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ANN-Assisted CoSaMP Algorithm for Linear Electromagnetic Imaging

of Spatially Sparse Domains
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Abstract— Greedy pursuit algorithms (GPAs) are widely used to
reconstruct sparse signals. Even though many electromagnetic (EM)
inverse scattering problems are solved on sparse investigation domains,
GPAs have rarely been used for this purpose. This is because 1) they
require a priori knowledge of the sparsity level in the investigation
domain, which is often not available in EM imaging applications and
2) the EM scattering matrix does not satisfy the restricted isometric
property. In this work, these challenges are, respectively, addressed by
1) using an artificial neural network (ANN) to estimate the sparsity level
and 2) adding a Tikhonov regularization term to the diagonal elements
of the scattering matrix. These enhancements permit the compressive
sampling matching pursuit (CoSaMP) algorithm to be efficiently used to
solve the 2-D EM inverse scattering problem, which is linearized using the
Born approximation, on spatially sparse investigation domains. Numerical
results, which demonstrate the efficiency and applicability of the proposed
ANN-enhanced CoSaMP algorithm, are provided.

Index Terms— Born approximation, compressed sensing (CS), com-
pressive sampling matching pursuit (CoSaMP), electromagnetic (EM)
imaging, inverse problems, machine learning, neural network, sparse
reconstruction.

I. INTRODUCTION

In the last two decades, greedy pursuit algorithms (GPAs) making
use of compressed sensing (CS) have been successfully used in
the reconstruction of sparse signals [1]–[5]. In general, a CS-based
scheme seek the sparsest solution by constraining the optimization
problem with the �0-norm of the solution. It is well known that
a direct solution to this optimization problem is nondeterministic
polynomial-time (NP)-hard, however, GPAs, under certain condi-
tions, provide a good approximation to its solution in an effi-
cient way [3]–[5]. GPAs that are widely used in the image and
signal processing communities rely on the orthogonal matching
pursuit (OMP) [3] and its different variants including the regu-
larized OMP [5] and the compressive sampling matching pursuit
(CoSaMP) [4].

Many electromagnetic (EM) imaging applications involve natu-
rally sparse investigation domains. Here, sparsity means that the
scatterer, which is defined by a contrast function (the difference
between the dielectric permittivity of the scatterer and the background
medium), occupies only a small fraction of the investigation domain,
i.e., contrast function is spatially sparse [6]. Note that sparsity can
also be defined with respect to a different basis expansion or in
a transformed domain [7]–[9]. Having said that, the application of
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GPAs to the solution of the EM inverse scattering problem has been
rather limited [10]–[12]. This can be explained by two fundamental
reasons.

1) For accurate and efficient reconstruction, GPAs require the
exact number of nonzero elements (samples of the contrast
function) in the investigation domain (denoted by k in this
work) to be known a priori and this information is not available
in many EM imaging applications.

2) The GPAs require the measurement matrix to satisfy the
restricted isometric property (RIP) [3]–[5]. For EM imaging
applications, the measurement matrix is the scattering matrix
and is obtained by sampling the Green function of the back-
ground medium between the measurement/receiver locations
and the investigation domain. This matrix does not satisfy the
RIP [10]–[12].

In [10], a simultaneous OMP algorithm (S-OMP) is developed to
reconstruct sparse investigation domains, however, the algorithm is
provided with the value of k, which would not be possible in many
EM imaging applications. In [11], a phase-less reconstruction scheme
is developed to reconstruct low-contrast point-like scatterers. The
optimization problem is linearized under the Born approximation [13]
and made convex using �1-norm regularization. In [12], a flexible tree
search-based OMP algorithm (FTB-OMP) is developed to reconstruct
closely spaced point-like scatterers and k is predicted using the data
misfit at each stage of the tree search. This scheme suffers from a
tradeoff between the reconstruction accuracy and the computational
cost, both of which increase with the search tree size. Another
limitation of the FTB-OMP is that if the very first estimate of the
solution component is incorrect, the algorithm would converge to a
local minimum or an entirely incorrect solution.

It should be mentioned here that the EM inversion schemes making
use of Bayesian compressive sensing (BCS) frameworks (some of
which also operate under first-order linearization schemes such as
Born and Rytov approximations) have been developed [14]–[18].
Since these algorithms belong to the family of probabilistic inversion
schemes, they are not discussed here. The readers are referred to
[14]–[18] and the references cited in these communications for
details.

In this work, CoSaMP is used to solve the EM inverse scattering
problem, which is linearized using the Born approximation, on 2-D
spatially sparse domains. Unlike OMP, CoSaMP works by estimating
multiple elements in the support set of the scatterer (i.e., indices
of nonzero contrast samples) instead of one at a time and refines
this support set iteratively. Consequently, it offers a faster rate of
convergence and can reconstruct large connected scatterers, which is
a limitation associated with the OMP-based algorithms. The two main
challenges associated with the application of GPAs to EM imaging (as
described above) are, respectively, addressed by 1) using an artificial
neural network (ANN) to estimate k and 2) applying Tikhonov
regularization to ensure that the RIP is satisfied. The ANN is trained
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beforehand using synthetic but noisy (scattered field) measurements
on many investigation domains (with known k) which include various
scatterers with different contrast levels and are discretized using a
different number of elements. This ANN is then used to predict k
given the fields scattered from an unknown domain. The Tikhonov
(�2-norm) regularization term is added to the diagonal elements of
the scattering matrix to ensure that the RIP is satisfied. This enables
the use of CoSaMP and reduces the sensitivity of the solution to the
noise in the measurements.

The advantages of this Tikhonov and ANN-enhanced CoSaMP
algorithm are threefold: 1) It is computationally efficient since the
least-squares problem, which is solved for unknown values of the
contrast samples, is executed on a reduced set rather than the full
investigation domain; 2) it does not require tuning of a thresholding
parameter [19]; and 3) the reconstructed images are more accurate
and sharper than those produced by smoothness promoting inverse
algorithms.

It should be emphasized here that the ANN used in this work
predicts only the number of nonzero elements (k) but neither their
locations nor values. From this perspective, it can be considered as
a “qualitative” imaging approach and its structure is much simpler
compared to the ANNs used for “quantitative” imaging where the
contrast is fully reconstructed [20]–[24]. Having said that, it still
comes with a computational overhead due to training (even though
it is done only once) and one can extend other “qualitative” methods
[25]–[29] to predict k while avoiding this computational cost.

It should also be noted here that a preliminary version of the
CoSaMP framework proposed here has been described in a con-
ference contribution [30]. This inversion scheme works on current
samples and is provided the exact value of k.

II. FORMULATION

A. EM Inverse Scattering Problem

Let S represent the support of a 2-D inhomogeneous investigation
domain that resides in an unbounded background medium. The
permittivity and permeability in S and in the background medium are
{ε(r), μ0} and {ε0, μ0}, respectively. S is individually illuminated by
NT line-source transmitters that generate transverse magnetic (to z)
TMz incident fields E inc

i (r), i = 1, . . . , NT at frequency ω = 2π f .
Upon excitation by E inc

i (r), an electric current density is induced
on S and this current density generates the scattered electric field
Esca

i (r). Let E tot
i (r) = E inc

i (r) + Esca
i (r) represent the total electric

field, then Esca
i (r) can be expressed as [13]

Esca
i (r) = k2

0

∫
S

τ(r′)E tot
i (r′)G

(
rR

m , r′)ds′. (1)

Here, k0 = ω
√

ε0μ0 is the wavenumber in the background medium,
τ(r) = ε(r)/ε0 − 1 is the dielectric contrast, and G(r, r′) =
H2

0 (k0|r − r′|)/(4 j) is the 2-D Green function.
The EM inverse scattering problem (Fig. 1) is defined as finding

τ(r) given measured Esca
i (rR

m ), where rR
m , m = 1, . . . , NR are

receiver locations away from S. To solve this problem numerically,
first, S is discretized into N number of square elements. Let rn ,
n = 1, . . . , N represent the centers of these elements. Then, E tot

i (r)
and τ(r) are approximated as

E tot
i (r) =

N∑
n=1

{
Ē tot

i
}

n pn(r) (2)

τ(r) =
N∑

n=1

{τ̄ }n pn(r)

where {Ē tot
i }n = E tot

i (rn), {τ̄ }n = τ(rn), and pn(r) is the pulse basis
function on element n with support Sn . Note that pn(r) is nonzero

Fig. 1. Description of the 2-D EM inverse scattering problem.

only for r ∈ Sn with unit amplitude. Substituting (2) into (1) and
evaluating the expression at rR

m , m = 1, . . . , NR yields a matrix
equation

Ēsca
i = Ḡ D̄

{
Ē tot

i
}
τ̄ , i = 1, . . . , NT (3)

where {Ēsca
i }m = Esca

i (rR
m), ¯̄D{Ē tot

i } is a diagonal matrix with
entries {Ē tot

i }n , and the entries of the matrix Ḡ are {Ḡ}m,n =
k2

0
∫

Sn
G(rR

m , r′)ds′.
Matrix (3) is nonlinear in τ̄ since Ē tot

i is a function of τ̄ . Under
the assumption of weak scattering, (3) can be linearized using the
Born approximation Ē tot

i ≈ Ē inc
i , where {Ē inc

i }n = E inc
i (rn) [13].

Inserting this approximation into (3) yields a linear matrix equation

Ēsca
i = H̄i τ̄ = Ḡ ¯̄D{

Ē inc
i

}
τ̄ , i = 1, . . . , NT . (4)

This equation is “inverted” for τ̄ using the CoSaMP algorithm [4] as
described in Section II-B.

B. CoSaMP for EM Inverse Scattering Problem

In this work, the CoSaMP algorithm [4] is used to solve (4) for
sparse τ̄ as described next. First, (4) is expressed as an optimization
problem

τ̄ = min
τ̄

‖τ̄‖0 s.t. ‖Ēmeas − H̄ τ̄‖2
2 ≤ �. (5)

Here, Ēmeas ≈ Ēsca + η̄, where η̄ represents the additive white
Gaussian noise, and Ēsca and H̄ are obtained by, respectively,
cascading Ēsca

i and H̄i for all i = 1, . . . , NT.
For the CoSaMP algorithm to converge, the scattering matrix H̄ has

to satisfy the RIP [4]. This condition states that for any vector ȳ there
should be δ ∈ (0, 1), such that (1 − δ)‖ȳ‖2

2 ≤ ‖H̄ ȳ‖2
2 ≤ (1 + δ)‖ȳ‖2

2
holds. The largest value of δ that satisfies the RIP is known as the
restricted isometric constant (RIC). For any system that satisfies the
RIP with RIC value δr , the following condition holds [4]:√

1 − δr ≤ σ(H̄)min ≤ σ(H̄)max ≤ √
1 + δr . (6)

Here, σ(H̄)min and σ(H̄)min are the largest and smallest singular
values of H̄ . For the EM inverse scattering problem, the lower bound
in (6) is not satisfied since H̄ is ill-conditioned with σ(H̄)min → 0,
which enforces δr → 1, and consequently results in violation of the
RIP. To alleviate this problem and enable the use of CoSaMP in
solving the optimization problem (5), the data misfit ||Ēmeas − H̄ τ̄ ||
is replaced with its Tikhonov-regularized version as

τ̄ = min
τ̄

‖τ̄‖0 s.t. ‖ ˜̄Emeas − H̄λτ̄‖2
2 ≤ �. (7)

Here, ˜̄Emeas = H̄† Ēmeas, H̄λ = H̄† H̄ + λ ¯̄I , H̄† is the complex
conjugate of H̄ , and λ is a positive real constant. Note that (7) can
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also be written as

τ̄ = min
τ̄

‖τ̄‖0 s.t. ‖ ˜̄Emeas − H̄† H̄ τ̄‖2
2 + λ2‖τ̄‖2

2 ≤ �. (8)

The form of the optimization problem provided in (8) clearly shows
that it is not only constrained by the sparsity requirement but also
regularized using the �2-norm of the solution weighted with λ2.
Note that σ(H̄λ) = σ(H̄† H̄) + λ, and since H̄† H̄ is ill-conditioned
with σ(H̄† H̄)min → 0, σ(H̄λ)min → λ. Consequently, since λ is
a positive real constant, the lower bound of the RIP can now be
satisfied with δr ∈ (0, 1).

The CoSaMP algorithm is applied to the optimization problem (8)
to yield a sparse solution. The steps of this algorithm read:

Step 1 : initialize r̄ (0) = Ēmeas, n = 0, k, λ

Step 2 : repeat

Step 2.1 : n = n + 1

Step 2.2 : ȳ(n) = H̄†r̄ (n−1)

Step 2.3 : �(n) = supp2k(|ȳ(n)|)
Step 2.4 : F(n) = �(n) ∪ (n)

Step 2.5 : solve
(
H̄†

:,F (n) H̄:,F (n) + λ Ī
)
s̄(n) = ˜̄Emeas

Step 2.6 : (n) = suppk(|s̄(n)|), τ̄
(n)
(n) = s̄(n), τ̄

(n)


(n)
c

= 0̄

Step 2.7 : r̄ (n) = Ēmeas − H̄ τ̄ (n)

At Step 1, several parameters are initialized. The number of nonzero
entries in τ̄ is denoted as k and predicted by providing Ēmeas to
an ANN trained as described in Section II-C. As explained above,
the parameter λ is primarily used to ensure that the RIP is satisfied.
But it also smoothens the high frequency components since it acts as
a Tikhonov-type regularizer. Therefore, it is selected heuristically to
increase the robustness of the solution to noise while maintaining its
sharpness within the support set of the scatterer (see below). At Step
2.2 the residual r̄ (n−1) from the last iteration is projected onto the
model subspace to determine which components of the unknown
model are yet to be determined. At Step 2.3, function suppL (.)

function choses indices of the largest L entries of its input vector.
As a result, index/support set �(n) stores 2k column-indices from
H̄ which contribute maximally toward the projection at Step 2.2.
At Step 2.4, the newly identified support set �(n) is unified with
the final support set (n) from Step 2.6 (of the previous iteration) to
eliminate any repetitions in the support elements. At Step 2.5, s̄(n) is
computed by solving a least squares problem over the merged support
set F(n). Note that H̄λ

:,F (n) = H̄†
:,F (n) H̄:,F (n) + λ Ī contain only the

columns of H̄ whose indices are in the merged support set F(n). This
significantly reduces the computational cost in contrast to solving the
least squares problem involving the “whole” matrix H̄ . At Step 2.6,
support set (n) stores the indices of the largest k entries of |s̄(n)|.
These are stored in the correct entries of τ̄ (n) while its remaining
entries are set to zero. Finally, at Step 2.7, r̄ (n) is updated. The algo-
rithm is set to terminate if the residual between successive iterations
does not change significantly, i.e., ||r̄ (n) − r̄ (n−1)||/||r̄ (n) || ≤ 10−6.

C. Sparsity Estimation

Greedy algorithms (including CoSaMP) are very efficient in
reconstructing sparse signals however, their reconstruction accuracy
degrades if the number of nonzero elements (denoted as k in
Section II-B) is not known a priori. Unfortunately, this is often
the case for a typical EM inverse scattering problem. In this work,
an ANN, which is constructed, trained, and tested as described below,
is used to predict k. The value of this prediction is denoted by k̂.

Fig. 2. (a) ANN used to estimate the sparsity level k. (b) Convergence of
the loss function for ANN-1 on T1. (c) Normalized probability histogram of
|k−k̂| obtained by ANN-1 over S1. (d) kmin versus |k−k̂| over S1 for ANN-1.
(e) kmin versus |k − k̂| over S2 and S3 for ANN-1. (f) Normalized probability
histogram of |k − k̂| obtained by ANN-2, ANN-3 and ANN-4 (trained on T2)
over S4. (g) |k − k̂| versus the frequency of a test scenario for ANN-1.

The ANN used here is a simple two-layer feedforward perceptron
network [31]. As shown in Fig. 2(a), the two hidden layers consist
of 2048 and 64 neurons. “Rectified linear unit (ReLU)” is the
activation function applied to the outputs of each layer [31], [32].
The training step minimizes a loss function that is defined as the
mean squared error (MSE) between 1) k̂ and k (both of which are
normalized with N) and 2) the true and estimated contrast level.
Only homogenous scatterers are used to train the ANN, i.e., contrast
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profile has the same value for all elements that represent the scatterer.
This value is referred to as “contrast value” in the rest of the text.
Note that the contrast level is not the reconstructed image. It is
estimated at the ANN output and is used only to train the ANN
better, which helps in producing a more accurate k̂. This information
is not used by the CoSaMP algorithm to reconstruct the contrast
profile. The optimization algorithm is “RMSprop” with a learning
rate of 0.001 and default momentum of 0.0 [32].

This ANN directly accepts the scattered electric field mea-
sured/sampled at the receiver locations (together with added noise)
at its input layer. In all training scenarios, the frequency of the
transmitters f = 100 MHz and A 2-D volume integral equation
solver (for TMz fields) [13], which uses the discretization scheme
described by (2) in Section II-A, is used to compute the scattered
field samples at the receiver locations. Then, 25 dB of Gaussian
noise is added to these samples to generate a set of measurements.
Four different ANNs are generated. For the first ANN, ANN-1,
a total of 14 450 scattering scenarios including uniformly distributed
scatterers 1) of different shapes, in particular, circular rings with
random radii, single and double cylinders with random radii, and with
varied separation distance; 2) with contrast level selected from set
{0.2, 0.4, 0.6, 0.8}; and 3) with varying total number of discretization
elements N ∈ {784, 3136, 12 544}, are created. A randomly selected
70% of this set is used to train the ANN, and the remaining 30% is
used to test it. These training and test sets are denoted by T1 and S1,
respectively. For ANN-1, NT = 32 and NR = 32.

Fig. 2(b) plots the convergence of the loss function for ANN-1 on
T1. Even though the contrast level is not used in the reconstruction
by the CoSaMP algorithm, for the sake of completeness, the mean
and variance of the error in the contrast level estimated by ANN-
1 in S1, are provided here: 0.088 and 0.007. Fig. 2(c) shows the
normalized probability histogram of the difference |k − k̂| obtained
over S1. It is observed that for 90% of the test cases |k − k̂| = 0 and
the maximum value of |k − k̂| is 3, which occurs for less than 1% of
the test cases in S1. The histogram in Fig. 2(c) presents only |k − k̂|
without providing any information about the actual value of k. This
figure is complemented by Fig. 2(d) and (e) that plots kmin versus
|k − k̂|. Here, kmin is the smallest number of nonzero elements in the
investigation domains of the test cases that produce the given value
of |k − k̂|. For example, in Fig. 2(d), for |k − k̂| = 1, kmin = 11,
which means that the largest relative error is |k − k̂|/kmin = 9%, and
for |k − k̂| = 3, kmin = 116 and the largest relative error is 2.5%.

Two more test sets are generated to demonstrate the accuracy of
ANN-1. Test set S2 is created by selecting the scattering scenarios
with N = 784 from S1 and changing their contrast level in {0.3, 0.7}.
Note that these contrast levels are not used in T1 which is used to
train ANN-1. Test set S3 is created using Austria-like profiles [33]
(also see Section III-C), which do not exist in T1. S3 includes a total
of 400 scattering scenarios where the scatterers include 1) a circular
ring with constant radius and the two outer cylinders rotated around
for 360◦ in steps of 1◦ (resulting in 360 examples) and 2) circular
rings with varied radii and outer cylinders rotated in steps of 90◦
(resulting in 40 examples). The contrast level of all scatterers is set
to 0.2 and N ∈ {3136, 12 544}. The maximum value of |k − k̂| is
3 overall test examples in S2 and S3. Fig. 2(d) plots kmin versus
|k − k̂| for both sets demonstrating the performance of ANN-1 for
predicting the sparsity level of Austria-like profiles and when the
test scatterers have contrast levels different from those of the training
scatterers.

For ANN-2, ANN-3, and ANN-4, {NT, NR} = {16, 16}, {8, 8},
and {4, 4}, respectively. All three ANNs are trained on set T2 which
is created by selecting the scattering scenarios with contrast level
0.4 and N = 3136 from T1, and they are tested on set S4 which is

Fig. 3. (a) Investigation domain τ̄ ref and transmitter-receiver configuration
for two closely spaced point like targets. (b) τ̄ reconstructed using CoSaMP
with 30 dB noise in Ēmeas. (c) err in τ̄ reconstructed using CoSaMP and
FTB-OMP versus six different levels of noise in Ēmeas.

created from S1 in the same way. Fig. 2(e) shows the three normalized
probability histograms of the difference |k − k̂| obtained over S4
using ANN-2, ANN-3, and ANN-4. The figure shows that the ANN
is accurate in predicting k̂ even when NT and NR are reduced to 4.

One last test is carried out to demonstrate the dependence of the
prediction accuracy on the frequency. A test case with N = 12 544,
k = 288, and contrast level of 0.4 is selected from S1. ANN-1 (which
is trained at 100 MHz) is used to compute k̂ while the frequency of the
test scattering scenario is changed from 80 to 120 MHz. Fig. 2(f) plots
|k−k̂| versus the frequency. The figure shows that the prediction accu-
racy deteriorates at higher frequencies but ANNs can still be used to
provide k for the CoSaMP algorithm at the frequencies that are closer
to the frequency at which they are trained at [see Figs. 4(d) and 5(d)].

III. NUMERICAL RESULTS

This section demonstrates the accuracy and efficiency of the pro-
posed scheme via numerical experiments. In all experiments, τ ref (r)
and {τ̄ ref }n = τ ref (rn), n = 1, . . . , N are the actual contrast and
its samples, respectively. A 2-D volume integral equation solver (for
TMz fields) [13], which the discretization described in Section II-A is
used to compute Ēsca from τ̄ ref , then Ēmeas is generated by adding
Gaussian noise to Ēsca. Unless otherwise stated, the SNR for this
noise is 25 dB and NT = NR = 32 and f = 100 MHz in all
experiments. The quality of reconstruction is measured using

err = ‖τ̄ − τ̄ ref‖2/‖τ̄ ref‖2 (9)

where τ̄ stores the samples of the reconstructed contrast.

A. Closely Spaced Point Like Targets

The investigation domain τ̄ ref with N = 1369 and k = 4 and
the transmitter-receiver configuration with NT = 30, NR = 50,
and f = 300 MHz are shown in Fig. 3(a). Note that this example
is taken from [12], where the FTB-OMP algorithm is introduced.
Twelve reconstructions are carried out using CoSaMP and FTB-OMP
for six different SNR values of the noise in Ēmeas. Fig. 3(c) plots
err versus the SNR value. It is clear from the figure that CoSaMP
is more accurate than FTB-OMP over the whole range of SNR
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Fig. 4. (a) Investigation domain τ̄ ref and transmitter-receiver configuration
for two closely spaced cylinders. τ̄ reconstructed using (b) CoSaMP with k̂ =
k (as estimated by ANN-1) and (c) Born approximation with soft-thresholding.
(d) err in τ̄ reconstructed using CoSaMP versus different values of k̂. (e) err
in τ̄ reconstructed using CoSaMP with k̂ = k (as estimated by ANN-4, ANN-
3, ANN-2, and ANN-1) versus NT × NR.

values considered for this example. Fig. 3(b) shows the reconstruction
obtained using CoSaMP with 30 dB noise in Ēmeas. Note that, for
this example, k is not predicted using an ANN, instead its actual
value is provided to CoSaMP.

B. Closely Spaced Cylinders

The investigation domain τ̄ ref with N = 3136 and k = 72
is shown in Fig. 4(a). ANN-1 estimates k exactly, i.e., k̂ = k.
Fig. 4(b) and (c) shows reconstructions obtained using CoSaMP
and the Born approximation with soft thresholding [19], respectively.
Clearly, the image produced by CoSaMP is sharper and more accurate
with err = 28%. It is discussed in Section II-C that the maximum
value of |k̂ − k| for all test examples is 3 (even though for this
specific example k̂ = k). Therefore, CoSaMP is executed with
k̄ ∈ {k −3, k −2 . . . k +2, k +3} just to demonstrate the effect of k̄ on

Fig. 5. (a) Investigation domain τ̄ ref and transmitter-receiver configuration
for Austria. τ̄ reconstructed using (b) CoSaMP with k̂ = k (as estimated
by ANN-1) and (c) Born approximation with soft-thresholding. (d) err in τ̄
reconstructed using CoSaMP versus different values of k̂.

the accuracy of reconstruction. As expected, as shown in Fig. 4(d),
the accuracy is highest when k̂ = k.

Next, the effect of using smaller NT and NR on the accuracy of
the solution is demonstrated. The reconstruction of the investigation
domain described above is carried out for {NT, NR} = {16, 16},
{8, 8}, and {4, 4} (in addition to {NT, NR} = {32, 32} case above).
The transmitters and receivers surround the investigation domain. Just
like ANN-1, ANN-2, ANN-3, and ANN-4 estimate k exactly for these
three configurations, respectively. Fig. 4(e) plots the reconstruction
error versus NT × NR. The figure shows that the accuracy of
reconstruction degrades significantly for NT = 4 and NR = 4. This
demonstrates that the CoSaMP algorithm might fail to achieve a good
solution when the number of measurements is too small (even though
the ANN predicts the exact k).

C. Austria

The third example is the well-known Austria profile [33]. The
investigation domain τ̄ ref with N = 784 and k = 66 is shown
in Fig. 5(a). ANN-1 estimates k exactly, i.e., k̂ = k. Reconstructions
obtained using CoSaMP and the Born approximation with soft thresh-
olding [19], are shown in Fig. 5(b) and (c), respectively. CoSaMP is
more accurate with err = 43%. Similar to the previous example,
just to demonstrate the effect of k̂ on the accuracy of reconstruction,
CoSaMP is executed with k̄ ∈ {k−4, k−3 . . . k+3, k+4} (even though
the ANN predicts k̂ = k) and Fig. 5(d) shows that reconstruction
accuracy degrades as |k̂ − k| increases.
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Fig. 6. (a) Investigation domain τ̄ ref and transmitter-receiver configuration
for L-shaped object. (b) τ̄ reconstructed using CoSaMP.

D. L-Shaped Object

The last example is an L-shaped object. The investigation domain
τ̄ ref with N = 961 and k = 65 is shown in Fig. 6(a). CoSaMP
reconstructs this object with err = 31.6% as shown in Fig. 6(b).

IV. CONCLUSION

A greedy algorithm is used together with a simple ANN for effi-
cient and accurate EM imaging of 2-D sparse investigation domains.
To enable the application of CoSaMP to solving the EM inverse
scattering problem 1) a simple ANN is used to predict the number
of nonzero contrast samples in the investigation domain and 2) a
constant is added to the diagonal entries of the scattering matrix
(resulting in a Tikhonov-type regularization), which ensures that the
RIP condition is satisfied. The resulting EM inversion scheme is
computationally efficient since it calls for the solution of a smaller
least squares problem on a reduced set determined by the number
of nonzero contrast samples. Numerical results, which demonstrate
that the proposed scheme produces more accurate and sharper images
than Born approximation with soft thresholding, are provided.
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