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Accurate Statistical Model of Radiation Patterns in
Analog Beamforming Including Random Error,
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Abstract— Analog beamforming technology is being used to
overcome various technical drawbacks of mm-wave wireless com-
munications systems. However, the errors caused by circuit imple-
mentations, quantized control, and imperfect isolation between
antenna elements result in radiation pattern (RP) distortion and
performance deterioration. In particular, the quantization error
and mutual coupling cause the active reflection coefficient (ARC)
of each antenna element to vary with respect to the main beam
direction, resulting in statistical behavior changes depending on
steering angles. In this article, we derive the statistical behavior
of RPs with all those dominant errors taken into account. The
analysis reveals that Beckmann distribution offers the exact
solution for the cumulative distribution of the sidelobe level
(SLL), which is very consistent with a Monte Carlo simulation
including the ARC. In addition, the Rician distribution reflecting
the three errors exhibits overall good accuracy, with inherent
deviation from the Monte Carlo simulation results at certain
steering angles due to the approximation of uncorrelated RPs and
identical variances that are not valid in real antenna arrays. Our
analysis also indicates that, to define the maximum probability
of exceeding a certain SLL, the variance and correlation should
be considered along with the mean of the RPs.

Index Terms— Antenna radiation patterns (RPs), error
analysis, mutual coupling, random noise.

I. INTRODUCTION

W IRELESS data traffic is exponentially increasing day
by day. To accommodate this trend and meet the

demand for larger data capacity, fifth-generation (5G) mobile
communications at mm-wave frequencies have been devel-
oped, where rich spectral resources are available [1]. The
analog beamforming scheme made the 5G system a reality
by overcoming the drawbacks arising from mm-waveband
operation, such as limited signal to noise ratios and high
atmospheric attenuation loss. However, in analog beamform-
ing, radiation pattern (RP) distortion cannot be avoided
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because of implementation errors, quantized control, and
imperfect isolation between antenna elements. The sidelobe
level (SLL) rises and, therefore, interference due to radiation
transmitted to or received from undesired directions degrades
total system performance. If the implementation errors could
be precisely measured and characterized, we would be able
to completely compensate for the RP distortion [2]–[4].
Unfortunately, considering the mass production of silicon-
based analog beamforming transceivers for 5G and car radar
systems [5], it is often impractical to measure and calibrate
all manufactured transceivers. Therefore, a precise statistical
analysis tool is necessary. The purpose of this article is to
estimate the effects of random error, quantization error, and
mutual coupling on the system performance, especially the
RP. Once we have accurate knowledge about the major origins
of RP distortion, many costly and time-consuming calibration
processes can be omitted.

Random and quantization errors have mainly been consid-
ered in analyzing the statistical behavior of the RP and SLL.
Ruze [6] proved that the RP follows the Rician distribution
function under the random error condition. The study was
extended to estimate the probability function of the peak SLL
and analyze system performance [7]. In addition, to analyze
the adverse effects of a digitally controlled phase shifter, phase
quantization error was modeled as a uniform random process
and the RP distribution was approximated with the Rician
function as well [8]. However, since the variances of the real
and imaginary parts of the RP were assumed to be equal and
independent for the Rician distribution, these studies would
underestimate RP distortion. In [9], it was shown that the
Beckmann distribution provides a more accurate analysis, but
only the random error was considered.

The two other dominant factors causing RP distortion and
determining the statistical behavior of the SLL are quantization
error and mutual coupling [10]. The quantization error that
arises from the discrete nature of digitally controlled attenua-
tors and phase shifters is strongly coupled to the steering angle
and beam shaping algorithm. It should, therefore, be modeled
as a deterministic variable in a specific beam direction instead
of as a uniform random process [11], [12]. Mutual coupling
is an interchannel effect by which signals fed to each antenna
couple with each other. The input impedance of each antenna
element, namely the active reflection coefficient (ARC), can
change when the excitation of adjacent element varies. The
ARC varies depending on the excitation amplitudes and phases
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Fig. 1. Analog phased array architecture and the causes of RP distortion.

for antenna elements [13], [14], causing further distortion of
the RPs [3], [15].

In this article, we derive two statistical behavior functions
of RPs using random Gaussian errors, the quantization step
in amplitude and phase, and the mutual coupling represented
by S-parameters. The exact solution based on the Beckmann
distribution function offers very good agreement with Monte
Carlo simulation results regardless of the steering directions
and observation angles, such as the azimuth and elevation.
Assuming the real and imaginary components of RPs are
uncorrelated and possess identical variance, the exact solution
can be approximated in the Rician function. However, unlike
in prior work, the approximate solution represents the effect of
the quantized phase control and the mutual coupling between
antenna elements and provides the probability distribution of
the SLL as a function of the steering angle with reasonable
overall accuracy. In addition, the developed solutions reveal
that the maximum probability of the SLL’s exceeding a certain
level will not always be given at the peak sidelobe of the RPs’
mean. For the interference analysis, the variance of the RPs
must be taken into account as well.

This article is organized as follows. Section II shows how
we model the random errors, quantization errors, and mutual
coupling. In Section III, the distorted RP due to these three
factors is mathematically modeled, followed by the statistical
derivation of parameters such as the mean and variance in
Section IV. In Section V, we derive the exact and approxi-
mate probability distribution function (PDF) and cumulative
distribution function (CDF) solutions based on Beckmann and
Rician distributions and compare the solutions with Monte
Carlo simulation results for verification. Finally, we conclude
this article in Section VI.

II. CAUSE OF RP DISTORTION

As illustrated in Fig. 1, an analog phased array antenna for
5G consists of digitally controlled phase shifters and attenua-
tors, amplifiers, antennas, and feed networks. The array system
suffers from three major errors: random error, quantization
error, and mutual coupling [6], [7], [14], [16].

Consider a rectangular planar array with the elements
arranged on the xy plane, as shown in Fig. 2. In the ideal
case, the relationship between antenna aperture voltages Vmn

and complex weights Amn for the mnth element of M × N
planar array can be modeled as

Vmn = αVant Amn (1)

Fig. 2. M × N p lanar array on rectangular grid with element spacing dx in
the x-direction and dy in the y-direction.

where Vant is the common transmitted or received signal of
the analog beamforming system and antenna element index,
m = 1, . . . , M , n = 1, . . . , N . α is a complex constant
representing the transfer function of the errorless RF chains,
excluding the phase shifter and attenuator. For beam steering
in the direction (θ0, φ0), in the case with no error, one sets the
phase shifter to satisfy � Am+1,n+1 − � Amn = −kdx sin θ0

cos φ0 − kdy sin θ0sin φ0, where k, dx , and dy are the
wavenumber, the distance between adjacent antenna elements
arrayed in the x-direction, and the distance between adjacent
antenna elements arrayed in the y-direction, respectively. The
amplitude of Amn is determined depending on the amplitude
tapering. In this article, Dolph–Chebyshev window that is
one of the popular amplitude tapering is used for sidelobe
suppression. In addition, Amn is normalized to make the
maximum level of the RP unity, as was done in previous
work [6], [7], [9]. For simplicity, we assume Vant and α are
equal to 1. The relative amplitude error eA

mn and phase error eP
mn

can be added to (1) as follows [6], [7]:

Vmn = er Amn = (
1 + eA

mn

)
e jeP

mn · Amn. (2)

A. Random Error

The performance of different channels of mass-produced
radio frequency (RF) transceivers is not identical because of
implementation errors associated with, for instance, the manu-
facturing tolerance of semiconductor devices, packaging, and
antenna feeding networks. The doping concentration, thickness
of silicon dioxide, graininess of polysilicon, and electrical
characteristics of package wiring structures are not constant
throughout the manufacturing process [17]. The gain and
phase errors of each RF channel usually exhibit a Gaussian
distribution characterized by its mean and standard devia-
tion [18], [19]. For example, a recent CMOS phased-array
mm-wave transceiver showed 0.8 dB and 6◦ standard deviation
of gain and phase errors between channels, respectively [20].
Then, antenna aperture voltages distorted by the random error
for the mnth element, V R

mn , can be modeled as

V R
mn = AmneR

mn = Amn
(
1 + δA

mn

)
e jδP

mn (3)

where Amn is a normalized ideal complex weight, and δA
mn and

δP
mn are amplitude and phase random variables, respectively,
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which have a zero mean Gaussian distribution for the mnth
antenna element.

B. Quantization Error

The quantization error arises from the discrete nature of
digitally controlled units, such as variable gain amplifiers
or attenuators and phase shifters. The roundoff error occurs
when a continuous random variable is converted to a discrete
variable. If the quantized control step is not fine enough,
the RP may be distorted [21].

If the least significant bit (LSB) of an attenuator and phase
shifter is

LSBA(dB) = β (4)

LSBP(radians) = 2π

2N p
(5)

where β is a constant and Np is the number of phase control
bits, and the quantized complex excitation weight AQ

mn will be

20×log10

(∣∣AQ
mn

∣∣) = LSBA×round

(
20 × log10(|Amn|)

LSBA

)
(6)

� AQ
mn(radians) = LSBP × round

( � Amn

LSBP

)
(7)

where round (B) returns a rounded decimal number, |B| is the
absolute value of complex value B , and � B is the phase of
complex value B . Then, the antenna aperture voltages distorted
by the quantization error for the mnth element, V Q

mn, can be
similarly modeled as

V Q
mn = AmneQ

mn = Amn
(
1 + �A

mn

)
e j�P

mn (8)

where �A
mn and �P

mn are the amplitude and phase quantized
errors, given below by using (6) and (7)

�A
mn =

∣∣AQ
mn

∣∣
|Amn| − 1 (9)

�P
mn = � AQ

mn − � Amn . (10)

C. Mutual Coupling and Mismatch

Random and quantization errors occur in each channel
independently. In contrast, mutual coupling is an interchannel
effect caused by the imperfect isolation between antenna ele-
ments. In general, mutual coupling is modeled as an N-by-N
scattering matrix for an N-element linear array [3]. Similarly,
Smn,pq can be used to represent the coupling between the mnth
element and pqth element of an M × N planar array, m =
1, . . . , M, n = 1, . . . , N , p = 1, . . . , M , and q = 1, . . . , N .
Smn,pq (m = p and n = q) is the reflection coefficient of the
mnth element. Smn,pq (m �= p or n �= q) is the mutual coupling
between an mnth element and pqth element. The magnitude
and phase of elements Smn,pq(m �= p or n �= q) strongly
depend on the physical properties of array antennas, such as
the dielectric substrate thickness, the type of antenna element,
antenna cover or radome, and the distance between adjacent
antennas [22]. Then, antenna aperture voltages distorted by

the mutual coupling and impedance mismatching for the mnth
element, V MC

mn , will be given as

V MC
mn =

M∑
p=1

N∑
q=1

A pqCmn,pq (11)

where Cmn,pq represents the coupling between the mn element
and pq element, which is defined as Cmn,pq = I (mn, pq) +
Smn,pq , where I (mn, pq) = 1 for m = p and n = q;
otherwise I (mn, pq) = 0. Equation (11) is an extended
equation for mutual coupling and a planar array from a
linear array [23], [24]. As can be seen in (11), the complex
weights applied to the antennas are mixed by mutual cou-
pling. Therefore, even if identical weights are applied to all
antennas for broadside radiation, mutual coupling will distort
the antenna aperture voltage at the edge antenna elements,
and the RP will be distorted a little. In beam steering in a
certain direction, the amplitude and phase errors due to mutual
coupling will be different at each antenna element and vary as
the steering angle changes. It is worth noting that we assumed
that element aperture currents do not change in shape and
thus the normalized element pattern does not change for each
antenna element, which is a reasonable approximation for large
antenna arrays or moderate-size ones but with dummy patterns.

D. Distorted Aperture Voltage

The aperture voltage distorted by the random error, quan-
tization error, and mutual coupling, V D

mn , can be expressed as
follows using (3), (8), and (11):

V D
mn =

M∑
p=1

N∑
q=1

A pqeR
pqeQ

pqCmn,pq

=
M∑

p=1

N∑
q=1

A pqCmn,pq(1 + δA
pq)

(
1 + �A

pq

)
e j(δP

pq+�P
pq).

(12)

III. MATHEMATICAL MODEL OF ARRAY PATTERN

The errors and mutual coupling mentioned above result in
RP distortion. In this section, the array RP under the errors
and mutual coupling is expressed mathematically.

In general, the ideal RP of a phased-array antenna,
F(θ , φ), is given as the product of a single element radiation
factor f (θ , φ) and the array pattern of isotropic point sources
located on the xy plane of a planar array [25]

F(θ, φ) = f (θ, φ) ·
M∑

m=1

N∑
n=1

Vmne j (mu+nv) (13)

u = kdx cos φ sin θ, v = kdy sin φ sin θ (14)

where θ and φ are the elevation and azimuth angle. Vmn

is the antenna aperture voltage that is applied to the mnth
element. If we assume that a planar array is composed of
homogeneous and isotropic ( f (θ , φ) = 1) elements, the RP
of an MN-element planar array can be simplified as

F(θ, φ) =
M∑

m=1

N∑
n=1

Vmne j (mu+nv). (15)
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From (13) and (15), we can find the distorted RP Fd(θ)
under the random and quantization errors and mutual coupling.
Here, we assume that the random and quantization errors at
each channel are independent and uncorrelated to each other

Fd(θ, φ)

=
M∑

m=1

N∑
n=1

V D
mne j (mu+nv)

=
M∑

m=1

N∑
n=1

⎛
⎝ M∑

p=1

N∑
q=1

A pqCmn,pq
(
1+δA

pq

)(
1+�A

pq

)
e j(δP

pq+�P
pq)

⎞
⎠

× e j (mu+nv). (16)

We assume both random variables follow the Gaussian distri-
bution with zero-means, shown as follows:

δA
mn ∼ N (

0, σ 2
a

)
(17)

δP
mn ∼ N (

0, σ 2
p

)
(18)

where σ 2
a and σ 2

p are the variances of the amplitude and phase
random errors.

Fig. 3 illustrates a hundred examples of possible distorted
RPs from an 8×8 planar array directed to (θ0 = 30◦, φ0 = 0◦)
with a −25 dB Dolph–Chebyshev window and half-lambda
antenna spacing, along with the ideal RP with no errors. As can
be seen, the RP fluctuates a lot due to the errors, which should
be investigated by statistical analysis.

IV. STATISTICAL QUANTITIES

The distorted RP in (16) can be divided into real and
imaginary values, given as follows:

RR P (θ, φ)

= RR P = Re(Fd(θ, φ))

=
M∑

m=1

N∑
n=1

M∑
p=1

N∑
q=1

Re
(
A pqCmn,pq

(
1 + δA

pq

)(
1 + �A

pq

)
× e j(δP

pq+�P
pq)e j (mu+nv)

)
(19)

IR P (θ, φ)

= IR P = Im(Fd(θ, φ))

=
M∑

m=1

N∑
n=1

M∑
p=1

N∑
q=1

Im
(

A pqCmn,pqv(1 + δA
pq

)(
1 + �A

pq

)
× e j(δP

pq+�P
pq)e j (mu+nv)

)
(20)

where Re (B) and Im (B) are real and imaginary values of B .
Here, we first derive the expected values of RR P and IR P ,

their variances, and the covariance between them and then
examine how well the Rician and Beckmann distributions
describe the statistical behavior of the RP under the three
major error conditions by comparing the results with Monte
Carlo simulations.

A. Expected Value

Once we assume a certain beam direction, the effects from
the quantization error and mutual coupling can be considered

Fig. 3. Distorted RPs Fd(θ , 0) of an 8×8 planar array with a −25 dB Dolph–
Chebyshev window due to random error, quantization error, mutual coupling,
and ideal pattern F(θ , 0). For the calculation, we assumed all errors with
the parameters σa = 1.0 dB, σp = 10.0◦ , LSBA = 1.0 dB, LSBP = 11.25◦ ,
|Smm,pq | = −12 dB, and � Smn,pq = 20◦ for |m − p|+|n−q| = 1; |Smn,pq | =
−24 dB and � Smn,pq = −20◦ for |m − p| + |n − q| = 2, |m − p| �= 1, and
|n − q| �= 1; |Smn,pq | = −20 dB and � Smn,pq = −30◦ for |m − p| = 1 and
| n − q| = 1.

as deterministic variables instead of random ones. Thus,
from (19) and (20), the expected values of RR P and IR P , μR

and μI , respectively, can be written as

E[RR P ] = μR

=
M∑

m=1

N∑
n=1

M∑
p=1

N∑
q=1

Re
(

A pqCmn,pqE
[(

1 + δA
pq

)]
E
[
e jδP

pq
]

· (1 + �A
pq)e

j�P
pq e j (mu+nv)

)
(21)

E[IR P ] = μI

=
M∑

m=1

N∑
n=1

M∑
p=1

N∑
q=1

Im
(

A pqCmn,pqE
[(

1 + δA
pq

)]
E
[
e jδP

pq
]

· (1 + �A
pq)e

j�P
pq e j (mu+nv)

)
(22)

where E[B] is the mean of the random variable B . According
to (17), (18), and the Maclaurin series of the exponential
function (A-18), the expected values of (1 + δA

mn) and e jδP
mn

are given as

E
[
1 + δA

mn

] = 1 (23)

E
[
e jδP

mn

]
=

∫ ∞

−∞
e jδP

mn dδP
mn

=
∫ ∞

−∞

(
1 + jδP

mn −
(
δP

mn

)2

2
− j

(
δP

mn

)3

6
+ . . .

)

× dδP
mn = e−σ 2

p/2. (24)

If we substitute (23) and (24) into (21) and (22), μR and μI

can be written as

μR = e−σ 2
p/2 ·

M∑
m=1

N∑
n=1

M∑
p=1

N∑
q=1

Re
(∣∣A pqCmn,pq

(
1 + �A

pq

)∣∣
· e

j
(� Apq +� Cmn,pq+�P

pq

)
e j (mu+nv)

)
(25)
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μI = e−σ 2
p/2 ·

M∑
m=1

N∑
n=1

M∑
p=1

N∑
q=1

Im
(∣∣A pqCmn,pq

(
1 + �A

pq

)∣∣
· e

j
(� Apq+� Cmn,pq +�P

pq

)
e j (mu+nv)

)
. (26)

The magnitude of the RP’s mean, h, can be expressed as

h =
√

μ2
R + μ2

I . (27)

B. Variance

We omit the detailed derivation of the variance for RR P

and IR P , which can be found in the appendix. The variances
of RR P and IR P , σ 2

R and σ 2
I , respectively, are derived as

Var[RR P ] = σ 2
R = A + B (28)

Var[IR P ] = σ 2
I = A − B (29)

where

A = 1

2

(
1 + σ 2

a − e−σ 2
p

)

·
M∑

m=1

N∑
n=1

M∑
a=1

N∑
b=1

M∑
p=1

N∑
q=1

(∣∣∣Cmn,pqCab,pq A2
pq

(
1 + �A

pq

)2
∣∣∣

·e
j
(� Cmn,pq−� Cab,pq

)
e j [(m−a)u+(n−b)v]

)
(30)

B = 1

2

((
1 + σ 2

a

)
e−2σ 2

p − e−σ 2
p

)

·
M∑

m=1

N∑
n=1

M∑
a=1

N∑
b=1

M∑
p=1

N∑
q=1

Re
(∣∣Cmn,pq Cab,pq A2

pq

(
1+�A

pq

)2∣∣
· e j ( � Cmn,pq+� Cab,pq+2·� Apq+2·�P

pq )e j [(m+a)u+(n+b)v]). (31)

As shown in (30) and (31), because of the mutual coupling
terms Cmn,pq (m �= p or n �= q), A and B depend on u
and v, which, as defined in (14), is a function of θ and φ.
Therefore, the variances of RR P and IR P are also a function
of θ and φ. In addition, from (28) and (29), the two variances
are not identical as long as B is not zero, and the difference
(i.e., 2 · B) is a function of θ and φ as well.

Following an approach similar to that in [6], we can define
the average variance σ 2

aver as

σ 2
aver = Var[RR P ] + Var[IR P ]

2
= A. (32)

Again, σ 2
aver is not independent of θ and φ, whereas prior

work assumed that it is. If the mutual coupling is ignorable,
that is if Cmn,pq = 1 (m = p and n = q) and Cmn,pq = 0
(m �= p or n �= q), summation terms in (30) go to zero unless
m = p = a and n = q = b, resulting in constant σ 2

aver with
respect to θ and φ, as prior work assumed. Meanwhile, it is
worth noting that the difference between the two variances
will not be independent of θ and φ even if there is no mutual
coupling. If the mutual coupling is not ignorable, σ 2

aver changes
according to θ and φ. Then, the average variance at certain
θ and φ can be higher than the average variance with no
mutual coupling. If designers are interested in the maximum
probability of exceeding a certain SLL, the probability of SLL
calculating at an angle where h is highest as previous works

did [6], [7], [9] will not always the maximum probability.
In Section VI-B, a statistical analysis of this behavior is
presented.

C. Correlation Coefficient

Correlation coefficient ρRI is mathematically defined as

ρRI = Cov(RR P , IR P )√
Var[RR P ] · √Var[IR P ]

. (33)

The covariance between RR P and IR P Cov(RR P , IR P ) can be
derived as (see appendix for details)

Cov(RR P , IR P )

= E[(RR P − E[RR P ])(IR P − E[IR P ])]

= 1

2

((
1 + 2

σ
a

)
e−2σ 2

p − e−σ 2
p

)

·
M∑

m=1

N∑
n=1

M∑
a=1

N∑
b=1

M∑
p=1

N∑
q=1

Im
(∣∣∣Cmn,pqCab,pq A2

pq

(
1+�A

pq

)2
∣∣∣

· e
j
(� Cmn,pq +� Cab,pq+2·� Apq+2·�P

pq

)
e j [(m+a)u+(n+b)v]

)
. (34)

Unlike in prior work [6], [7], it is clearly shown that RR P

and IR P are correlated and the covariance is also θ and φ
dependent.

The θ and φ dependence of the statistical properties derived
above eventually affects the statistical behavior. The details
will be discussed in Section V and VI with examples.

V. VERIFICATION OF STATISTICAL ANALYSIS

Based on the statistical quantities of RR P and IR P in
Section IV, we derive the exact and approximate PDF and CDF
solutions that are based on Beckmann and Rician distributions.
Using Monte Carlo simulation, we will verify the solutions for
random and quantization errors and mutual coupling effects.
In addition, we will examine how those errors affect the sta-
tistical behavior of the SLL, such as the maximum probability
of the SLL’s exceeding a certain level x0, pmax(x), which is
given as

pmax(x0) =
∫ ∞

x0

PDF(x)dx = 1 − CDF(x0) (35)

where x and x0 are the magnitude of the RP and reference level
for the maximum probability. PDF and CDF are the probability
density function and cumulative distributed function of the RP
magnitude, x .

A. Beckmann and Rician Distribution

Real and imaginary components of the antenna RP are
commonly assumed to follow the Gaussian distribution by
the central limit theorem. Therefore, the magnitude of the
RP can be modeled with Beckmann and Rician distribution
functions [6], [9].

Since the real and imaginary components of the distorted RP
are correlated as shown in (33) and (34), the Beckmann func-
tion provides an exact solution for the statistical behavior of
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the distorted RP, which is defined as [26]

P DFBeck(x) = x

2πσRσI

√
1 − ρ2

RI

∫ 2π

0
e−z

/
(1−ρ2

RI )dθ (36)

with

z = (x cos θ − μR)2

2σ 2
R

+ (x sin θ − μI )
2

2σ 2
I

− ρRI (x cos θ − μR)(x sin θ − μI )

σRσI
(37)

where x is the magnitude of the sum of two Gaussian distri-
butions. The CDF of the Beckmann PDF can be calculated
by

C DFBeck(x) =
∫ x

0
P DFBeck

(
x ′)dx ′. (38)

On the other hand, if we ignore the difference between
the two variances and assume the two Gaussian distributions
are uncorrelated, the magnitude of the distorted RP can be
approximated by the Rician PDF as

P DFRician (x) = x

σ 2
aver

e−(x2+h2)/(2σ 2
aver ) I0

(
xh

σ 2
aver

)
(39)

where I0 is the modified Bessel function of the first kind
with order zero. Using σ 2

aver in (32) and (40) will provide an
approximate solution under the three major errors. The CDF
of the Rician PDF is defined as

C DFRician(x) =
∫ x

0
P DFRician

(
x ′)dx ′. (40)

It is worth noting that the Rician distribution has been
used in previous works [6], [7], but they considered only
random error. In contrast, the approximate solution in this
work includes all three major origins of distortion with σ 2

aver .

B. Verification With Monte Carlo Simulation

To verify the derivations, we compared the calculated CDFs
with the Beckmann and Rician distributions with the results of
Monte Carlo simulation, which was conducted with (16). The
values of the error parameters are listed in Table I. To extract
the realistic mutual coupling parameters at 28.5 GHz, an
8 × 8 uniform rectangular array with patch antenna spac-
ing of half-lambda was designed on a Rogers RT/duroid
5880 substrate with 0.787 mm thickness. Width and length
were 4.23 and 3.2 mm, respectively. A coaxial-fed microstrip
patch antenna was used because coupling occurs only between
antenna elements in this structure. The coupling parameters
were extracted from S-parameters calculated by using Ansoft
HFSS software. For simplicity, we ignored mutual coupling
parameters other than the first- and second-order neighboring
ones. We assumed Smn,pq has the same value for |m− p|+|n−
q| = 1, Smn,pq has the same value for |m− p|+|n−q| = 2 and
|m − p| �= 1, and Smn,pq has the same value for |m − p | = 1
and |n − q| = 1. To maintain the accuracy of the Monte Carlo
simulation, 10 000 RPs were calculated under random and
quantization errors and mutual coupling for several steering
angles in the range from 0◦ to 60◦.

TABLE I

PARAMETERS FOR ANALYSIS

Fig. 4 compares the SLL CDFs of an 8 × 8 planar antenna
array at the angle of the peak sidelobe from the mean of RP
magnitude h defined in (27). As can be seen in Fig. 4(a),
the Beckmann CDFs agree very well with the Monte Carlo
simulations for all three steering angles. This is obviously
because the Beckmann function is the exact solution reflecting
all major errors with no approximation. In contrast, as shown
in Fig. 4(b), the CDF (black line) from prior work that
considered only random error showed a significant difference
from the Monte Carlo results and never changed with the beam
steering. This can be understood from the mean and variance
in (25), (26), and (32), which become independent of the
steering angle when quantization error and mutual coupling
are ignored. For small and low-cost phased array antennas
with large mutual coupling and coarse digital control bits,
the solution in [6] considering only the random implementa-
tion error is not good enough for accurate analysis. Ultimately,
the Beckmann PDF considering all the errors and mutual
coupling in this work will serve as an important basis of
techniques for accurate phased array antenna calibration.

For the other Rician distribution in this work from (40), the
approximated solution exhibits reasonable accuracy overall,
with little deviation from the Monte Carlo simulation results at
certain steering angles, as shown in Fig. 4(b). When steering
angles θ0 and φ0 are both 30◦, the maximum difference in
the SLL between the two at the same cumulative proba-
bility is approximately 2.9 dB. Since we assumed that the
real and imaginary components of the RP are independent,
and that variances are identical to those averaged for the
Rician function, such discrepancy cannot be avoided when the
antenna exhibits unignorable correlation between the real and
imaginary RPs. However, when the steering angles θ0 and φ0

are both 0◦, the Rician CDF agrees well with the Monte Carlo
result.

VI. STATISTICAL ANALYSIS OF THE ARRAY RP

So far, we verified that the Beckmann distribution agrees
with the Monte Carlo result and that the Rician distribution
also fits the Monte Carlo result with deviation at certain



3892 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 69, NO. 7, JULY 2021

Fig. 4. SLL cumulative distribution of 8 × 8 planar antenna array. Each
distribution was calculated at the position where h is maximum. (a) Beckmann
distribution versus Monte Carlo simulation result for three steering angles.
(b) Rician distribution versus Monte Carlo simulation result for three steering
angles, along with Ruze’s work for comparison [6].

steering angles. In this section, the effect of the steering angle
on SLL probability is explained. Next, the maximum proba-
bility of exceeding a certain RP level is presented for specific
steering angles. For simplicity and clarity, an eight-element
uniform linear array located on the y-axis with antenna spacing
of half-lambda is assumed and only θ is used to represent
the RP of the array (φ = π /2). The parameters in Table I
were used again for simulation. To extract mutual coupling
parameters, a 1×8 linear dipole array with relatively large cou-
pling between antennas was designed on a Rogers RT/duroid
5880 substrate with 0.508 mm thickness. Total dipole length
was 0.39 cm, and spacing between adjacent antennas was a
half-wavelength of 28.5 GHz.

A. Steering Effect

The variances of the RP depend on the steering angle.
Fig. 5 shows how the variances for real and imaginary
RP components vary with respect to the steering angle
from (28) and (29), along with the CDFs from the two
solutions based on the Beckmann and Rician functions at
two steering angles with small separation. At θ0 = −9◦,

Fig. 5. (a) Variances of real and imaginary RP as steering angle changes.
(b) Rician versus Beckmann distributions when steering angles θ0 are
−9◦ and −8◦.

the Beckmann distribution and Rician distribution show fairly
good agreement with each other.

However, when we shift the steering direction to θ0 = −8◦,
the difference in the SLL between the two solutions becomes
around 1 dB or more for the CDF ranging from 0.1 to 0.5.
The difference arises from the approximation we made for the
Rician-based solution: the real and imaginary components of
the RP are independent, and the variance is identical to the
average value of their variances. As can be seen in Fig. 5(a),
the two variances fluctuate a lot depending on the steering
angle, and the assumption for the Rician function is not valid
in a wide range of steering angles. In addition, according to
antenna array theory, this behavior depends on random errors,
antenna separation, the number of antennas, and so on. Thus,
even though the approximate solution modeled in the Rician
distribution function shows better accuracy than prior work
due to its reflecting the three major errors, it inherently cannot
estimate all operation conditions for a given antenna array
accurately.

B. Worst CDF of SLL

pmax(x0) is usually estimated at the angle with the highest
sidelobe of the RP mean h. When only random error is
considered, σ 2

aver is derived as a constant with respect to
elevation angle θ . Therefore, it is obvious that the highest
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sidelobe will limit pmax(x0) [6], [7], [27]. However, this is not
always valid when the effects of the quantization error and
mutual coupling are added into this analysis. The parameters
in Table I were used again at, for instance, an 18◦ steering
angle, and the results are shown in Fig. 6. Fig. 6(a) and (b)
shows the mean of RPs and CDFs of the SLL at the four
highest sidelobes with the exact solution in the Beckmann
distribution, where θSL1, θSL2, θSL3, and θSL4 represent the
first, second, third, and fourth peak sidelobe of the RP mean,
respectively. As can be seen in Fig. 6(b), in the region of
the SLL > −18 dB, the CDF at the second sidelobe (SL2)
at θ SL2 is slightly worse than the CDF at the first sidelobe
(SL1) at θSL1. Fig. 6(c) shows pmax(x0 = −12 dB) as a
function of θ . The main lobe area in the gray zone is not
considered in this analysis. As can be seen, pmax values at
θSL1 and θSL2 are approximately 1.3% and 3.9%, respectively.
According to the RP mean, SL2 is estimated to influence the
system performance slightly less than SL1, but the interfering
signal would indeed be coupled at θSL2 through SL2 with
three times larger probability than through SL1. Even worse,
pmax caused by the fourth peak (SL4) at θSL4, whose mean
is around 4 dB smaller than that of SL1, is approximately
2.5%, two times higher than that caused by SL1. These results
can be explained by the variance with respect to the elevation
angle depicted in Fig. 6(d). As can be seen, the variance
of SL4 is approximately 1.5 times larger than that of SL1,
implying the magnitude of SL4 fluctuates in a large range and
exceeds a certain level more frequently than SL1 does. Thus,
in analyzing the statistical interference due to the sidelobes,
variance should be taken into account together with the mean
value.

Here, let us look at the SL2 results in Fig. 6(c) and (d) again.
The variances of real and imaginary RP components are not
equal; therefore, as can be seen in Fig. 6(c), the Rician-based
solution assuming σ 2

R and σ 2
I are equal underestimates the

impact of SL2 by 30% or more in this example. The approx-
imate solution offers reasonable agreement overall, but at the
specific elevation angle where σ 2

R and σ 2
I have large disparity,

one may fail to accurately estimate the system performance.
In Fig. 7, the distribution of the real and imaginary RP

components is graphically visualized from the Monte Carlo
simulation using the parameters in Table I and (16) for the
cases of SL1 and SL2 in Fig. 6. The radius from the origin
represents the SLL, and the mean value of the RP at the
given elevation angle is the radius from the origin to the
blue dot. Fig. 8 shows the correlation between RR P and IR P

from (33). For SL1, σ 2
R and σ 2

I are nearly equal, and RR P

and IR P are not correlated. Thus, the contour profile shown
in Fig. 7(a) occupies the circular area, and the area far from
the origin rarely exceeds the −12 dB bound. On the other
hand, the RP for SL2 shows an elliptical profile that is slightly
tilted 25◦ from the x-axis. Since σ 2

R is larger than σ 2
I , the RP

largely fluctuates along the real axis with the finite correlation
shown in Fig. 8 and often exceeds the reference level of
−12 dB. In Fig. 7(c) and (d), the effect of the variance is
visualized. In the case of SL3 and SL4, though the mean values
of both RPs are comparable, as shown in Fig. 6(a), the variance

Fig. 6. (a) Mean value h of eight-element linear antenna array. (b) Beckmann
distribution calculated at the elevation angles (θSL1, θSL2, θSL3, and θSL4).
(c) Probability pmax(x0 = −12dB) of SLL that is higher than −12 dB.
(d) Variance of RRP and IRP and their average variance.
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Fig. 7. Scatter plots of RRP and IRP at (a) θSL1, (b) θSL2, (c) θSL3, and (d) θSL4.

Fig. 8. Correlation coefficient between real and imaginary RP.

of SL3 is approximately one fourth of the variance of SL4.
As illustrated in Fig. 7(c) and (d), the complex RP for SL4 is
widely spread in the space, while the RP for SL3 is relatively
concentrated in the space below −18 dB with high probability,
which is consistent with the CDF shown in Fig. 6(b). These
diagrams clearly show that the mean of the RP will not provide
a precise interference analysis of an analog beamforming
system. These results most likely arise from the quantization
error and mutual coupling that make the statistical behaviors
of the RPs strongly depend on the main beam direction and
elevation angle.

VII. CONCLUSION

In this article, we investigated distorted RPs and derived
their statistical behavior due to random error, quantization
error, and mutual coupling. From the RPs distorted by the three
errors, statistical parameters were derived. Then, we showed
that the Beckmann distribution provides an exact solution
representing the statistical behavior of RPs with high accu-
racy. Even under the assumption of the Rician distribution,
the approximate solution provided good agreement with Monte
Carlo simulation results and represented important characteris-
tics of the distorted RPs overall, which could not be analyzed
in prior studies. Since the variance of the RP fluctuates a lot
with respect to the beam steering direction, azimuth angle,
and elevation angle, a simple analysis with the mean value is
not good enough for evaluating the interference performance

of an analog beamforming antenna. In particular, the average
variance with mutual coupling at certain θ and φ can be higher
than the average variance with no mutual coupling. In this
case, the maximum probability of exceeding a certain SLL
may not be obtained at the angle of the highest sidelobe in
the mean of the RPs. The maximum probability may be found
from the Beckmann distributions calculated at all side lobes
as the steering angle changes within the scanning range of the
array antenna system. Ultimately, the accurate PDF of the RP
considering all the errors and mutual coupling in this work
will serve as an important basis of techniques for accurate
phased array antenna calibration.

APPENDIX

A. Variance and Correlation Derivation

RP distorted by the three errors is expressed as

Fd(φ) =
M∑

m=1

N∑
n=1

⎛
⎝ M∑

p=1

N∑
q=1

A pqCmn,pq(1 + δA
pq)

× (1 + �A
pq)e

j(δP
pq+�P

pq)

)
e j (mu+nv). (A.1)

From (16), (19), and (20), the distorted RP can be separated
into real and imaginary terms as

Fd = RR P + j IR P . (A.2)

The variance and covariance of the real and imaginary RP can
be calculated from variance (A.3) and pseudo-variance (A.6)

E[|Fd − E[Fd ]|2] = σ 2
R + σ 2

I (A.3)

where

E[(RR P − E[RR P ])2] = σ 2
R (A.4)

E[(IR P − E[IR P ])2] = σ 2
I (A.5)

E[(Fd − E[Fd])2] = σ 2
R − σ 2

I + 2 jσRI (A.6)

where

σRI = E[(RR P − E[RR P ])(IR P − E[IR P ])]. (A.7)
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To summarize the above equations, the variance of each real
and imaginary RP and covariance can be represented by using
(A.3) and (A.6)

σ 2
R = (E[|Fd − E[Fd]|2] + Re(E[(Fd − E[Fd ])2]))

2
(A.8)

σ 2
I = (E[|Fd − E[Fd]|2] − Re(E[(Fd − E[Fd ])2]))

2
(A.9)

σRI = Im(E[(Fd − E[Fd ])2])
2

. (A.10)

We can find the three parameters by deriving the variance and
pseudo-variance of Fd .

To derive the variance of Fd , the expected value of |Fd |2
can be represented as

E
[|Fd |2

]
= E

[
Fd F∗

d

]
= E

⎡
⎣

⎛
⎝ M∑

m=1

N∑
n=1

⎛
⎝ M∑

p=1

N∑
q=1

A pqCmn,pq

·(1 + δA
pq

)(
1 + �A

pq

)
e j(δP

pq+�P
pq)

)
e j (mu+nv)

)

·
(

M∑
a=1

N∑
b=1

(
M∑

c=1

N∑
d=1

AcdCab,cd

·(1 + δA
cd

)(
1 + �A

cd

)
e j(δP

cd+�P
cd)

)
e j (au+bv)

)∗]
.

(A.11)

Because quantization error is static error for a given array
amplitude weight and fixed steering angle, we use V Q

pq instead

of A pq(1 + �A
pq)e

j�P
pq . Equation (A.11) can be expressed

separately for p = c and q = d , p �= c or q �= d as

E
[
Fd F∗

d

]
= A + B (A.12)

A =
M∑

m=1

N∑
n=1

M∑
a=1

N∑
b=1

⎛
⎝ M∑

p=1

N∑
q=1

V Q
pqCmn,pq

(
V Q

pqCab,pq
)∗

· E
[
1 + 2δA

pq + (
δA

pq

)2
]
e j [(m−a)u+(n−b)v]

)
(A.13)

B =
M∑

m=1

N∑
n=1

M∑
a=1

N∑
b=1⎛

⎝ M∑
p=1

N∑
q=1

M∑
c=1,p �=c

N∑
d=1,q �=d

V Q
pqCmn,pq

(
V Q

cd Cab,cd

)∗

· E
[
1+δA

pq+δA
cd +δA

pqδ
A
cd

]·E[
e j (δP

pq−δP
cd )

]
e j [(m−a)u+(n−b)v]

)
.

(A.14)

Because δA
pq, δ

A
cd, δ

P
pq, δ

P
cd are assumed to be independent

Gaussian random variables by (17) and (18), expected values
in (A.13) and (A.14) can be derived as

E
[
1 + 2δA

pq + (
δA

pq

)2
]

= E[1] + 2 · E
[
δA

pq

] + E
[(

δA
pq

)2
]

= 1 + 0 + σ 2
a = 1 + σ 2

a (A.15)

E
[
1 + δA

pq + δA
cd + δA

pqδ
A
cd

]
= E[1] + E

[
δA

pq

] + E
[
δA

cd

] + E
[
δA

pqδ
A
cd

]
= 1 + 0 + 0 + 0 = 1 (A.16)

E
[
e j(δP

pq−δP
cd)

]
=

∫ ∞

−∞

∫ ∞

−∞
e j(δP

pq−δP
cd)dδP

pqdδP
cd

=
∫ ∞

−∞
e jδP

pq dδP
pq ·

∫ ∞

−∞
e− jδP

cd dδP
cd

= E
[
e jδP

pq

]
E
[
e− jδP

cd

]
. (A.17)

By using the Maclaurin series of the exponential function [28],
the expected value of e jδP

pq , e− jδP
cd in (A.17) can be derived

as

ex = 1 + x + x2

2
+ x3

6
+ x4

24
+ · · · (A.18)

E
[
e jδP

pq

]
=

∫ ∞

−∞
e jδP

pq dδP
pq

=
∫ ∞

−∞

(
1 + jδP

pq −
(
δP

pq

)2

2

− j

(
δP

pq

)3

6
+

(
δP

pq

)4

24
+ . . .

)
dδP

pq

= 1 − σ 2
p

2
+ σ 4

p

8
+ · · ·

= 1 +
(

−σ 2
p

2

)
+ 1

2

(
−σ 2

p

2

)2

+ · · ·

= e−σ 2
p/2 (A.19)

E
[
e− jδP

cd

]
= E

[
e jδP

cd

]∗ = e−σ 2
p/2. (A.20)

If we substitute (A.15)–(A-17), (A.19), and (A.20) into (A.13)
and (A.14), (A.12) can be represented as

E
[
Fd F∗

d

]
= (

1 + σ 2
a

) ·
M∑

m=1

N∑
n=1

M∑
a=1

N∑
b=1

M∑
p=1

N∑
q=1

V Q
pqCmn,pq

(
V Q

pqCab,pq
)∗

· e j [(m−a)u+(n−b)v]

+ e−σ 2
p ·

M∑
m=1

N∑
n=1

M∑
a=1

N∑
b=1

M∑
p=1

N∑
q=1

M∑
c=1,p �=c

N∑
d=1,q �=d

V Q
pqCmn,pq

(
V Q

cd Cab,cd

)∗

· e j [(m−a)u+(n−b)v]. (A.21)

By eliminating the condition p �= c or q �= d in the second
summation term of (A.21), (A.21) can be expressed as

E
[
Fd F∗

d

] =
(

1 + σ 2
a − e−σ 2

p

)
·

M∑
m=1

N∑
n=1

M∑
a=1

N∑
b=1

M∑
p=1

N∑
q=1

V Q
pqCmn,pq

(
V Q

pqCab,pq
)∗

· e j [(m−a)u+(n−b)v]

+ e−σ 2
p ·

M∑
m=1

N∑
n=1

M∑
a=1

N∑
b=1
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M∑
p=1

N∑
q=1

M∑
c=1

N∑
d=1

V Q
pqCmn,pq

(
V Q

cd Cab,cd

)∗

· e j [(m−a)u+(n−b)v]. (A.22)

By using (A.1) and (A.19), the expected values of Fd , F∗
d can

be expressed as

E[Fd ] = e−σ 2
p/2 ·

M∑
m=1

N∑
n=1

M∑
p=1

N∑
q=1

V Q
pqCmn,pq e j [mu+nv] (A.23)

E
[
F∗

d

] = e−σ 2
p/2 ·

M∑
a=1

N∑
b=1

M∑
c=1

N∑
d=1

(
V Q

cd Cab,cd

)∗
e− j [au+bv].

(A.24)

By substituting (A.23) and (A.24) into (A.22), (A.22) can be
expressed as

E
[
Fd F∗

d

] =
(

1 + σ 2
a − e−σ 2

p

)

·
M∑

m=1

N∑
n=1

M∑
a=1

N∑
b=1

M∑
p=1

N∑
q=1

V Q
pqCmn,pq

(
V Q

pqCab,pq
)∗

· e j [(m−a)u+(n−b)v] + E[Fd ]E
[
F∗

d

]
. (A.25)

By using (A.3) and (A.25), σ 2
R + σ 2

I can be expressed as

σ 2
R + σ 2

I =
(

1 + 2
σ
a

−e−σ 2
p

)

·
M∑

m=1

N∑
n=1

M∑
a=1

N∑
b=1

M∑
p=1

N∑
q=1

V Q
pqCmn,pq

(
V Q

pqCab,pq
)∗

· e j [(m−a)u+(n−b)v]. (A.26)

To derive pseudo-variance of Fd , the expected value of F2
d

is derived in this case

E
[
F2

d

]
= E

⎡
⎣

⎛
⎝ M∑

m=1

N∑
n=1

⎛
⎝ M∑

p=1

N∑
q=1

A pqCmn,pq

·(1 + δA
pq

)(
1 + �A

pq

)
e j(δP

pq+�P
pq)

)
e j (mu+nv)

)

·
(

M∑
a=1

N∑
b=1

(
M∑

c=1

N∑
d=1

AcdCab,cd

· (1 + δA
cd

)(
1+�A

cd

)
e j(δP

cd+�P
cd)

)
e j (au+bv)

)]
. (A.27)

As derived before, (A.27) can also be expressed for p = c
and q = d , p �= c or q �= d

E
[
F2

d

] = A + B (A.28)

A =
M∑

m=1

N∑
n=1

M∑
a=1

N∑
b=1⎛

⎝ M∑
p=1

N∑
q=1

V Q
pqCmn,pq

(
V Q

pqCab,pq
)

· E
[
1 + 2δA

pq + (
δA

pq

)2
]
E
[
e j2δP

pq

]
e j [(m+a)u+(n+b)v]

)
(A.29)

B =
M∑

m=1

N∑
n=1

M∑
a=1

N∑
b=1⎛

⎝ M∑
p=1

N∑
q=1

M∑
c=1,p �=c

N∑
d=1,q �=d

V Q
pqCmn,pq

(
V Q

cd Cab,cd

)
· E

[
1 + δA

pq + δA
cd + δA

pqδ
A
cd

]
· E

[
e j (δP

pq+δP
cd )

]
e j [(m+a)u+(n+b)v]

⎞
⎠. (A.30)

By using (A.19), expected values in (A.29) and (A.30) can be
derived as

E
[
e j(δP

pq+δP
cd)

]
=

∫ ∞

−∞

∫ ∞

−∞
e j(δP

pq+δP
cd)dδP

pqdδP
cd

= E
[
e jδP

pq

]
· E

[
e jδP

cd

]
= e−σ 2

p (A.31)

E
[
e j2δP

pq

]
=

∫ ∞

−∞
e j2δP

pq dδP
pq

=
∫ ∞

−∞

(
1 + j2δP

pq −
(
2δP

pq

)2

2
− j

(
2δP

pq

)3

6

+
(
2δP

pq

)4

24
+ . . .

)
dδP

r

= 1 − 2σ 2
p + 2σ 4

p + · · ·
= 1 + (−2σ 2

p

) + 1

2

(−2σ 2
p

)2 + · · ·
= e−2σ 2

p . (A.32)

If we substitute (A.15), (A.16), (A.31), and (A.32) into (A.29)
and (A.30), (A.28) can be represented as

E
[
F2

d

] =
(

1 + 2
σ
a

)
e−2σ 2

p ·
M∑

m=1

N∑
n=1

M∑
a=1

N∑
b=1

M∑
p=1

N∑
q=1

V Q
pqCmn,pq

(
V Q

pqCab,pq
)

· e j [(m+a)u+(n+b)v]

+ e−σ 2
p ·

M∑
m=1

N∑
n=1

M∑
a=1

N∑
b=1

M∑
p=1

N∑
q=1

M∑
c=1,p �=c

N∑
d=1,q �=d

V Q
pqCmn,pq

(
V Q

cd Cab,cd

)
· e j [(m+a)u+(n+b)v]. (A.33)

By eliminating the condition p �= c or q �= d in the second
summation term of (A.33), (A.33) can be expressed as

E
[
F2

d

] =
((

1 + 2
σ
a

)
e−2σ 2

p − e−σ 2
p

)

·
M∑

m=1

N∑
n=1

M∑
a=1

N∑
b=1

M∑
p=1

N∑
q=1

V Q
pqCmn,pq

(
V Q

pqCab,pq
)

· e j [(m−a)u+(n−b)v]

+ e−σ 2
p ·

M∑
m=1

N∑
n=1

M∑
a=1
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N∑
b=1

M∑
p=1

N∑
q=1

M∑
c=1

N∑
d=1

V Q
pqCmn,pq

(
V Q

cd Cab,cd

)
· e j [(m+a)u+(n+b)v]. (A.34)

By substituting (A.23) into (A.34), (A.34) can be expressed
as

E
[
F2

d

] =
((

1 + 2
σ
a

)
e−2σ 2

p − e−σ 2
p

)

·
M∑

m=1

N∑
n=1

M∑
a=1

N∑
b=1

M∑
p=1

N∑
q=1

V Q
pqCmn,pq

(
V Q

pqCab,pq
)

· e j [(m+a)u+(n+b)v]

+ E[Fd ]E[Fd ]. (A.35)

By using (A.6) and (A.35), σ 2
R −σ 2

I and σRI can be expressed
as

σ 2
R −σ 2

I =
((

1 + 2
σ
a

)
e−2σ 2

p − e−σ 2
p

)

·
M∑

m=1

N∑
n=1

M∑
a=1

N∑
b=1

M∑
p=1

N∑
q=1

· Re
(
V Q

pqCmn,pq V Q
pqCab,pqe j [(m+a)u+(n+b)v]) (A.36)

2σRI =
((

1 + 2
σ
a

)
e−2σ 2

p − e−σ 2
p

)

·
M∑

m=1

N∑
n=1

M∑
a=1

N∑
b=1

M∑
p=1

N∑
q=1

· Im
(
V Q

pqCmn,pq V Q
pqCab,pqe j [(m+a)u+(n+b)v]

)
. (A.37)

Finally, if we denote A pq(1 + �A
pq)e

j�P
pq instead of V Q

pq
reversely and use (A.8)–(A.10), (A.26), (A.36), and (A.37),
σ 2

R, σ 2
I , and σRI can be summarized as

σ 2
R = A + B (A.38)

σ 2
I = A − B (A.39)

σRI = C (A.40)

where

A = 1

2

(
1 + 2

σ
a

−e−σ 2
p

)

·
M∑

m=1

N∑
n=1

M∑
a=1

N∑
b=1

M∑
p=1

N∑
q=1

Vpq
(
1 + �A

pq

)
Cmn,pq

·(Vpq
(
1 + �A

pq

)
Cab,pq

)∗
e j [(m−a)u+(n−b)v] (A.41)

B = 1

2

((
1 + 2

σ
a

)
e−2σ 2

p − e−σ 2
p

)

·
M∑

m=1

N∑
n=1

M∑
a=1

N∑
b=1

M∑
p=1

N∑
q=1

Re
(
Vpq

(
1 + �A

pq

)
Cmn,pq

·Vpq
(
1 + �A

pq

)
Cab,pqe j [(m+a)u+(n+b)v]

)
(A.42)

B = 1

2

((
1 + 2

σ
a

)
e−2σ 2

p − e−σ 2
p

)

·
M∑

m=1

N∑
n=1

M∑
a=1

N∑
b=1

M∑
p=1

N∑
q=1

Im
(
Vpq

(
1 + �A

pq

)
Cmn,pq

·Vpq
(
1 + �A

pq

)
Cab,pqe j [(m+a)u+(n+b)v]

)
. (A.43)
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