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Parallel FDTD Modeling of Nonlocality in
Plasmonics

Joshua Baxter , Antonio Calà Lesina , and Lora Ramunno

Abstract— As nanofabrication techniques become more pre-
cise, with ever smaller feature sizes, the ability to model nonlocal
effects in plasmonics becomes increasingly important. Although
nonlocal models based on hydrodynamics have been imple-
mented using various computational electromagnetics techniques,
the finite-difference time-domain (FDTD) version has remained
elusive. Here, we present a comprehensive FDTD implementation
of nonlocal hydrodynamics, including parallel computing. As a
subnanometer step size is required to resolve nonlocal effects,
a parallel implementation makes the computational cost of
nonlocal FDTD more affordable. We first validate our algorithms
for small spherical metallic particles, and find that nonlocality
smears out staircasing artifacts at metal surfaces, increasing
the accuracy over local models. We find this also for a larger
nanostructure with sharp extrusions. The large size of this
simulation, where nonlocal effects are clearly present, highlights
the importance and impact of a parallel implementation in FDTD.

Index Terms— Finite-difference time-domain (FDTD), gener-
alized nonlocal optical response (GNOR), hydrodynamic plasma
model, nonlocality, parallel computing, plasmonics.

I. INTRODUCTION

FABRICATING objects with nanoscale precision is pos-
sible due to significant progress in nanofabrication tech-

niques over the last few decades [1]. As a result, plasmonic
nanostructures and metamaterials [2] are having tremendous
impact on many fields including biosensing [3], quantum
cryptography [4], nonlinear optics [5], photovoltaics [6], light
emitting devices [7], and precision medicine [8].

Numerical modeling in plasmonics is typically based on
optical models for bulk permittivity. These models—such as
the Drude model for free-electron response, and the Lorentz
and critical points models for bound electron response [9],
[10]—are based on the local response approximation (LRA),
which assumes that the induced polarization or current at a
given location depends only on the electromagnetic field at
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that same location. While appropriate for many applications,
the Drude model is insufficient for modeling plasmonic struc-
tures smaller than 10 nm [11]–[14], as well as those containing
sharp features or nanoscale gaps [15], [16]. The charge density
near the surface of plasmonic objects is spread over a finite
thickness on the order of a few angstroms [16], [17], and thus
for small features, cannot be treated as localized at the surface,
as is implicit in LRA models.

The hydrodynamic plasma model treats the conduction
band electrons as a free electron gas [5], [12], [16]–[18],
accounting for free-electron fluctuations via a pressure term.
Unlike the Drude model, it does not make an LRA and thus
nonlocality is incorporated. It has been found to correctly
predict the expected spread of charge density near plasmonic
surfaces as well as predict the blueshift in plasmon resonance
with decreasing particle size [13], [17], [19]. More recently,
the effects of electron diffusion were incorporated within a
generalized nonlocal optical response (GNOR) model, cor-
rectly predicting a broadened line shape that was observed
experimentally [20].

Nonlocal hydrodynamic models have been implemented
using several computational electromagnetic methods includ-
ing the finite element method [21], the discontinuous Galerkin
time-domain (DGTD) method [22], and the boundary element
method [23]. Due to their inhomogeneous mesh, finite element
methods, including DGTD, offer computationally efficient
calculations for systems containing sharp features, or com-
plex geometry, especially when compared to finite difference
methods. This has been demonstrated for dielectric resonator
simulations [24]. However, the complexity of implementation
of such methods, and a dearth of reliable open source code,
may present a hurdle for researchers in the field.

A finite-difference time-domain (FDTD) implementation of
nonlocal plasmonic models would be advantageous due to the
widespread use of FDTD in the photonics community, its rel-
ative ease of implementation, the availability of reliable open
source codes [25], its broadband capabilities, its ability to pro-
duce time-domain movies, and its near-linear scalability when
run on many processors [26]. Few attempts have been made
[27]–[29], however none of them consider high-performance
computing and parallel implementations, nor include electron
diffusion. In addition, one uses an erroneous approximation,
and another deals with terahertz plasmonics. A correct and
comprehensive FDTD implementation for plasmonics within
and near the visible regime has remained unreported.

In this article, we present a parallel FDTD implementa-
tion of nonlocal hydrodynamics, including a GNOR imple-
mentation. A parallel implementation in FDTD is especially
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important for simulating nonlocality, as the grid cell size needs
to be smaller than the Fermi wavelength λF ∼ 0.5 nm to
capture the spread of electron density [30]. This can require a
large amount of memory and can present a prohibitive compu-
tational load. High-performance computing represents a viable
solution. The FDTD rectangular-meshing scheme, where a
field update at one location requires fields only in adjacent
Yee-cells [31], lends itself well to parallel computing; indeed,
message passing interface (MPI)-based FDTD solvers are well
reported for LRA models [26]. Furthermore, high-performance
computing is becoming more accessible with cloud computing,
computing consortiums, increased high-performance comput-
ing investments, and new, higher-level parallel programming
languages such as Chapel [32].

The structure of this article is as follows. We review
nonlocal hydrodynamics in Section II, including the most
common version without electron diffusion, as well as GNOR,
which does include electron diffusion. In Section III, we derive
from the nonlocal models FDTD update equations for the
polarization field via the auxiliary differential equation (ADE)
method. In Section IV, we discuss the implementation of the
nonlocal FDTD update equations for parallel computing within
an MPI framework. In Section V, we test our implemen-
tations by simulating the optical response of small metallic
nanospheres and comparing our results to analytic solutions
and experimental results. We find an unexpected benefit of
nonlocal versus LRA modeling: a marked decrease in stair-
casing artifacts at the metal boundary. Due to the rectangular
discretization inherent in most FDTD approaches, fields can
build up in an unphysical manner at plasmonic surfaces, and
this can be particularly problematic in applications that rely on
plasmonic near-field enhancement [33]. The incorporation of
nonlocality significantly decreases this unphysical field build-
up. In Section VI, we simulate the response from a spherical
nanoparticle-containing sharp extrusions as a demonstration of
a large-scale simulation that requires both parallel computing
and nonlocal modeling. We find that despite the nanoparticle
being larger, the sharp extrusions exhibit plasmonic features
not accessible to the LRA. Finally, in Section VII, we give
concluding remarks.

II. HYDRODYNAMIC MODELS FOR NONLOCALITY

The most general response of a linear optical material to
incident radiation is described by

D(r, ω) = ε0

∫
ε(r, r′, ω)E(r′, ω)dr′ (1)

where the dielectric function of the material, ε(r, r′, ω), is non-
local when the displacement field D at one location depends on
the electric field E at other locations. In many applications, it is
appropriate to use a LRA, wherein ε(r, r′, ω) = δ(r−r′)ε(ω).
In plasmonic modeling, the interaction of the electric field and
the free electron plasma is typically described by the Drude
model, which employs the LRA, where the dielectric function
reduces to [9]

ε(ω) = 1 − ω2
p

ω2 + iγω
(2)

where ωp is the plasma frequency, γ is a collisional damping
rate, and i is the imaginary unit.

The hydrodynamic plasma model [17] goes beyond the
LRA, more accurately describing spatial–temporal free elec-
tron dynamics via

∂v
∂ t

+ (v · ∇)v = − e

m
(E + v × B) − γ v − 1

m
∇ δG[n]

δn
(3)

where v is the velocity field of the free electron plasma, E
and B are the electric and magnetic fields, and n is the free
electron density. The energy functional G[n] considers the
internal kinetic energy of the electron gas and is usually taken
to be the Thomas–Fermi functional, giving

δG[n]
δn

= h2

2m

(
3

8π
n

) 2
3

(4)

where h is Planck’s constant. As we are only considering
the linear nonlocal response in this article, we neglect the
nonlinear terms (magnetic-Lorentz and convection) in (3)
giving

∂v
∂ t

+ γ v = − e

m
E − β2

n
∇n (5)

where β2 = (1/3 v2
F ) and vF is the Fermi velocity. The free

electron density fluctuations are accounted for in the last term
of (5). This is often referred to as the pressure term, and is
responsible for the known blue shift in the surface plasmon
resonance with decreasing particle size [13], [17]. Along with
this formula for the velocity field, we require the continuity
equation given by

∂n

∂ t
= −∇ · (nv). (6)

From here, we consider two approaches. The first is the
most widely used and assumes a current density given by
J = −env. As we use a polarization field formulation in this
article, we set J = (∂PN L/∂ t), where we have defined PN L to
be the (nonlocal) free electron polarization field. The velocity
field is thus v = −(1/ne) (∂PN L/∂ t), and (6) becomes

n = n0 + 1

e
∇ · PN L (7)

where n0 is the equilibrium free electron density. From (5),
we then obtain

∂2PN L

∂ t2
+ γ

∂PN L

∂ t
= ε0ω

2
pE + β2∇(∇ · PN L) (8)

where ωp = √
(e2n0/mε0). We call (8) the “nonlocal Drude

model" because it consists of the classical LRA Drude model
plus one additional term that gives rise to nonlocality (i.e.,
the term proportional to β2).

The model represented by (8) differs from those used
in the three previous nonlocal FDTD works. In Ref. [27],
the gradient-divergence term was simplified to a Laplacian,
and this resulted in spurious, nonphysical resonances [18].
In Ref. [23], a current density formulation is used. A benefit
to using a polarization field formulation is that it gives ready
access to the free electron density via Gauss’s Law, as we
demonstrate in Section V. In Ref. [29], the thermal kinetic



3984 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 69, NO. 7, JULY 2021

energy is used instead of the Fermi energy in the pressure
term. Because we are interested in plasmonics within and
near the visible regime with noble metals, we need to use
the Fermi energy since EF ≈ 215 KB T at room temperature.
It is worth noting that Ref. [34] introduces an explicit scheme
to solve (3) via FDTD for nonlinear plasmonics without the
Thomas–Fermi functional, which is the only nonlocal term
that is relevant for linear simulations.

The second approach we consider includes electron dif-
fusion, which was also found to play an important role in
the optical response of small metallic particles [20]. This
has been described by the GNOR model, where diffusion is
considered by modifying the expression for the velocity field
via v = (−1/en)((∂PG/∂ t) + D∇(∇ · PG)), where D is the
diffusion coefficient and where we have denoted the GNOR
free electron polarization field by PG .

Using in (5) and (6) the GNOR definition for the velocity
field, we obtain the following time-domain nonlocal-diffusive
hydrodynamics model for the polarization field, which we
hereafter refer to as the “GNOR" model:

∂2PG

∂ t2
+γ

∂PG

∂ t
=ε0ω

2
pE+η∇(∇ · PG)+D ∂

∂ t
∇(∇ · PG) (9)

where η = β2 + Dγ . GNOR correctly predicts both the
blueshift in the plasmon resonance frequency as well as the
broadening of the absorption peak with decreasing particle
size. The broadening is the result of the diffusion coefficient,
but it is worth noting that this effect can be introduced
through other models. For example, one can increase the
Drude damping coefficient phenomenologically as a function
of nanoparticle size to account for electron scattering from the
particle surface [35]. One may also introduce a stress tensor
term into the hydrodynamic model [36]. In this article, we will
consider only the nonlocal Drude and GNOR models (both of
which are thoroughly reviewed in Ref. [17]).

It is from (8) and (9) that we derive in Section III, our
FDTD update equations for implementing the two different
models of the free electron response of plasmonic material,
one accounting for nonlocality only (8), and the other nonlo-
cality with diffusion (9).

To properly model the optical response of many plasmonic
materials, one must also include the contribution of inter-
band transitions through bound electrons. We employ the
LRA-based N-critical points model that assumes a suscepti-
bility of the form

χC P (ω) = (ε∞ − 1)

+
N∑

p=1

A p�p

(
eiφp

�p − ω − i�p
+ e−iφp

�p + ω + i�p

)
(10)

where ε∞ is the infinite frequency permittivity, and
A p,�p, �p, and φp are fitting parameters. This model can
be readily transformed to the time-domain for FDTD imple-
mentation, as described in detail in Ref. [37].

III. UPDATE EQUATIONS FOR NONLOCAL FDTD

We derive in this section the FDTD update equations
for the time-domain nonlocal Drude and GNOR models

TABLE I

YEE CELL POSITIONS OF THE ELECTRIC, MAGNETIC,
AND POLARIZATION FIELDS

[(8) and (9), respectively], using the ADE method. We
also present the update equations for the N-critical points
model (10) to account for interband transitions which is
derived elsewhere [37].

We discretize our domain via the Yee cell [31] where
the electric fields are collocated with the polarization fields
in time and space; the Yee cell positions of the electric,
magnetic, and polarization fields used in this article are listed
in Table I. We denote the free-electron polarization field by
P f (which signifies either PN L or PG), and the bound electron
polarization field by PC P .

The FDTD update algorithm at time = n�t , where �t is
the time step size, consists of updating (in order) the:

1) magnetic field Hn+1/2 = f1(Hn−1/2, En),
2) electric field En+1 = f2(En, Pn

f , Pn
C P , Hn+1/2),

3) bound charge polarization Pn+1
C P = f3(En+1, Pn

C P ),
4) free charge polarization Pn+1

f = f4(En+1, Pn
f ),

via update equations f1, f2, f3, and f4, whose form and
required inputs depend on the model from which they are
derived. The equation f1 is the magnetic field update derived
through discretization of the Maxwell–Faraday equation [38];
we do not derive this here because in plasmonic simulations it
is typically unchanged from the vacuum equation. In what
follows, we present the electric field update equation f2

(derived from the Maxwell–Ampère law), the bound charge
polarization update equation f3 [derived from (10)], and the
free charge polarization update f4 (derived from (8) for the
nonlocal Drude model, and (9) for the GNOR model). Though
we present f4 for two nonlocal models, one must choose which
to use—they cannot be used simultaneously.

We start by deriving f4 from the nonlocal Drude model.
Using central differencing, we discretize (8) centered at time
n�t , to obtain

Pn+1
N L −2Pn

N L +Pn−1
N L

�t2
+γ

Pn+1
N L −Pn−1

N L

2�t
=ε0ω

2
pEn +β2∇(∇ · Pn

N L).

(11)

Furthermore, using weighted central averaging as discussed
in Ref. [33], we set En = (En−1 + 2En + En+1)/4 to obtain

Pn+1
N L = D1Pn

N L + D2Pn−1
N L + D3

(
En−1 + 2En + En+1

)
+DN L∇(∇ · Pn

N L

)
(12)

where

D1 = 2

Dd�t2
(13)

D2 = 1

Dd

(
γ

2�t
− 1

�t2

)
(14)
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D3 = ε0ω
2
p

4Dd
(15)

DN L = β2

Dd
(16)

Dd =
(

γ

2�t
+ 1

�t2

)
. (17)

As the x , y, and z components of ∇(∇ · Pn
N L) must be

collocated with the x , y, and z components of PN L , we have

∇(∇ · Pn
N L )

∣∣i+1/2, j,k
x

= ∂

∂x

(
∂ Px

∂x
+ ∂ Py

∂y
+ ∂ Pz

∂z

)∣∣∣∣
i+1/2, j,k

x

≈ Pi+3/2, j,k
x − 2Pi+1/2, j,k

x + Pi−1/2, j,k
x

�x2

+ Pi+1, j+1/2,k
y − Pi+1, j−1/2,k

y − Pi, j+1/2,k
y + Pi, j−1/2,k

y

�x�y

+ Pi+1, j,k+1/2
z − Pi+1, j,k−1/2

z − Pi, j,k+1/2
z + Pi, j,k−1/2

z

�x�z
(18a)

∇(∇ · Pn
N L )

∣∣i, j+1/2,k
y

= ∂

∂y

(
∂ Px

∂x
+ ∂ Py

∂y
+ ∂ Pz

∂z

)∣∣∣∣
i, j+1/2,k

y

≈ Pi, j+3/2,k
y − 2Pi, j+1/2,k

y + Pi, j−1/2,k
y

�y2

+ Pi+1/2, j+1,k
x − Pi−1/2, j+1,k

x − Pi+1/2, j,k
x + Pi−1/2, j,k

x

�x�y

+ Pi, j+1,k+1/2
z − Pi, j+1,k−1/2

z − Pi, j,k+1/2
z + Pi, j,k−1/2

z

�y�z
(18b)

∇(∇ · Pn
N L )

∣∣i, j,k+1/2
z

= ∂

∂z

(
∂ Px

∂x
+ ∂ Py

∂y
+ ∂ Pz

∂z

)∣∣∣∣
i, j,k+1/2

z

≈ Pi, j,k+3/2
z − 2Pi, j,k+1/2

z + Pi, j,k−1/2
z

�z2

+ Pi+1/2, j,k+1
x − Pi−1/2, j,k+1

x − Pi+1/2, j,k
x + Pi−1/2, j,k

x

�x�z

+ Pi, j+1/2,k+1
y − Pi, j−1/2,k+1

y − Pi, j+1/2,k
y + Pi, j−1/2,k

y

�y�z
(18c)

where, for brevity, the components of PN L are written as Pa

for a = x, y, z.
For the GNOR model, the f4 update equation includes

(12)–(18) (with β2 replaced by η) along with a suitable
discretization for the last term of (9), the only term that does
not appear in the nonlocal Drude model. As this term cannot be
achieved via central differencing, we use an alternate second
order backward finite difference scheme given in Table 3 of
Ref. [39]

∂

∂ t
∇(∇ · Pn

G) ≈ 3∇(∇ · Pn
G) − 4∇(∇ · Pn−1

G ) + ∇(∇ · Pn−2
G )

2�t
.

(19)

The GNOR f4 update then becomes

Pn+1
G = D1Pn

G + D2Pn−1
G + D3

(
En−1 + 2En + En+1)

+ DG1∇(∇ · Pn
G)

+ DG2
(
3∇(∇ · Pn

G) − 4∇(∇ · Pn−1
G

) + ∇(∇ · Pn−2
G

))
(20)

where

DG1 = η

Dd
(21)

DG2 = D
2�t Dd

. (22)

The f3 update equation for the bound charge polarization
field is derived from the critical points model (10) in Ref. [37].
We state it here

Pn+1
C P,p =C1pPn

C P,p +C2pPn−1
C P,p +C3pEn+1 + C4pEn + C5pEn−1

(23)

where

C1p = 1

Cp

(
2

�t2
− �2

p + �2
p

2

)
(24)

C2p = 1

Cp

(
�p

�t
− 1

�t2
− �2

p + �2
p

4

)
(25)

C3p = C4p

2
− ε0 A p�p sin φp

2�tCp
(26)

C4p = ε0 A p�p
(
�p cos φp − �p sin φp

)
Cp

(27)

C5p = C4p

2
+ ε0 A p�p sin φp

2�tCp
(28)

Cp = �p

�t
+ 1

�t2
+ �2

p + �2
p

4
(29)

where p denotes the pth critical point.
Next we turn to the f2 update equation for En+1. Ampère’s

law is discretized in time to give

ε0ε∞
En+1 − En

�t
+ Pn+1

f − Pn
f

�t

+
N∑

p=1

(Pn+1
C P,p − Pn

C P,p)

�t
= ∇ × Hn+1/2. (30)

For the nonlocal Drude model we set P f = PN L , and
plug (12) into (30) to obtain

En+1

⎛
⎝ε0ε∞ + D3 +

N∑
p=1

C3p

⎞
⎠

= �t
(∇ × Hn+1/2)

+
⎛
⎝ε0ε∞ − 2D3 +

N∑
p=1

C4p

⎞
⎠En

−
⎛
⎝D3 +

N∑
p=1

C5p

⎞
⎠En−1 − (D1 − 1)Pn

N L
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−
N∑

p=1

(
C1p − 1

)
Pn

C P,p − D2Pn−1
N L

−
N∑

p=1

C2pPn−1
C P,p − DN L∇(∇ · Pn

N L ). (31)

For the GNOR model we set P f = PG , and plug (20)
into (30) to obtain

En+1

⎛
⎝ε0ε∞ + D3 +

N∑
p=1

C3p

⎞
⎠

= �t (∇ × Hn+1/2) +
⎛
⎝ε0ε∞ − 2D3 +

N∑
p=1

C4p

⎞
⎠En

−
⎛
⎝D3 +

N∑
p=1

C5p

⎞
⎠En−1

−(D1 − 1)Pn
G −

N∑
p=1

(C1p − 1)Pn
C P,p − D2Pn−1

G

−
N∑

p=1

C2pPn−1
C P,p − DG1∇(∇ · Pn

G)

−DG2
(
3∇(∇ · Pn

G

) − 4∇(∇ · Pn−1
G

) + ∇(∇ · Pn−2
G

))
.

(32)

For the GNOR update, to avoid recalculation of ∇(∇·Pn−1
G ),

and ∇(∇ · Pn−2
G ), we store them in arrays; therefore GNOR

requires additional memory.
The update equations derived above must be implemented

in all cells in which the plasmonic material exists. However,
care needs to be taken if the nonlocal material extends to
the boundary of the simulation domain. Terminating a non-
local material with a perfectly matched layer (PML) may
result in instability and convergence issues. Within a total
field/scattered field (TF/SF) framework—which is applicable
to many plasmonic nanostructure scattering problems—this
can be overcome by using the nonlocal model only in the total
field region. If TF/SF cannot be used, such as for geometries
that include a plasmonic substrate, one may use the LRA
Drude model in the PML region, and the nonlocal models
everywhere else.

Finally, we would like to highlight that since the polariza-
tion fields are nonlocal, an additional boundary condition is
required at the interface between the plasmonic and external
media. In the FDTD implementation, material boundary con-
ditions are implicitly imposed by not applying the plasmonic
material update equations outside of the plasmonic material.
Thus, the free electron density necessarily vanishes just outside
the material boundaries. This implies that P f · n = 0 at
the material boundary, where n is the unit vector normal to
the boundary; however, the tangential component of P f does
not vanish at the material boundary [18]. We have confirmed
numerically that our code implementation indeed implicitly
imposes this additional boundary condition.

TABLE II

SUBDOMAIN UPDATE SCHEME FOR DIFFERENT FIELD COMPONENTS

IV. PARALLEL IMPLEMENTATION OF NONLOCAL FDTD

In this section, we describe a parallel FDTD scheme using
the MPI framework. Nonlocal simulations require a lot of
memory since the step-size �x needs to be smaller than
the Fermi wavelength. In turn, significant computation time
is required because the Courant–Friedrichs–Lewy condition
restricts the time-step �t according to �x . Parallel computing
thus becomes essential.

The simulation domain is decomposed into nx ×ny ×nz MPI
processes where nd is the number of MPI processes in the d
direction, with d = x, y, z. Each MPI process is identified by
a vector (mx, m y, mz) which gives its relative spatial position
within the simulation domain, where 0 ≤ md < nd .

Each process performs field updates within its own sub-
domain (i.e., its section of the simulation domain) defined
according to a local grid with (Nx + 1) × (Ny + 1) × (Nz + 1)
points. The vector (i, j, k) identifies an individual grid cell
within the local grid, where i ranges from 0 to Nx , j from
0 to Ny , and k from 0 to Nz, inclusively. The electric and
magnetic field components at (i, j, k) correspond to different
locations in physical space within the grid cell, according to
the Yee cell shown in Table I. For example, Ex(i, j, k) refers
to Ex(i�x + �x/2, j�y, k�z), whereas Ey(i, j, k) refers to
Ey(i�x, j�y + �y/2, k�z).

The use of domain decomposition requires that data from
the boundaries of subdomains be transferred to other subdo-
mains at each time step. For subsequent updates to be executed
efficiently, an overlap of information is required between
adjacent subdomains. For example, the cells (Nx , j, k) in sub-
domain (mx, m y, mz) represents the same physical locations
as the cells (0, j, k) in subdomain (mx + 1, m y, mz). The
update scheme we describe below guarantees that the update
equations for a given field component at a given physical
location are only applied once.

The components of the magnetic and electric fields in a
subdomain are updated via f1 and f2, respectively, however,
each is updated for different ranges of indices (i, j, k) as
summarized in Table II. The notation 0 → Nd means we
update from index 0 to index Nd , inclusively. Bound and
free charge polarization fields are updated via f3 and f4,
respectively, for the same ranges of indices as for the electric
field, as listed in Table II. To understand this visually, the field
update regions for the x and y components of all fields within
a single subdomain are illustrated in Fig. 1.

While the components of the magnetic, electric, and
bound charge polarization fields in a subdomain all require
(Nx + 1) × (Ny + 1) × (Nz + 1) values to be stored, the free
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Fig. 1. 2-D representation of the field update regions within a subdomain for
the electric/polarization fields (left) and the magnetic fields (right). Different
colors are chosen to represent the different field components. The hatched
regions indicate where both field components are updated.

Fig. 2. FDTD algorithm for the nonlocal Drude and GNOR models in an
MPI framework.

charge polarization fields requires (Nx + 2) × (Ny + 2) ×
(Nz + 2). This is because the free charge polarization field
updates via (18) requires information from additional cells.
For example, to update Px,N L (0, j, k) via (18a), we need
Px,N L (−1, j, k); in general, we need an extra cell in each
dimension to store the −1 index. However, we do not
calculate updates at this index, as (−1, j, k) in subdomain
(mx, m y, mz) obtain their values from a transfer of data from
cells (Nx − 1, j, k) in subdomain (mx − 1, m y, mz).

We now discuss the flow of the FDTD algorithm for both the
nonlocal Drude and GNOR models, including what data needs
to be communicated, and when. This is summarized in Fig. 2,
and we go through each step in detail in the following.

The first update to execute after the setup of the simulation
is that of the magnetic field via f1. Once this has been
completed in each subdomain, a subset of the magnetic field
values at the subdomain boundaries must be communicated
to adjacent subdomains. The necessary communications for
Hx are given in the first row of Table III; those for the
other components of H can be obtained from this table by
an ordered permutation of x → y → z. The intersubdomain
communications in the x and y directions are illustrated in the
top part of Fig. 3. Note that the data transfers of the magnetic

Fig. 3. 2-D representation of magnetic and electric field data transfers
between adjacent subdomains. The different colors represent the different field
components as indicated. The inset illustrates all field component transfers
along x , and their relative positions in the Yee cell.

fields are all made in the “backward” direction. The inset
in Fig. 3 details all data transfers along x and their relative
Yee cell positions. For example, Hy(0, j, k) updated locally
in subdomain (mx + 1, m y, mz) is passed to Hy(Nx , j, k) in
subdomain (mx , m y, mz).

After the magnetic field data transfer, the electric field is
updated in each subdomain via f2, after which the bound and
free charge polarization fields are updated in each subdomain
via f3 and f4, respectively. Subsequently, a subset of their
values at the subdomain boundaries needs to be communicated
to adjacent subdomains. The necessary communications for
Ex are given in the second row of Table III; again, those for
the other components are obtained by an ordered permutation
of x → y → z. The intersubdomain communications for the
electric field in the x and y directions are also illustrated in the
top part of Fig. 3, with further detail given in the inset. Unlike
the magnetic field data transfers, those for the electric field are
made in the “forward” direction. For example, Ey(Nx , j, k)
updated in subdomain (mx , m y, mz), is passed to Ey(0, j, k)
in subdomain (mx + 1, m y, mz). Note that only the E and H
components tangential to the direction of the data transfer need
to be exchanged.

In general, FDTD updates for LRA polarization models only
require the collocated electric and polarization field values so
that the polarization field values need not be communicated to
other subdomains. Thus, no communication is necessary for
the bound charge polarization field PC P . This is not true for
the nonlocal models. The necessary communications for the x
component of P f are given in the third row of Table III and
visualized in the top part Fig. 4. The communication for the y
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Fig. 4. 2-D representation of the data transfers between adjacent subdomains
for the x component of the free charge polarization field. The j = −1 row
in the y-direction is not shown or required for Px , but would be required for
Py . The blue shade represents regions where Px is locally calculated and sent
to adjacent processes, and the purple represents regions where Px is received
from adjacent processes. The inset illustrates all free charge polarization field
component transfers along x , and their relative positions in the Yee cell.

and z field components are obtained from Table III again via an
ordered permutation of x → y → z. The inset of Fig. 4 shows
the data transfers along x for all field components. Note that
there are now four data transfers for every P f component—
three “forward” and one “backward”—due to the increased
data required for updates via (18). Thus, the inclusion of
nonlocality doubles the number of communications required
at each time-step. This has an effect on performance and
scalability and is discussed further in Section V.

It is worth noting that MPI is not the only solution for
parallel computing as new higher-level languages are being
introduced for this purpose. Chapel, a language produced by
Cray [32], allows for algorithm implementation on a distrib-
uted system without the challenges of MPI. For example, [40]
presents a finite difference implementation of Poisson’s equa-
tion in Chapel. One may also use a shared memory implemen-
tation where the memory is shared amongst the processes (or
threads) and therefore no data need be communicated. This can
be implemented via OpenMP [41] for multithreading on CPUs
or via CUDA [42] or OpenCL [43] on graphics processing
units (GPUs). Indeed, GPU-FDTD implementations are well
reported in literature [44]. Since GPUs can launch thousands
of parallel threads that all have access to shared memory,
a GPU-based implementation of nonlocal FDTD requires no
special treatment beyond what was presented in Section III.
While GPUs do suffer from memory constraints, they can still
be useful for smaller nonlocal plasmonic simulations.

TABLE III

DATA TRANSFER PROTOCOL FOR THE x -COMPONENT OF THE FIELDS

Fig. 5. Absorption cross sections for silver spheres of diameter 4 nm
(blue), 6 nm (green), and 10 nm (red) using (a) nonlocal Drude FDTD (filled
circles) and (b) GNOR FDTD (filled circles). The solid lines represent the
nonlocal Mie theory solutions (a) without diffusion and (b) with diffusion.
The dashed lines in both plots represent the LRA Mie theory solutions and
the x’s represent the LRA FDTD solutions.

V. NONLOCAL FDTD APPLIED TO SMALL SPHERES

In this section, we test and validate our FDTD implementa-
tions of the nonlocal models by using them to simulate the
optical response of small silver nanospheres. We compare
our results to: 1) analytic solutions based on Mie theory,
2) LRA FDTD plasmonic simulations that employ the LRA
Drude model for free-electron response, and 3) experimental
results from the literature. Not only do our nonlocal FDTD
simulations agree well with analytic and experimental results,
but we also find an unexpected benefit over the LRA approach:
a pronounced reduction of staircasing artifacts.

In Fig. 5, we plot the absorption efficiencies for silver
nanospheres in vacuum for three different diameters—4 nm
(blue), 6 nm (green) and 10 nm (red)—and different free
charge polarization models. To model silver, we use the fitting
parameters reported in [45] for ωp and γ in (8) and (9),
and for all critical points model parameters in (10). We set
β2 = 1/3v2

F where vF = 1.39 · 106 m/s [46].
The FDTD domain is a 200 cell × 200 cell ×

200 cell box truncated by a convolutional perfectly matched
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layer (CPML) [38] consisting of 20 additional cells at each
boundary. We use a uniform step-size of �x = �y = �z =
0.04, 0.06, and 0.1 nm for the 4, 6, and 10 nm particles, respec-
tively, which equates to D/100, where D is the diameter of the
sphere. For the particle sizes of interest here, this guarantees
both that the step-size is less than the Fermi wavelength, and
that the spherical shape is sufficiently resolved. Convergence
tests confirmed that these step-sizes were sufficient. The total
number of iterations varies with step-size and therefore particle
size. For a 10 nm diameter particle, 3 · 105 iterations are used
to reach convergence; this is scaled appropriately for the other
particle sizes.

In Fig. 5(a), we compare our nonlocal Drude FDTD cal-
culations (filled circles) with LRA FDTD calculations (x’s),
classical (LRA) Mie theory solutions (dashed lines), and with
nonlocal Mie theory solutions (solid lines). Nonlocal Mie
theory [47]–[49] is a modified version of Mie theory [50] that
allows for longitudinal modes, which permits a nonzero free
charge density within the nanoparticle. It has been success-
fully validated with experimental results for small particles
larger than several nanometers. For example, a quasistatic
version predicted absorption peaks that agree quantitatively
with experiment for particle diameters down to 10 nm with a
further qualitative agreement down to 2 nm [19].

We find in Fig. 5(a) excellent agreement between nonlocal
Drude FDTD and nonlocal Mie theory, with less than 2%
mean error for all three particle sizes. Doubling the FDTD
step-size increases the mean error for the 10 nm particle case
to 6.4%. Halving the step-size decreases it to 1.3%. Thus,
reasonable convergence is reached with reasonable simulation
domain sizes. As expected, we see an increasing blue-shift
in the absorption peak with decreasing nanoparticle size with
respect to the LRA model.

In Fig. 5(b) we compare our GNOR-FDTD calculations
(filled circles) with LRA FDTD calculations (x’s), LRA Mie
theory solutions (dashed lines), and nonlocal diffusive Mie
theory solutions (solid lines), where diffusion is accounted
for by substituting β2 with β2 + Dγ − iDω in nonlocal
Mie theory [17]. The free electron diffusion coefficient in
silver is taken as D = 3.61 × 10−4 m2/s [17]. We again
see excellent agreement, with less than 1.6% mean error in
GNOR-FDTD relative to nonlocal diffusive Mie theory for
all three particle sizes. As expected the resonance positions
predicted by the nonlocal Drude FDTD in Fig. 5(a) and GNOR
FDTD in Fig. 5(b) are the same, with an increased linewidth
for GNOR FDTD.

For the simulations of Fig. 5, we also tracked the CPU
time. For the 4 nm sphere simulations (256 cores) we report
155, 166, and 135 thousand time steps per hour for the LRA,
nonlocal Drude, and GNOR FDTD simulations, respectively.
Similarly, we report 278, 102, and 91 thousand time steps
per hour for the 6 nm sphere (128 cores) and 200, 63,
and 47 thousand time steps per hour for the 10 nm sphere
(64 cores). Note that the supercomputer used for these sim-
ulations was comprised of cores that were not all the same
speed, which may explain why the time step rate of the
4 nm LRA FDTD simulation is proportionally lower than
it should be. In general, the LRA model is faster than the

Fig. 6. Electric field amplitude distribution of a 4 nm diameter silver sphere
in vacuum at λ = 343 nm using (a) LRA FDTD and (b) nonlocal Drude
FDTD.

Fig. 7. Close-up of the electric field amplitude distribution of a 4 nm diameter
silver sphere in vacuum at λ = 425 nm. Staircasing artifacts are much more
prominent in (a) for LRA FDTD than in (b) for nonlocal Drude FDTD.

nonlocal models and GNOR is slower than the nonlocal Drude
model.

We now turn to examine the near-field and free electron
density distributions produced by nonlocal Drude FDTD,
comparing to those produced by LRA FDTD. In Fig. 6 we
show the electric field amplitude distribution for the simu-
lations of the 4 nm diameter silver nanoparticle produced
by (a) LRA FDTD and (b) nonlocal Drude FDTD, for
the wavelength corresponding to the peak of the (nonlocal)
absorption spectrum (λ = 343 nm). Shown are cuts in the
xz-plane through the center of the particle, where the incident
plane wave is z-polarized and propagates along the y-axis.
The field amplitudes are normalized, corresponding to an input
field of 1 V/m. For higher quality images, we used a halved
step size of �x = D/200. LRA FDTD produces a constant
electric field within the sphere, as expected, while nonlocal
Drude FDTD produces a field gradient due to the nonzero
free charge distribution.

We see in Fig. 6 a significant difference in the appearance
of the fields at the particle boundary. While the effects of
staircasing in LRA FDTD are clearly visible at the edges
of the sphere in Fig. 6(a), they appear smoothed out for
nonlocal Drude FDTD in Fig. 6(b). This is even more evident
in Fig. 7 which shows the normalized electric field amplitude
distribution produced by (a) LRA FDTD and (b) nonlocal
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Fig. 8. Free electron density within a 4 nm diameter silver sphere in vacuum
at λ = 343 nm using (a) LRA FDTD and (b) nonlocal Drude FDTD.

Drude FDTD at λ = 425 nm, a wavelength where the
absorption efficiency and near fields for both approaches are
almost identical, except for dramatic differences at the sphere
boundary. The staircasing-induced boundary artifacts seen for
LRA FDTD are clearly reduced with nonlocal Drude FDTD.
Interestingly, a smoothing effect in the presence of rough
boundaries has been observed in nonlocal plasmonic FEM
calculations [51]. In our case, however, the “roughness” is
not due to a true physical boundary, but rather one that is
artificially imposed on the structure due to the rectangular grid.

Artifacts at the particle boundary are especially problematic
for calculations that involve fields just outside the particle,
such as, for example, determining the plasmonic near field
enhancement of fluorescence, or engineering the spontaneous
emission lifetime of fluorophosphores [52]. This could also be
important for calculations of plasmonics-enhanced nonlinear
optics, where enhanced near fields close to plasmonic bound-
aries can be harnessed to not only enhance nonlinear optical
processes by orders of magnitude, but also shape nonlinear
optical fields [53]–[55]. With nonlocal FDTD, the reduc-
tion of staircasing artifacts would result in more reliable
calculations.

In Fig. 8, we plot the free electron density distribution
corresponding to the 4 nm silver particle simulations of Fig. 6.
Shown are cuts in the xz plane through the center of the
sphere for λ = 343 nm, as produced by (a) LRA FDTD
and (b) nonlocal Drude FDTD. As expected, nonlocal Drude
FDTD allows for the spread of the charge distribution near
the particle boundary, which we see is on the order of the
Fermi wavelength for silver, λF = 0.5 nm. In contrast, for
LRA FDTD the charge is bound to the surface.

We present in the Supplementary Information (SI)
time-domain movies for the 4 nm silver sphere simula-
tions corresponding to Figs. 6–8 where the incident plane
wave pulse function is a normalized raised cosine f (t) =
[(1 − cos(ωmax t))/2]3, where ωmax = 1.26 · 1016 rad/s is
the maximum frequency of interest (corresponding to λ =
150 nm). Included in the SI are movies of the electric field
amplitude dynamics for nonlocal Drude FDTD in the xz and
yz planes, movie1, and movie2, respectively, where both planes
cut through the center of the particle. The comparable movies
for LRA FDTD are movie3 and movie4. The nonlocal FDTD
movies show a radially propagating wave inside the sphere

whereas the LRA FDTD movies do not; in the latter, the field
is almost always constant across the sphere (as expected). Fur-
thermore, while staircasing artifacts in the LRA FDTD movies
are quite pronounced, they are hardly visible in the nonlocal
Drude FDTD movies. The corresponding free electron density
movie for nonlocal Drude FDTD is movie5. Since the free
electron density does not need to be tracked within the LRA
FDTD implementation, and all charge is strictly localized to
the surface, we do not include a time-domain movie for this
case.

We now turn to further validate our FDTD implementations
by comparing our simulated results to those of the experiment.
In Ref. [13], electron energy loss spectroscopy measurements
are presented for silver nanosphere diameters ranging from 2
to 24 nm on a carbon film (3 nm) and compared to Mie the-
ory calculations that use size-dependent permittivities derived
quantum mechanically. Using GNOR FDTD, we calculate
the absorption spectra of silver nanospheres in a n = 1.3
dielectric background (as used in the calculations of Ref. [13])
with diameters ranging from 2 to 24 nm, and plot these
in Fig. 9(a). Using the versatility inherent in FDTD, it is
quite straightforward to include the effects of the carbon film,
unlike what was done with Mie theory. We plot in Fig. 9(b)
the absorption spectra of silver nanospheres on a 3 nm film
of carbon (n = 2 according to Ref. [13]), where agreement
with the experimental results was obtained only when a thin
dielectric shell (radius of silver sphere/10, n = 1.5) around
the silver particles was included, which could indicate that an
oxide layer had formed. Thus, such FDTD simulations can
be useful in helping determine the actual composition of the
materials under experimental investigation.

We find the same trend as presented in Ref. [13], showing
that GNOR FDTD is consistent with experimental measure-
ments and calculations using quantum-based permittivities,
with quantitative agreement down to 10 nm diameter, and
qualitative agreement to 2 nm. As discussed in [17], for
diameters less than 10 nm, the nonlocal model predicts a
resonance shift that is not as large as determined by exper-
imental measurements, which is consistent with our results.
This may be due to more complicated phenomena occurring
in silver, such as inhomogeneous equilibrium electron density,
or spill-out effects, that are not included in the GNOR model
we have implemented.

Finally, we turn to a discussion of computational resources
and scalability. To give an example, for the 10, 6, and 4 nm
sphere simulations presented in Fig. 5, we used 64, 128, and
256 cores, respectively, on the Graham cluster operated by
Compute Canada [56]. Recall that the workload is heavier for
the smallest particle since our step size �x (and thus time
step size) is proportional to sphere diameter, and thus more
iterations in time are required to reach convergence for the
smallest particles.

In general, when running simulations on a large number
of cores, as we do for this article, it is imperative to investi-
gate the implementation’s scalability, that is, the performance
enhancement obtained by increasing the number of CPUs.
In the ideal case, the scaling is linear, meaning when one
doubles the number of processes, the computation time is
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Fig. 9. Contour plot of the absorption cross section of silver spheres
(a) embedded in an n = 1.3 homogeneous dielectric background and (b) on a
3 nm carbon film with a thin n = 1.5 dielectric shell, as a function of incident
plane wave photon energy (horizontal axis) and sphere diameter (vertical axis).

Fig. 10. Scalability of the nonlocal Drude FDTD (blue line) compared to
that of LRA FDTD (red line). Plotted is the number of FDTD time iterations
computed per hour versus the number of processes used.

halved; this is often not achieved due to overhead, including
interprocessor communications.

In Fig. 10, we plot the number of FDTD time iterations
calculated per hour as a function of the number of processes
used in the nonlocal Drude FDTD (blue line) and LRA FDTD
(red line) simulations. The simulation set up is the same as for
Fig. 5, where we vary the number of processes while keeping
the total number of cells constant. For ≤ 128 processes,
the scalability of nonlocal Drude FDTD is nearly linear and
comparable to LRA FDTD. While the scalability of LRA
FDTD remains mostly linear for a larger number of processes,
that of nonlocal Drude FDTD does not, likely due to the
doubled interprocess communication required, as discussed
in Section IV. As one increases the number of processes
while maintaining the same domain size, the subdomain
surface-to-volume ratio increases, and therefore the inter-
process communication time eventually becomes comparable

Fig. 11. Cross section in the xz plane of the star-shaped silver nanoparticle,
consisting of a sphere with 40 nm diameter and triangular nanoprism extru-
sions extending 5 nm from the sphere surface. The incident plane wave used
to illuminate this structure is z-polarized and propagates along the y axis.

to the computation time within a time step. Thus, if we were
to consider a larger domain size, we expect the near-linear
scalability to extend to larger process numbers.

VI. NONLOCAL FDTD APPLIED TO LARGER,
COMPLEX NANOPARTICLES

In this section, we demonstrate the benefit of our parallel
FDTD implementation even further, by considering a much
larger plasmonic structure containing small, sharp features.
Such a structure would still be expected to exhibit nonlocal
effects, and thus simulating it via FDTD would still require a
small grid cell size, small enough to resolve electron dynamics
within the sharp features. We consider as an example a
structure inspired by the star-shaped nanoparticles synthesized
for Ref. [57], which are spherical particles around 50 nm in
diameter with small 5 nm extrusions from their surfaces that
come to a sharp tip.

The structure we simulate is a silver nanosphere with
triangular nanoprisms extruding from the equator in the xz
plane, perpendicular to the incident plane wave propagation
axis, as illustrated in Fig. 11. The sphere is 40 nm in diameter
and the nanoprisms are embedded into the sphere so that the
effective prism length is 5 nm. The tips of the nanoprisms
are rounded with a radius of 1 nm. The FDTD step-size is
uniform with �x = 0.1 nm and the domain size is 600 × 600
× 600 Yee cells (not including CPMLs). The simulations are
run for 4 ·105 iterations over 1000 processes (10 × 10 × 10).

The absorption spectrum of this particle is shown in Fig. 12,
calculated using both LRA FDTD (red) and nonlocal Drude
FDTD (blue). There are two resonances attributed to the
star-shaped particle. The peaks near 355 nm correspond to
the plasmonic resonance of the sphere, and these completely
overlap for the two models. This is expected, as nonlocal
effects should be negligible for particles larger than 20 nm.
The peaks near 575 nm, however, correspond to the resonance
of the nanoprisms, specifically the ones aligned parallel to
the incident field polarization. Here, we do see that nonlocal
effects become important, as the peak wavelength predicted
by nonlocal Drude FDTD is 10 nm blue-shifted from that
predicted by LRA FDTD.
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Fig. 12. Absorption efficiency of the silver star-shaped nanoparticle calcu-
lated using LRA FDTD (red dots) and nonlocal Drude FDTD (blue dots); the
lines are interpolations of the FDTD data.

Fig. 13. Electric field amplitude distribution of a star-shaped nanoparticle in
vacuum at λ = 320 nm using (a) LRA FDTD and (b) nonlocal Drude FDTD.

Additional differences between the two models manifest
in the field amplitude distributions for wavelengths below
the interband transition wavelength λI B ≈ 330 nm. The
electric field amplitude distributions at λ = 320 nm are
shown in Fig. 13 for (a) LRA FDTD and (b) nonlocal Drude
FDTD. Standing waves inside the vertical triangles, with a
wavevector in the z-direction, are visible in Fig. 13(b) for
nonlocal Drude FDTD. This is a longitudinal mode [18] and is
expected since its wavelength lies below the epsilon-near-zero
wavelength, which in silver is approximately equal to λI B .
In the LRA, these modes cannot be excited by an incident
transverse wave, and we see in Fig. 13(a) that they are not.
However, with nonlocality, such excitation can occur [18] due
to the additional material boundary conditions, discussed in
Section III.

These standing waves become more pronounced for isolated
nanotriangles as shown in Fig. 14(b) where nonlocal Drude
FDTD was used, whereas they are absent in Fig. 14(a), where
LRA FDTD was used. The standing waves found for nonlocal
FDTD are damped by interband transitions for wavelengths
below 300 nm.

We now turn to examine the effect of staircasing for the
star-shaped nanoparticle. We show in Fig. 15 a zoomed-in view
of the electric field amplitude distribution at λ = 475 nm,
a wavelength where there is more contrast at the particle
boundary than for the wavelength considered in Fig. 13.
Despite a very fine mesh of �x = 0.1 nm, one can clearly see
staircasing artifacts in the electric field amplitude distribution

Fig. 14. Electric field amplitude distribution of isolated nanotriangles in
vacuum at λ = 320 nm using (a) LRA FDTD and (b) the nonlocal Drude
FDTD.

Fig. 15. Close up of the electric field distribution of the star-shaped particle
at λ = 475 nm. The staircasing artifacts are much more prominent in (a) for
LRA FDTD than in (b) for nonlocal Drude FDTD.

for LRA FDTD in Fig. 13(a). These are notably reduced
in Fig. 13(b), where nonlocal Drude FDTD was used.

This reduction in staircasing artifacts is further illustrated by
the time-domain movies of the star-shaped nanoparticle sim-
ulations presented in the SI. These depict the time evolution
of the electric field amplitude and free electron density in the
xz- and yz-planes through the center of the particle, where the
incident plane wave is polarized in z and propagates along y.
The electric field evolution movies for nonlocal Drude FDTD
are movie6 and movie7, while those for the corresponding
free electron density evolution are movie8 and movie9. The
electric field evolution movies for LRA FDTD are movie10
and movie11.

VII. CONCLUSION

We have introduced a parallel FDTD implementation
for modeling nonlocality in plasmonics. We used an ADE
approach to model nonlocality with and without electron
diffusion and described in detail how to use the MPI frame-
work for parallel computation via domain decomposition.
After validating our implementation via comparisons with
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analytical and experimental results for small nanospheres,
we demonstrated the robustness of our parallel implementation
for larger particles with sharp nanoscale features. We find
that the inclusion of nonlocality within FDTD significantly
reduces staircasing artifacts that can plague standard plas-
monic FDTD modeling based on the LRA. This suggests
that beyond its importance for modeling nonlocality, nonlocal
FDTD might be advantageous for calculations that require
precise values for the fields at plasmonic boundaries. This
includes, for example, determining plasmonic fluorescence
enhancement, plasmonics-mediated fluorescent lifetime engi-
neering, and plasmonics enhanced nonlinear optics.
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