itself on a short edge. The presence of
multiple modes has been utilized to improve scanning in [57]
and [58]. A good way to interpret the above scan results in
terms of antenna designs is to think about the optimal current
as of the current of a novel antenna shape within the region
� that supports an optimal current. Such an optimal current
was in [59] used to design a better antenna for a nonperiodic
case.

F. Radiation Efficiency

In this section, the radiation efficiency constraint is added
to the optimization problem. The minimum Qrad is obtained
from the Q-factor optimization without constraints, with cur-
rent I∗. The efficiency obtained with this current using (30)
is low, as is natural for this choice of Rs . Higher efficiency
gives an increase in Q-factor. This is implemented by adding
a constraint on the dissipation factor (30) to (29). However,
it does not appear to be a significant increase as long as the

Fig. 9. Q-factor as a function of scan angle at three different distances from
the ground plane, presented in the same way as in Fig. 7.

efficiency constraint is not pushed too far. For example, in the
case of λ = 2 p, the minimum Q-factor of Qrad ≈ 9.57
is obtained at an efficiency of erad  33 %. Pushing this
efficiency to erad  95 % will have negligible effect on the
Q-factor, resulting in Qrad ≈ 9.66.

The efficiency has an upper bound. For the studied case,
this is found at erad  95.4 %. Attempting to reach this
bound imposes a high cost on the Q-factor. A similar sharp
increase has also been shown in [18] for single-port antennas.
These results are consistent across all studied wavelengths,
the radiation Q-factor grows linearly in λ to the first order,
e.g., Qrad ∝ λ.

The insets of Fig. 10 illustrate that a demand of higher
efficiency results in current densities approaching the uniform
distribution to minimize losses.
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Fig. 10. Minimum radiation Q as a function of radiation efficiency for an
array of rectangular plates in free space and the associated optimal currents.
The element configuration is shown in the inset of Fig. 2 with �x = 2�y.

Fig. 11. Minimum Q as a function of the ratio of x- and y-components of the
far field for three different aspects ratios of a rectangular plate with fixed area
�x�y = p2/9 in free space. The dots on the lines denote the minimum Q-factor
bounds (with no polarization constraint) and the resulting polarization ratio.

G. Polarization Purity

In this section, a polarization constraint (32) is applied to
the broadside Q-factor optimization problem. The geometry
corresponds to the free-space case, see the inset in Fig. 2,
with λ = 2 p and for rectangle aspect ratios: �x/�y = [2, 4, 8],
and fixed area �x�y = p2/9. Fig. 11 shows the minimum
Q-factor bound as a function of the ratio of the x- and
y-directed polarization components of the Floquet mode (19)
for rectangles of different aspect ratios in free space. Here,
if êco and êcx in (19) are the unit directions x̂ and ŷ
respectively, then Fx = F00+ · x̂ and Fy = F00+ · ŷ for the
fundamental mode. The marked circle on each of the lines
shows the polarization and Q-factor without any constraints
on the polarization. As the studied shapes are longer in the
x-direction, the polarization is naturally x-oriented. Unlike
the case with the efficiency constraint, pushing for improved
polarization purity does not appear to cause the Q-factor to
increase. It remains basically constant for |Fx |/|Fy | from 20 to
60 dB. Naturally, forcing the polarization to be aligned with
the y-axis causes the Q-factor to increase as the available

surface for the y-directed currents is much shorter. This effect
gets more pronounced as the aspect ratio of the rectangle is
increased. The insets show the current density as distributed
over the element, together with a fixed-time snapshot of the
current directions with unit-length arrows, to improve the
visibility.

V. CONCLUSION

This article presents two optimization methods to obtain
Q-factor-based estimates of bandwidth for phased array anten-
nas. The examples demonstrate the usefulness and the accu-
racy of such estimates for small narrowband antenna elements.
This article investigates certain array element form factors,
beamscanning, placement of the element relative to the ground
plane, a tradeoff between the radiation efficiency and the
Q-factor, and a tradeoff between the polarization purity and
the Q-factor.

The proposed optimization methods efficiently solve the
originally nonconvex problems of Q-factor minimization and
determine an optimal current density corresponding to the min-
imum value. Such optimal currents can provide insight into the
physics behind optimal narrowband radiation, as, for example,
in Fig. 2 where the distributions indicate that certain double-
dipole-type currents tend to minimize the Q-factor. Similarly,
a change in current distribution illustrates the existence of
different types of current modes, at broadside and high-
scan angles for antennas within the investigated narrowband
rectangular plate shapes.

Another interesting result is the bandwidth comparison
between realized antenna elements and the Q-factor bounds.
Here, it is shown that, for a family of elements at different
heights above the ground, the Q-factor well predicts the
available bandwidth of narrowband elements, e.g., Q � 5.
For more broadband elements, a single Q-factor resonance
tends to underestimate the available bandwidth. These
Q-factor bounds and their associated bandwidth estimates
are interesting since they are both easy to obtain and more
predictive than the array figure of merit bound. The latter is
useful for wideband multiresonant antenna elements, where
it provides the absolute upper bound for lossless arrays.
The Q-factor bound gives information on the required size,
scanning impact, and placement within the unit cell.

In this article, we have also investigated the behavior of
optimal Q-factor for any antenna in a given region for a given
scan direction, both with and without a ground plane. It was
especially interesting to note that for an optimal antenna in
these small enclosing regions, there exists a different height
(above (1/4)λ) that has a better Q-factor performance at large
scan ranges. The two constrained Q-factor optimization cases,
efficiency and polarization purity, show the versatility of the
Q-factor approach in estimating the bandwidth.

The above examples illustrate that the Q-factor optimization
of periodic structures is of significant interest. It is more pre-
dictive in estimating the available bandwidth for narrowband
structures than, e.g., a sum rule. Indeed, physical insight can
be obtained in certain cases, such as the classical quarter-
wavelength position for optimal antennas above a ground
plane. It is also easy to add constraints to the optimization



5522 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 69, NO. 9, SEPTEMBER 2021

problem, such as polarization purity. In addition, Q-factor
optimization provides tradeoff relations where, e.g., the height
or aspect ratio can be tuned at the expense of the Q-factor. The
higher bandwidth robustness of a vertically oriented rectangle
in comparison with a horizontally oriented rectangle is clearly
visible in the Q-factor of this case.

APPENDIX

The free-space 2-D periodic Green’s function in the spectral
form is [60]

G(r1, r2) = 1

2jab

�
(m,n)∈Z2

1

kzmn
e−jktmn ·(ρ1−ρ2)e−jkzmn |z1−z2| (50)

with ktmn = kt00 + 2π(n/a)x̂ + 2π(m/b) ŷ, kzmn =�
k2 − ktmn · ktmn , and zi = r i · ẑ, and ρi = r i − ẑzi , i = {1, 2}.
The function g in stored energies kernels [4] is

g(r1, r2) = 1

4 ab

�
(m,n)∈Z2\P

1

|kzmn|2 ejktmn ·(ρ1−ρ2)

× e−|kzmn ||z2−z1|
�

1

|kzmn| + |z1 − z2|
�

(51)

where P = {(m, n) : k2 − ktmn · ktmn ≥ 0}.
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