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Optimal Bandwidth Positions for a Terminal
Embedded Antenna: Physical Bounds

and Antenna Design
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Abstract— This article considers a small embedded planar
antenna in a square-shaped terminal of 25 cm2 at a frequency
band near 900 MHz, intended for long-range communication.
This article aims to shows how the Q-factor bounds can be
used to predict the performance of such an antenna. Both to
determine the optimal bandwidth and the variations in the total
efficiency but also to help to inspire the antenna design shape.
The choice of shape and position impacts both bandwidth and
efficiency. The latter is illustrated by a center-edge positioned
folded inverted F-antenna with higher efficiency, as compared
to, a more bandwidth optimal meander antenna at the corner.
Fabrication and measurements show that the corner positioned
antenna is close to bandwidth optimal, and also that it and the
associated optimal current have a similar radiation pattern.

Index Terms— Bandwidth, current optimization, embedded
antenna, optimization, Q-factor.

I. INTRODUCTION

SMALL antennas are increasingly used in almost every
connected electronic device, such as cell phones, sensors,

trackers, Internet of Things (IoT), and machine-to-machine
(M2M) communication devices [1]–[6]. These antennas are
embedded as a part of the terminal or its chassis. The position
of the embedded antenna is known to impact its bandwidth,
efficiency, and far-field pattern. In this article, a Q-factor bound
is used to determine the optimal position of a small antenna
embedded in a 5 × 5 cm terminal. The optimality here is
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with respect to the smallest antenna Q-factor, that is closely
associated with the available impedance bandwidth.

The bandwidth requirement of an embedded antenna is often
rather small. For example, devices that operate in one of the
free industry-scientific-medical (ISM) bands have a fractional
bandwidth (FBW) of 3% or less. In Europe, the short-range
device (SRD) 868 MHz has an FBW of 1%. However,
different ISM bands are used all over the world, 915 MHz
in USA or 923 MHz in Asia, thus a worldwide IoT system
should have a 7% FBW centered at 895 MHz. Moreover,
there is also a drive to deploy M2M and IoT devices within
the long-term evolution (LTE) frequency bands as defined in
e.g., the LTE-M or LTE-NB standards [7]. Here, the individual
communication channel is narrowband but the bandwidth of
the device has to be larger because of the frequency division
duplex (FDD) scheme since a channel can appear anywhere
within the frequency bands defined by the LTE-M/LTE-NB-
standards. As an example, the band number 20 from 3GPP
will require an 8% FBW centered at 826 MHz.

Given the fact that the physical size is a limiting factor for
small antennas, it is important and interesting to determine the
physical limits of the largest possible bandwidth for embedded
antennas. This is, in particular, the case in small low-frequency
devices with an expected larger communication range (see [3],
[8]). To determine the best antenna bandwidth, we use the
stored energy Q-factor [9], which is known to provide an
accurate estimation of the bandwidth for electrically small
antennas [10], [11], see also [12]–[14] for periodic structures.
The optimal antenna bandwidth can be increased, for example,
by allowing a larger antenna size, or by adding a match-
ing network beyond a tuning element in which the antenna
together with the matching network has a wider bandwidth.
Such considerations are normally done after the available
antenna bandwidth is determined.

Stored energies, as defined in [9], [15], and [16] are utilized
here since they allow antenna-current optimization [17], [18].
Such optimization can provide bandwidth bounds for small
arbitrary-shaped antenna domains. Antenna-current optimiza-
tion has successfully been applied to determine bounds on
a range of antenna parameters. It was first used to deter-
mine the ratio of partial directivity over Q (see [17], [19]).
Recently, optimization of the Q-factor as a pareto-front with
demands of increasing directivity was considered in [18].
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Current optimization was applied to optimize antenna gain
in [20] and to determine bounds on the Q-factor for a given
power front-to-back ration [21]. Capacity for MIMO-antennas
under different constraints has also been considered [22],
[23]. Fundamental bounds for antenna efficiency and the
Q-factor for lossy structures have been considered in [24]
and [25]. Other approaches to fundamental bounds for losses
include [26]–[28].

In this article, we determine the optimal position in an
electrically small planar device and study how “frequency-
stable” the predicted optimal position is. The antenna effi-
ciency associated with the optimal bandwidth currents is also
determined. The results are compared with antenna designs,
whereof one of the designs is inspired by a minimizing
current. Two different antennas are fabricated and measured.
The measurements are compared with the physical bounds
for two different embedded positions. Other investigations of
antennas that approach physical bounds include [18], [21],
and [29]–[31] (see also [32]–[36]).

The current optimization approach used here to determine
the Q-factor bounds is, as an optimization problem, a quadrat-
ically constrained quadratic program (QCQP). These types
of problems frequently come with nonconvex constraints.
However, with few enough constraints, such QCQP:s have a
globally unique solution [37]. The solution methods include
the semi-definite relaxation (SDR) technique [38], [39], a dual-
based eigenvalue method (see [18], [40]–[42]). The presented
solutions are mainly based on an in-house dual-based eigen-
value optimization method (see [43]).

The rest of this article is organized as follows: In Section II
we introduce the antenna geometry and briefly recall how
the Q-factor and other antenna quantities are expressed in a
method of moment (MoM) setting. We close this section by
posing the optimization problem for determining the minimal
Q-factor as a function of the embedded antenna position.
This is followed in Section III by the analysis of the opti-
mization results. Three different cases are considered: how
the bandwidth depends on the embedded position, changes
of efficiency associated with the optimal current at each
position, and how frequency-stable the optimal position is.
Section IV presents the simulation and analysis of the antenna
design, the manufacturing, and the measurement procedure.
In Section V, we compare and discuss the obtained bounds
with the measured results. This article ends with conclusions.

II. THEORY

A. Problem Description

A small IoT terminal of negligible height is considered
here. It is approximated by a 5 × 5 cm planar square metal-
surface, �. The embedded antenna is to be designed in a
2 × 2 cm region, �2, within the terminal (see Fig. 1).
The terminal size is smaller than a mobile phone, but still
large enough to support antennas with enough bandwidth
for the sub-GHz SRD and ISM frequency bands (868, 915,
and 923 MHz) together with space for electronics, batteries,
and other accessories like sensors or a display. Access to
other frequency bands like the GPS-bands and WiFi is also

Fig. 1. Embedded antenna, �1, (brown) within the terminal � = �1 + �2.
The terminal can be enclosed in a sphere with radius a.

interesting. Here, the focus is mainly on the lower frequency
bands. They are constrained in bandwidth as the terminal is
electrically small, ka ∼ 0.67 at 900 MHz, where a is the
radius of an enclosing sphere and k is the wavenumber. The
FBW for electrically small antennas are closely related to the
antenna Q-factor, Q

FBW = f2 − f1

f0
≈ 2|�0|

Q
√

1 − |�0|2
(1)

where f0 = ( f1 + f2)/2 is the center frequency, and |�0|
denotes the maximally allowed reflection coefficient.

The Q-factor approach to estimate bandwidth shows that
it is sufficient to determine the smallest Q-factor, to find the
widest bandwidth. The tuned Q-factor is defined by

Q = 2ω max(We, Wm)

Prad + Pd
= eQrad (2)

where ω is the angular frequency, We and Wm are the
electric and magnetic stored energy, respectively. Furthermore,
Prad is the radiated power of the antenna, and Pd is the
dissipated power. Let Qrad denote the radiated Q-factor and
e = Prad/(Prad + Pd) is the antenna efficiency [11], [15], [16],
[19]. Furthermore, Prad is the radiated power of the antenna, Pd

is the dissipated power. Let Qrad denote the radiated Q-factor
and e = Prad/(Prad + Pd) is the efficiency.

An advantage of using stored energy instead of, for example,
the input impedance to determine the Q-factor is, that such a
representation can be bounded from below by current opti-
mization. Thus, it can be used to predict the best available Q-
factor of any antenna in the considered region. That is, given a
maximal allowed reflection coefficient, there is an upper bound
on the bandwidth of all lossless passive antenna that fits in the
proposed region [17].

B. Representation of Antenna Parameters

The optimal Q-factor is here determined numerically
through an MoM approach using the Rao–Wilton–Glisson
(RWG) basis functions [44]. Denote an RWG-basis function
with ψn, and the set of N such basis functions are then denoted
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by {ψn}N
n=1. The surface current, J , in the region � at the

position r ∈ � is approximated by

J(r) ≈
N∑

n=1

Inψn(r). (3)

The current coefficients {In}N
n=1 are gathered as an N × 1

vector, I. This facilitates the representation of the electric field
integral operator an impedance matrix Z = R + jX ∈ C

N×N

for the region � [44]. The associated matrix representation,
Xe, Xm ∈ RN×N , of the electric and magnetic stored energy
are [45]

We ≈ 1

8
IH

(
∂X
∂ω

− X
ω

)
I = 1

4ω
IH XeI (4)

Wm ≈ 1

8
IH

(
∂X
∂ω

+ X
ω

)
I = 1

4ω
IH XmI. (5)

Here, ·H denote the Hermite conjugate. The radiated power
from the antenna is

Prad ≈ 1

2
IH RI. (6)

The dissipated power in the terminal can for a good conductor
be estimated in terms of an equivalent surface current density
and a surface resistance, Rs, as Pd ≈ Rs

2

∫
� |J |2 dS (see [24],

[25], [46]). The surface resistivity used here is the two-sided
resistivity Rs = (2σd)−1 since the terminal has currents on
both sides of the conductor. Above, σ is the conductivity and
d is the skin-depth. In the RWG-representation the dissipative
power reduces to

Pd ≈ Rs

2

∫
�

|J |2 dS ≈ Rs

2
IH �I (7)

which follows by a substitution of (3) into (7). Here, � is the
Gram matrix with elements {�mn}N

m,n=1 defined by

�mn =
∫

�

ψm(r) · ψn(r) dS, m, n ∈ [1, N]. (8)

The antenna efficiency, e, is represented as

e = Prad

Prad + Pd
= 1

1 + δ
≈ IH RI

IH (R + Rs�)I
(9)

where δ is the dissipation factor [47]

δ = Pd

Prad
= 1

e
− 1. (10)

With the above representations, all terms in (2) are known.
An optimization over all current vectors in the RWG-
representation of (2) determines a lower Q-factor bound for
antennas utilizing the whole domain �. To account for the
embedding of the antenna to the region �1, it is assumed that
the current coefficient vector, I2, associated with �2 = �\�1

is induced from currents, I1, in �1. The region partitioning
also partitions of the impedance matrix into block-matrices
Zmn , m, n ∈ [1, 2]. The induced currents are determined by a
metal-boundary condition [17], [48] on �2, thus

Z21I1 + Z22I2 = 0 ⇒ I2 = −Z22
−1Z21I1 = CI1. (11)

Introducing this representation for I2 in (4)–(7) results in a
reduced M × M version of the matrices Xe, Xm, R, and � ,
denoted by a ·̃ that act only upon I1

X̃ = X11 + X12C + CH X21 + CH X22C. (12)

This reduction technique is analogous to a special case of the
numerical Green’s function [49]. The induced current I2 on �2

is uniquely determined by (11). The induction matrix, C, thus
effectively reduces all antenna quantities to smaller matrices
acting on I1, through (12). The embedded region, as a part
of the terminal, has a bound from below on the Q-factor that
can be expressed in terms of the stored energies and total
power as before but, now expressed in terms of the reduced
matrices. All considerations below are formulated in terms of
the reduced matrices and the tilde, ·̃, is dropped to increase
the clarity of the presentation. These matrices are in the here
considered problems determined by an in-house MoM code.

C. Minimizing Q

The lower bound on Qrad for each position of
the embedded antenna is determined by solving the
RWG-representation of the optimization problem
Qrad = minI1 max(IH

1 XeI1, IH
1 XmI1)/(IH

1 RI1) subject to
the efficiency constraint e(I1) ≤ (1 + δ0)

−1 for a worst case
dissipation factor δ0. The underlying idea [17] for obtaining
a lower Q-factor bound is that the optimization is over all
possible currents in �1. They will thus include any realized
antenna geometry and its associated current within �1.
To simplify, note that this optimization problem is scaling
invariant under the transform I1 �→ αI1, for α ∈ C. By a
choice of scaling, α, such that IH

1 RI1 = 1, which corresponds
to studying all currents for which the terminal radiate 1

2 W,
the optimization problem reduce to

Qrad = min
I1∈CM

max{IH
1 XeI1, IH

1 XmI1
}

s.t IH
1 RI1 = 1

IH
1 �I1 ≤ δ0

Rs
(13)

for an efficiency equal or better than (1+δ0)
−1. Above, M ≤ N

is the number of basis functions in the embedded current
vector I1. Note that an inactive dissipation-factor constraint
in (13) results in that the solution has what is here called
a default efficiency (see Section III-B). Removing the δ0-
constraint results in an optimization problem that is identical
to the optimization of lossless antennas, thus Qlossless = Qrad,
for large enough δ0.

The optimization problem (13) is called a QCQP (see
[42]). The matrices involved are symmetric and positive semi-
definite for electrically small antennas. In this article, two dif-
ferent methods are used to solve (13). They are the SDR [18],
[21], [38] and a Lagrangian-based eigenvalue approach [18],
[40]. In the SDR approach, it is easy to add constraints with
little or no additional complexity. However, with three or more
constraints [37] it is no longer possible to guarantee that
the semi-definite relaxed method yields the unique minimum,
but rather a lower bound on the minimum [39]. For (13),
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Fig. 2. Color at the depicted center-positions indicate the FBW of a 2×2 cm2

embedded antenna with reflection coefficient |�| ≤ 1/
√

2 at (a) 850 and (b)
900 MHz for each center position of the embedded antenna.

both methods give the same unique minimum, and it is
straightforward to determine the best Q-factor.

III. OPTIMAL POSITION—BOUNDS

A. Bandwidth Best Positions Near 900 MHz

To determine the lossless Q-factor consider (13) without the
dissipation factor constraint. The problem is solved for each
center position (x, y) of the embedded antenna (see Fig. 1).
The optimization over arbitrary currents in (13) includes
all possible antenna currents within the embedded antenna.
It hence gives a lower bound on the Q-factor (see [15], [19]).

The choice of the embedded antenna position in (13)
results in a partition of the impedance matrix into controllable
and noncontrollable parts and appear here in the matrix C
[see (11)]. Consequently, all the matrices appearing in (13)
depend on the antenna position through (12). Given the
impedance matrix and the stored energy matrices for the entire
device, it is a small additional effort to determine the new
position matrices through (12), which makes the computation
of the position-dependent quantities comparatively fast. The
domain is decomposed into a 10 × 10 equidistant grid for
the center positions x, y of the embedded antenna within
the upper left symmetry-corner of the terminal. Consequently,
x, y ∈ [10, 25] mm in ten equidistant steps, corresponding
to the offset of the center from the nearest edge. The optimal
FBW for each position at 850 and 900 MHz is shown in Fig. 2.
It is calculated utilizing a reflection coefficient |�1| ≤ 2−1/2

(−3 dB), resulting in FBW ≈ 2/Q. If another maximal
reflection coefficient |�2| is desired, it is easy to rescale the
FBW

FBW2 ≈ FBW1
|�2|

√
1 − |�1|2

|�1|
√

1 − |�2|2
(14)

which follows from (1).
From the optimization result at 850 and 900 MHz, it is clear

that for this geometry and frequencies, the optimal bandwidth
positions are at any of the four corner positions of the device
and that the edges are the “second” best position. The Q-
factor in the corner at 900 MHz is about 43, whereas a center
position on the edge gives ∼61. In the center of the device,
it is greater than 900. It is clear that the 900 MHz band due
to its larger electrical size has a slightly improved FBW as
compared with the 850 MHz case for the respective embedded
antenna positions.

Fig. 3. Optimal current distribution for (a) corner and (b) center-edge
embedded antennas, respectively, at 900 MHz. The figures have unit length
current arrows, as a time-frozen sample of J(r, t) to illustrate the current
direction. The background color reflect |J(r, ω)|/|J(r, ω)|max with a colorbar
in dB to the right of the figure.

Fig. 4. Normalized radiation pattern for an optimal corner (left) and a center-
edge (right) embedded current at 900 MHz, the color range is from −6 (blue)
to 0 dB (red).

This example clearly shows that the corner position is the
optimal position for an embedded antenna with this geometry
and in the limit of electrically small devices. This observations
certainly agrees with the design practice for small antennas
and phones, where the embedded antenna often is placed at
the outer edges of the terminal, with the additional information
about the best avail bandwidth. The method here furthermore
gives quantitative information about how much better a certain
edge or corner position is, as compared to interior positions,
information that usually is not available with other methods.

Fig. 3 depicts two optimized surface-currents distribution.
Recall that the optimal current does not have to be unique,
e.g., the minimum is unique, but there can be more than one
minimizer. Since the structure has reflection symmetry planes
for the illustrated currents, it is clear that the mirror-symmetric
currents also give the same minimum Q factor. Fig. 4 shows
the radiation pattern associated with the optimal currents in
Fig. 3 for the corner and the edge position, respectively.

B. Bandwidth With Losses

Pure metal antennas tend to have rather small losses, and
antennas on a very thin substrate can to leading order be
approximated as pure metal antennas. The Ohmic losses are
here modeled with a perturbation approach [24], resulting
in the dissipation constraint in (13). From the lossless case
considered above, note that the most interesting embedding
region for the antenna is along the edge of the terminal. The
investigations below thus focus on antennas positioned along
the edge.
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Fig. 5. Lower bound on the electrically normalized Q-factor (left) and the
“default efficiency” (right) at [850, 867, and 900] MHz as a function of the
embedded antennas center position along the edge.

In solving (13), it is clear that a sufficiently large δ0 makes
the constraint inactive. Such solutions have a dissipation δ
and an efficiency e = (1 + δ)−1 that is here called the
“default efficiency” for a given embedded antenna configu-
ration. This current solution(s) for the default efficiency is
the same minimum solution and current distribution(s), as the
solution determined in Section III-A, but now for Qrad. The
total Q-factor is, in this case, Q = eQrad. The efficiency
depends on the materials and for a pure copper conductivity,
σ = 5.8 · 107 S/m, the calculations show that the efficiency
e at all edge positions are e = (1 + δ)−1 ≥ 97%, where
δ = Rs(IH

1 �I1)/(IH RI) (see Fig. 5). This result was obtained
by using a two-sided resistivity model based on the electrical
skin-depth Rs = (2σδ)−1, similar to EM-software conductivity
models for an infinitesimally thin copper sheet. Fig. 5 depicts
(ka)3 Qrad for [850, 867, and 900] MHz together with the
associated efficiency for an optimal solution. It is interesting
to observe that the (ka)3-scaling, with a being the radius
of the terminal, still captures the main frequency variation.
Note that this normalization is better for an embedded antenna
at the corner position than at the other edge positions. This
observation conforms with that the fact that the corner-position
has a lower Q-factor associated with better utilization of the
full terminal structure at these frequencies.

The best Q-factor currents (see Fig. 3) have their largest-
amplitude currents at the edge of the embedded antenna region
�1. Thus, perturbations in this region could impact on the
result. The here used RWG basis functions, representing the
current density, has a small spatial extension corresponding
to its support. The number of basis functions included in the
“inside” the antenna domain, as well as their mesh-dependent
shape and orientation, could thus modify the FBW result to a
small extent.

To study this, consider a terminal with 101 equidis-
tant points on the edge of the terminal, corresponding to

29 800 basis functions. A small position shift across a mesh
boundary of the embedded is associated with an uncertainty,
FBW ∼ (3.76 ± 0.01)% at 900 MHz for center-x = 12 mm
and with a −3 dB reflection coefficient. This uncertainty is
small, but to circumvent such a mesh-dependent influence,
the simulations are done for a choice of embedded antenna
positions such that the number of basis functions within the
embedded antenna is constant.

In the optimization problem (13), it is possible to increase
the antenna efficiency higher than the default efficiency.
However, note that the default efficiency case is higher than
the corresponding simulated and manufactured antenna (see
Section IV). This is not surprising since the conductivity used
here, is for the pure copper-case, whereas the manufactured
antenna has a given surface-roughness and a thin dielectric
layer in addition to the battery and electronic components.
It is further known that it is challenging to reach up to an
optimal antenna efficiency [29] since high-efficiency currents
tend to be as homogeneous as possible (see [50]).

C. Optimal Bandwidth Position With Respect to Frequency

The result in Section III-A indicates that the bandwidth
optimal corner position is stable under small perturbations
in frequency. To further examine this design stability, con-
sider the lossless optimal embedded position for frequencies
between [850, 1900] MHz corresponding to the electrical sizes
ka = [0.62, 1.41]. In the latter part of this range, the terminal
is not electrically small. However, the antenna by itself is only
ka = 0.56, and it is hence electrically small. The normalized
FBWs are depicted in Fig. 1. The FBW is normalized with the
maximal FBW for each frequency to emphasize the visibility
of the optimal position. Thus, in Fig. 6, the optimal position
has a color-code corresponding to 1 (dark red), and all other
positions are a fraction of this maximum. To compare the
results for 12 different frequencies in one figure, only one
quadrant of the result for each frequency is shown. In Fig. 7,
the FBW is depicted as a percentage.

It is clear from Figs. 6 and 7 that the corner position remains
the optimal bandwidth position also for higher frequencies
up to about 1.4 GHz. Here, note that the corner and an
interior edge-point at x ∼ 20 mm has a rather similar
bandwidth FBW ∼ 20%. At higher frequencies, note that
the optimal-bandwidth position moves toward the center of
the edge. At 1.9 GHz, the center of the edge is the best
bandwidth position (see Fig. 7). For all considered frequencies,
the edge remains a much better bandwidth position to place
the antenna than an interior point. Interior-points have roughly
50% or more in FBW reduction as compared to the optimal
position.

IV. ANTENNA DESIGN

A. Antenna Design and Simulation

The above theory thus predicts, in particular for sub-GHz
frequencies, that it is substantially better to place the embed-
ded antenna on the terminal edge rather than on an interior
position, to obtain a larger bandwidth. The very best position
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Fig. 6. Optimal FBW for antennas at different center-positions in the
upper left corner as a function of frequency. The color-coding correspond
to FBW(x, y)/ max FBW at each frequency.

Fig. 7. Optimal FBW for antennas at different center-positions in the upper
left as a function of frequency. The color-coding is the FBW in %.

is at the corner for this geometry and the sub-GHz frequencies,
considered here. It is thus interesting to compare realized and
measured embedded antennas with the physical bound. To do
this, consider the bandwidth from a geometry optimized planar
embedded meander antenna (see Fig. 8(a) and Table I). For
each position on the upper terminal edge, an optimization-
algorithm combined with a full-wave simulation in Ansys
HFSS Release 2019 R3 is used to determine the best width and
length of the meander, similar to [29], for each edge position to
obtain the best possible bandwidth performance at 900 MHz.

Fig. 9 depicts both the simulated lossless meander and the
bandwidth bound. Note that the corner position indeed is the
best bandwidth position also for meander-antennas. However,
there remains a gap for the meander antennas to reach the
optimum bandwidth, as shown in Fig. 9.

Observe that a minimizing current, as shown in Fig. 3(b),
shows that the currents rotate around the embedded antenna

Fig. 8. Cutout drawings of the terminal for the embedded antenna models.
(a) Meander antenna. (b) FIFA antenna.

TABLE I

OPTIMIZED ANTENNA PARAMETERS FOR THE EMBEDDED ANTENNAS
IN FIG. 8

Fig. 9. FBW of the meander (blue) and the FIFA (red) in a planar terminal
as a function of its center position along the edge at 900 MHz. The lossless
(dark) and the lossy (light) cases are indicated. The feeding of the FIFA
restricts the distance to the corner near the center x = 10 position.

on the ground plane. This inspired us to consider the folded
inverted F-antenna (FIFA) antenna, shown in Fig. 8(b),
to excite the currents in a similar way. Its defining parameters
are the linewidth, and the gap between the line and the
ground-plane. Optimizing these parameters, with respect to
maximum bandwidth at 900 MHz, results in the geometry
shown in Fig. 8(b) and Table I. The matching stub shown
on the left side of the FIFA adjusts the impedance to 50 �.
The optimized geometry parameters for the meander at the
corner and the FIFA antenna at the center of the edge are
shown in Table I.

The simulated vector current is depicted in Fig. 10, it con-
firms that the proposed FIFA has a similar current distribution
as the optimal solution Fig. 3(b). Its FBW is depicted as
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Fig. 10. Unit-length normalized current vector at the resonance frequency
for the meander antenna (left) and the FIFA (right).

a function of the center position in Fig. 9 (red), and it is
compared with the bound and the meander antenna (blue).
We observe that for the FIFA has a better FBW for most of
the considered position, apart from the meander in the corner.
For an embedded antenna designed in this position of a device,
the FIFA is a better choice than the meander, as it has twice
as large −3 dB FBW (see Fig. 9). Although it is much better
than the meander antenna at the center edge position, it still
has some distance to the physical bound. The asymmetry with
respect to x = 25 mm in the red and blue curves in Fig. 9 is
due to the asymmetric feeding position and the matching stub
(see Fig. 8).

B. Antenna Fabrication

To assess the predicted performance, prototypes for both
the meander and the FIFA are manufactured. To minimize
the dielectric effects, a 50 μm thick polyimide substrate is
used as a supporting layer. A flexible printed circuit board is
designed to connect the antenna to a UHF transceiver module
(SX1276 from Semtech). To control the transceiver, a micro-
controller that is mounted on a miniature PCB (ATMega 328p)
is also integrated with the flexible terminal. The different
electronic components are powered by a miniature Lithium
battery with a 38 × 19 × 8 mm3 volume (see Fig. 11).

Considering that the electronic components and battery are
positioned over the ground plane of the antenna, the influence
on the antenna performance is limited. However, it can be seen
in Fig. 12 that an average of a 6% downshift is observed due
to the components and the dielectric.

The prototype is fabricated on a single-side PCB, the effect
of a removed-copper trace inserted in the ground plane needs
to be carefully considered: the signal line connecting the
antenna input to the transceiver RF pin (top Fig. 11) is
interrupting the conductivity continuity of the ground plane
around the antenna feed and change the current distribution.
In order to correct this effect, air-bridges (made with simple
copper wires) are inserted to connect the two sides of the
ground plane above the signal trace.

C. Antenna Measurement

Small antennas are difficult to measure because any cable
connected to the device will strongly influence both the

Fig. 11. Picture of terminal prototype for the meander antenna (left) and for
the FIFA (right).

radiation pattern and its impedance. To address this issue,
the transceiver is here placed on the terminal. It is used to
generate a continuous wave (CW) with a 14 dBm output
power. This methodology that was presented in [3] is here
used to extract the realized gain and the total efficiency
from a total radiated power (TRP) measurement. Radiation
measurements are performed for different frequencies, and a
−3 dB frequency bandwidth can be extracted from the total
efficiency.

For the here manufactured prototypes, there is a resonance
frequency downshift from 900 to 851 and 867 MHz for the
meander and the FIFA, respectively. This frequency is down-
shifted due to the dielectrics, the presence of the electronic
components, and the battery, together with the fabrication
tolerance. To show this, the complete manufactured geometry
is simulated and compared with the planar structure. The result
is depicted in Fig. 12, where the downshift is clearly seen. The
realized gain and total efficiency versus a frequency normal-
ized by the resonance frequency, are presented in Fig. 13 for
the meander and FIFA, respectively.

A −3 dB bandwidth of 43 (5.1% FBW) and 23 MHz
(2.6% FBW) are extracted for the meandered and the FIFA,
respectively. A good agreement with simulation is obtained.
The measured 3-D-radiation pattern of the two prototypes are
presented in Fig. 14. A good agreement is obtained with the
predicted optimal radiation pattern in particular for the corner
position, see Fig. 4. The optimal FIFA has a radiation pattern
that is similarly oriented but with a less pronounced dumbbell-
shape.

V. DISCUSSION: ANTENNA PERFORMANCE COMPARISON

Above, antenna designs have been developed from a planar
lossless bound as compared with EM software-simulation



1938 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 69, NO. 4, APRIL 2021

Fig. 12. Comparison between the planar structure (planar) and the structure
with the electronic components (real) for both the meander (red) and FIFA
(blue). The down-shift in frequency due to the dielectric and the components
is clear.

Fig. 13. Measured realized gain (blue) and total efficiency (green) for the
meander with resonant frequency f0 = 851 MHz. Measured realized gain
(red) and total efficiency (orange) for the FIFA with f0 = 867 MHz.

Fig. 14. Measured 3-D-radiation pattern at the resonance frequency for (left)
the meander antenna and (right) the FIFA.

of planar lossless and lossy meander and FIFA embedded
antennas Fig. 9. It is clear that the here simulated lossless
antennas have FBW-bound−FBW-antenna ≥1% at 900 MHz

Fig. 15. 867 MHz lossless bound (orange) and the corresponding FIFA
measurement FBW∗e (gray) with error bars corresponding to a 0.5 dB
uncertainty of the efficiency. The 851 MHz lossless bound (purple) and the
bound with an added battery (blue) are compared with the meander-antenna
measurement, FBW∗e (black) with error bars corresponding to 0.5 dB in
efficiency uncertainty.

for all positions, there is hence room for antenna design
improvements. The realized antennas are matched to 50 �,
at the respective center frequency, such an additional con-
straint can shift the bandwidth somewhat downward. However,
the results in [29] indicate that such an impedance constraint
only weakly impact upon the factor, and consequently on the
FBW.

Even though the antennas initially were designed for
900 MHz, the downshift, as discussed above to 851 (meander)
and 867 MHz (FIFA) are due to the dielectrics and electronic
components required new calculations for the bounds. The
bounds were thus simulated also at the frequencies 851 and
867 MHz. Their associated FBWs as a function of the position
on the edge are shown in Fig. 15 in purple at 851 MHz
for the near embedded antenna with center at x = 10 mm,
y = 10 mm region and in orange near the center at x = 25 mm
for y = 10 mm at 867 MHz.

The FBW measurements are utilizing the electronic com-
ponents to measure the antenna properties without connected
cables and to mimic a real application. This introduces a small
uncertainty of 0.5 dB in the measured efficiency. The obtained
FBWs are, respectively, 5.1% for the meander antenna at
851 MHz and 2.6% for the FIFA embedded antenna at
867 MHz. The corresponding total efficiency is −1.7 dB
respective −1.16 dB with ±0.5 dB uncertainty.

Clearly, it is nontrivial to compare the physical bound for a
planar lossless structure with the measured terminal containing
batteries and electronic components. One way to account for
losses is to recall that Q = eQrad, thus the relation between the
radiation FBW and a lossy FBW can be approximated by an
efficiency normalization. Assuming that the efficiency is not
externally constrained we find that the radiation and lossless
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FBW are approximately equal, that is,

FBWLL ≈ eM ∗ FBWM (15)

where FBWM is the measured FBW and FBWLL is the
estimated lossless bandwidth from the measurement and eM

is the measured efficiency. The lossless-normalized measured
FBWs are inserted into Fig. 15 as a black dot at x = 10 mm
(meander) and as a gray circle at x = 25 mm (FIFA), well
below the planar lossless bound.

A second factor is the measurement/simulation compari-
son between a planar lossless structure with a nonflat mea-
sured antenna device containing a battery, electronics, and
dielectrics. First, note that the planar structure physical bound
is depicted with purple and orange in Fig. 15. It is interesting
to see that the measured meander is above the planar structure
bound. To take into account the battery in the physical bound
we construct a 3-D model, see the inset in Fig. 15. The
battery is modeled as a box on the ground plane of dimensions
38 × 19 × 8 mm with a thin, 2 mm wide bridge (red). The
bound with this updated model for 851 MHz (blue) is shown
in Fig. 15 and limits the measured results.

The meander antenna is above the planar bound, but slightly
below the model that is determined with the battery. Thus,
compensating for the difference in measured and estimated
efficiency give a close prediction of the expected measured
bandwidth behavior, for close to optimal antennas. An estimate
of the measurement uncertainty is included in the figure brack-
eting the measurement point. It is pleasing to see that the
measured meander is very close to bandwidth optimal.

It is also interesting to note that the measured efficiency for
the FIFA at the center position is higher than the efficiency
of the meander at the corner position. This does not agree
with the “default” efficiency of the optimal bound (see Fig. 5)
since here the corner position has a slightly higher efficiency
than the edge-center position. In the simulations observe that
the “default” efficiency away from the corner increases as
the embedded antenna moves away from the corner. After
a local max at x = 17.5 mm there is a slight decrease
in efficiency, still well above the x = 10.5 mm position.
However, these default efficiency variations are rather small
[0.977%, 0.985%] (∼ −0.17 dB). What is clear from these
considerations is that not only does the shape of the embedded
antenna impact the efficiency, but also on the embedded
position of the antenna. Clearly, there remain open questions
in how to obtain predictive efficiency estimates combined with
bandwidth bounds for small antennas.

VI. CONCLUSION

In this article, we show how the theory of Q-factor limita-
tions can be used to determine the optimal bandwidth position
for an embedded antenna. As part of the analysis, we also
obtain the tradeoff relations for different positions in a planar
terminal and note that there is a sharp increase in the available
bandwidth for embedded antennas away from the edges. Thus,
to obtain the largest possible bandwidth in the investigated
device for sub-GHz frequencies, it is essential to embed the
antenna as close as possible to an edge and preferably at a

corner of the device at low frequencies. We conclude that there
are optimal bandwidth positions for embedded antennas and
that they are rather robust for sub-GHz frequencies.

We also investigate the optimal position with respect to dif-
ferent working frequencies. For lower frequencies, the corner
is the best position. Once the terminal diameter is above β/3
in size, the interior points of the edges are optimal in the
here considered cases. For multiband antennas, the optimal
bandwidth position is more challenging, and it will depend
on e.g., the choice of the examined frequency bands. For this
reason, optimal bandwidth positioning for multiband antennas
remains an open question.

Two types of embedded antennas, a meander, and a FIFA
are simulated and positioned along the edge. Their simu-
lated bandwidth performances are compared with the here
determined physical bounds. This shows that the designed
antennas are close to the bound at the edge and at the
corner, respectively. These antennas are also manufactured and
measured. We note that the planar lossless FBW bound as
well as the model with the simplified battery well predicts the
measured results, in particular for the meander.
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