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An Explicit Time Marching Scheme for Efficient Solution of the Magnetic

Field Integral Equation at Low Frequencies
Rui Chen , Sadeed B. Sayed , H. Arda Ulku , and Hakan Bagci

Abstract— An explicit marching-on-in-time (MOT) scheme to effi-
ciently solve the time-domain magnetic field integral equation
(TD-MFIE) with a large time step size (under a low-frequency excitation)
is developed. The proposed scheme spatially expands the current using
high-order nodal functions defined on curvilinear triangles discretizing
the scatterer surface. Applying Nyström discretization, which uses this
expansion, to the TD-MFIE, which is written as an ordinary differential
equation (ODE) by separating self-term contribution, yields a system of
ODEs in unknown time-dependent expansion coefficients. A predictor–
corrector method is used to integrate this system for the samples of
these coefficients. Since the Gram matrix arising from the Nyström
discretization is a block-diagonal, the resulting MOT scheme replaces
the matrix “inversion” required at each time step by a product of the
inverse block-diagonal Gram matrix and the right-hand side vector. It is
shown that, on the convergence of the corrector updates, this explicit
MOT scheme produces the same solution as its implicit counterpart and
is faster for large time step sizes.

Index Terms— Magnetic field integral equation (MFIE), marching-on-
in-time (MOT), Nyström method, predictor–corrector scheme.

I. INTRODUCTION

Transient electromagnetic scattering from perfect electrically con-
ducting (PEC) objects can be analyzed by solving time-domain
surface integral equations (TD-SIEs) [1]–[18]. A TD-SIE for a PEC
scatterer is often constructed by enforcing the electric and magnetic
field boundary conditions on the scatterer surface. These boundary
conditions are expressed in terms of the known incident field and the
scattered field; representing the latter as a space-time integral of the
unknown current induced on the scatterer surface yields the electric
field integral equation (EFIE) or the magnetic field integral equation
(MFIE) (depending on the type of the field used). Furthermore,
the combined field integral equation (CFIE) can be obtained by
linearly combining the (rotated) EFIE and the MFIE.

One of the prevalent methods developed for solving TD-SIEs
is the marching-on-in-time (MOT) scheme [10]–[16]. The classical
MOT scheme expands the unknown current induced on the scatterer
surface using the Rao–Wilton–Glisson (RWG) basis functions [19]
in space and piecewise Lagrange polynomials [3], [13], [14] in
time. This expansion is inserted into the TD-SIE, and the result-
ing equation is Galerkin-tested in space and point-tested in time,
yielding a lower triangular matrix system in unknown expansion
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coefficients. Applying the backward substitution to this matrix system
results in a time-marching algorithm, where a reduced system of
equations known as the MOT system is solved at every time step
for the unknown coefficients associated with only that time step.
The right-hand side of the MOT system consists of the incident
and scattered fields tested at the same time step. After the solution,
the coefficients, which are now known, are used for computing the
tested scattered field at the next step. This process is repeated until
all the expansion coefficients at all the time steps are computed.

The time step size of the MOT scheme described above is
selected as �t = 1/(α fmax), where fmax is the maximum frequency
of the incident field, and α is an oversampling coefficient. For
high-frequency excitations, �t is small, and the MOT system is
sparse. Consequently, the computation of the tested scattered field
on the right-hand side of the MOT system is more costly than
its solution (which is often done using an iterative solver). This
computation is often accelerated using (multilevel) plane-wave time-
domain (PWTD) algorithms [10]–[13] or fast Fourier transformation
(FFT)-based schemes [14]–[16]. For low-frequency excitations, �t is
large and the MOT system is dense (even full), and the computational
cost of solving this system becomes larger than that of computing
the tested scattered field on the right-hand side.

In [8], a quasi-explicit MOT scheme, which does not suffer
from this drawback, has been developed to solve the TD-MFIE.
This scheme expresses the TD-MFIE as an ordinary differential
equation (ODE) that relates the current to its temporal derivative.
Discretizing this ODE using RWG basis and testing functions [19]
yields a system of ODEs in time-dependent expansion coefficients
of the RWG basis functions. Integrating this system in time provides
the samples of these coefficients. This MOT scheme avoids solving a
dense matrix system but still requires the solution of a sparse Gram
matrix system at each time step.

This sparse matrix inversion required at every step can be elim-
inated if a spatial discretization scheme, which does not use basis
functions defined over two mesh elements, is used. Indeed, in [20],
an MOT scheme that makes use of this idea is used to solve
the time-domain integral equations of acoustics. In this work, this
scheme is extended to solve the TD-MFIE efficiently when �t
is large. The current is spatially expanded using high-order nodal
interpolation functions defined on curvilinear triangular patches.
Applying Nyström discretization, which uses this expansion, con-
verts the ODE form of the TD-MFIE into a system of ODEs in
time-dependent expansion coefficients. Then, this system is integrated
using a predictor–corrector (PE(CE)m ) scheme to yield the samples
of these coefficients. The Gram matrix arising from the Nyström
discretization is block-diagonal (with 2 × 2 blocks), and its inverse
is constructed very efficiently from the inverse of these blocks at
the beginning of time integration. Therefore, the matrix inversion
required at every time step is replaced by a block matrix and vector
product. This explicit MOT scheme maintains its stability even when
using �t as large as that would be used by its implicit counter-
part (traditional MOT scheme, where RWG-based discretization is
replaced by Nyström discretization [18]) and is significantly faster for
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large �t . In addition, it is shown that when the orders of the temporal
basis function of the implicit solver and the PE(CE)m scheme of
the explicit solver are the same, both the solvers produce the same
solution on convergence of the corrector updates.

II. FORMULATION

A. TD-MFIE

Let S denote the surface of a PEC object residing in an
unbounded homogeneous medium with permittivity β and permeabil-
ity μ. An electromagnetic wave with magnetic field Hi(r, t) that is
band-limited to fmax is incident on the object. An electric current
J(r, t) is induced on S and generates a scattered magnetic field
Hs(r, t) as

Hs(r, t) =
∫

S
∇ × J(r�, t �)

4π R
ds�. (1)

Here, t � = t − R/c is the retarded time, R = |r − r�| is the distance
between the points r and r�, and c = 1/

√
μβ is the speed of light.

Inserting (1) into the temporal derivative of the magnetic-field bound-
ary condition on S, i.e., ∂t J(r, t) = ∂t n̂(r) × [Hi(r, t) + Hs(r, t)],
yields the temporal derivative form of the TD-MFIE as [8]
1

2
∂t J(r, t) = n̂(r) × ∂t Hi(r, t) + n̂(r) ×

∫
S

∇ × ∂t J(r�, t �)
4π R

ds�. (2)

Here, n̂(r) is the unit normal vector pointing outward from S at r.

B. Discretization

To numerically solve (2), J(r, t) is expanded in space using
high-order Lagrange polynomial interpolation functions as [21]

J(r, t) =
Np∑

p=1

Nn∑
i=1

[{I(t)}u
ipu(r) + {I(t)}v

ipv(r)
]
ϑ−1(r)�ip (r). (3)

Here, Np and Nn are the numbers of the curvilinear triangular patches
discretizing S and the interpolation nodes on each patch, respectively,
�ip(r) represents the Lagrange interpolation function defined at node
rip (node i on patch p), ϑ(r) is the Jacobian of the transformation
that maps the patch description in the Cartesian coordinate system to
the right triangle defined by variable pair (u, v), vectors u(r) = ∂ur
and v(r) = ∂v r are tangential to S at r, and {I(t)}u

ip and {I(t)}v
ip

are the time-dependent unknown expansion coefficients of J(rip , t)’s
components along the directions of u(rip) and v(rip ), respectively.
To account for the time retardation t � in (2), {I(t)}b

ip and b ∈ {u, v}
are expanded using piecewise Lagrange polynomial interpolation
functions as [3], [13], [14]

{I(t)}b
ip =

Nt∑
l=1

Il |bip T (t − l�t). (4)

Here, Il |bip = {I(l�t)}b
ip , b ∈ {u, v}, T (t) is constructed using

piecewise Lagrange polynomials, and Nt is the number of time steps.

C. Explicit MOT Scheme (E-MOT)

Substituting (3) into (2) and spatially testing with u(r j q) and
v(r j q ), j = 1, . . . , Nn, q = 1, . . . , Np yield a time-dependent
semidiscrete system of ODEs. This system has to be sampled at
times t = h�t to carry out the time integration using a PE(CE)m-
type scheme [8], [20], [22]. Consequently, one has to use temporal
interpolation on {I(t �)}b

ip , b ∈ {u, v}. This is done by using (4), which
leads to a fully discretized linear system as

Gİh = Vi
h −

h∑
l=1

Zexp
h−lIl , h = 1, . . . , Nt . (5)

Here, the block-diagonal Gram matrix G is given by (6) at the bottom
of the next page, where its entries are

G|ab
j q,ip = 1

2
a(r j q ) · b(rip)ϑ−1(rip ) (7)

a, b ∈ {u, v}, a, b ∈ {u, v}, and the E-MOT matrices Zexp
h−l are given

by (8) at the bottom of the next page, where their entries are

Z
exp
h−l |ab

j q,ip = a(r j q ) · n̂(r j q) ×
∫

Sp

ϑ−1(r�)�ip(r�)

× R

4π R3

[
∂t T (t) + R

c
∂2

t T (t)

]
t=(h−l)�t−R/c

× b(r�)ds� (9)

where Sp is the support of patch p, R = r j q − r�, R = ∣∣r j q − r�∣∣,
and the tested excitation vector Vi

h are given by

Vi
h = [

V i
h

∣∣u
11, V i

h

∣∣v
11, V i

h

∣∣u
21, V i

h

∣∣v
21, . . . , V i

h

∣∣u
Ni Np

, V i
h

∣∣v
Ni Np

]T

with entries V i
h |aj q = a(r j q ) · n̂(r j q) × ∂t Hi(r j q , h�t), and the

unknown coefficient vector Il are given by

Il = [
Il

∣∣u
11, Il |v11, Il

∣∣u
21, Il

∣∣v
21, . . . , Il

∣∣u
Ni Np

, Il
∣∣v
Ni Np

]T

and İh store samples of the time derivative of the coefficients as

İh = [
İh

∣∣u
11, İh

∣∣v
11, İh

∣∣u
21, İh

∣∣v
21, · · · İh

∣∣u
Ni Np

, İh
∣∣v
Ni Np

]T

with İh |bip = {∂t I(h�t)}b
ip . Note that the weak singularity of the

integral in (9) is canceled using the Duffy transformation [23] to
permit its numerical evaluation.

A PE(CE)m scheme is used to integrate the ODE system (5) to
yield Ih , h = 1, . . . , Nt [8], [20], [22]. The steps of this scheme are
briefly summarized as follows:

0) Compute G−1

Loop over h = 1, . . . , Nt
1) Compute the part of right-hand side of (5) that does not
change within time step h

Vfix
h = Vi

h −
h−1∑
l=1

Zexp
h−lIl . (10)

2) Predict Ih using Il and İl

Ih =
K∑

k=1

[{p}kIh−1+k−K + {p}K+k İh−1+k−K ]. (11)

3) Evaluate İh using Vfix
h and the predicted Ih

İh = G−1(
Vfix

h − Zexp
0 Ih

)
. (12)

4) Set İ(0)
h = İh and start (CE)m updates

Loop over n = 1, . . . , m (until convergence)
4.1) Correct I(n)

h using İ(n−1)
h , Il and İl

I(n)
h =

K∑
k=1

[{c}kIh−1+k−K + {c}K+k İh−1+k−K ]

+ {c}2K+1İ(n−1)
h . (13)

4.2) Evaluate İ(n)
h using Vfix

h and the corrected I(n)
h

İ(n)
h = G−1(

Vfix
h − Zexp

0 I(n)
h

)
. (14)

4.3) Check convergence �I(n)
h − I(n−1)

h � < χPECE, where
χPECE is a threshold parameter.

End loop over n
5): Once convergence is achieved, e.g., at iteration m, set Ih =
I(m)
h and İh = İ(m)

h .
End loop over h.

Here, vectors p and c store the predictor and corrector coefficients,
which are obtained using polynomial interpolation/extrapolation on
the temporal samples of the solution (e.g., Adam–Moulton, Adam–
Bashforth, and backward difference methods [24]), respectively. The
Gram matrix G does not depend on �t and is block-diagonal with
2 × 2 blocks. Therefore, G−1 is constructed very efficiently using
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the inverses of G’s blocks and is stored before the time marching
starts. Since G−1 is also block diagonal, the solutions of matrix
systems in (12) and (14) are done by simply multiplying G−1 with
the right-hand side vector. At the start of time marching, it is assumed
that Il = 0 and İl = 0, for l = 1 − K , . . . , 0. This assumption does
not introduce any significant errors in the solution since Hi(r, t) is
vanishingly small for t ≤ 0, ∀r ∈ S and bandlimited to fmax.

D. Implicit MOT Scheme (I-MOT)

Substituting (3) and (4) into (2) and testing with u(r j q) and v(r j q ),
j = 1, . . . , Nn, q = 1, . . . , Np at times t = h�t , h = 1, . . . , Nt yield
the I-MOT system as [18]

Zimp
0 Ih = Vi

h −
h−1∑
l=1

Zimp
h−lIl , h = 1, . . . , Nt . (15)

Here, Il and Vi
h are the same as those in (5), and the implicit MOT

matrices Zimp
h−l are given by

Zimp
h−l = G∂t T (t)|t=(h−l)�t + Zexp

h−l . (16)

The unknown vectors Ih , h = 1, . . . , Nt are computed recursively
using a time-marching scheme. First, at t = �t , I1 is obtained by
solving Zimp

0 I1 = Vi
1 [h = 1 in (15)]. Then, at t = 2�t , I2 is found

by solving Zimp
0 I2 = Vi

2 −Zimp
1 I1 [h = 2 in (15)]. Next, at t = 3�t ,

I3 is computed by solving Zimp
0 I3 = Vi

3 − Zimp
2 I1 − Zimp

1 I2 [h = 3
in (15)] and so on. During this time-marching scheme, the solution of
the MOT system (15) required at each time step is obtained using the
transpose-free quasi-minimal residual (TFQMR) scheme [25]. This
iterative solver is stopped when �I(n)

h − I(n−1)
h � < χTFQMR, where

I(n)
h and χTFQMR represent the solution vector at iteration n and a

threshold parameter, respectively.

E. Comparison of Implicit and Explicit Solutions

In this section, it is shown that, when both I-MOT and E-MOT
use the same �t , the corrector updates of E-MOT produce the same
result as the iterative solution of the I-MOT system on convergence
if T (t) (consisting of piecewise Lagrange polynomials) has the same
order as the Lagrange polynomial interpolation used to derive the
corrector coefficients c. This is best demonstrated by an example.

Assume that c is obtained using a third-order backward difference
method [24], which leads to

Ih − 18

11
Ih−1 + 9

11
Ih−2 − 2

11
Ih−3 = 6

11
�t İh . (17)

Assuming that the corrector updates have converged, inserting (17)
into (5) yields the matrix system

11

6�t
GIh − 3

�t
GIh−1 + 3

2�t
GIh−2 − 1

3�t
GIh−3

= Vi
h −

h∑
l=1

Zexp
h−lIl , h = 1, . . . , Nt (18)

whose solution for Ih should be equal to the result of the corrector
updates. Merging the “past/history” terms with Ih−3, Ih−2, and
Ih−1 to the right-hand side of (18) and collecting the “instanta-
neous/current” terms with Ih on the left-hand side yield

Z̃exp
0 Ih = Vi

h −
h−1∑
l=1

Z̃exp
h−lIl , h = 1, . . . , Nt (19)

where Z̃exp
0 = 11/(6�t)G+Zexp

0 , Z̃exp
1 = −3/(�t)G+Zexp

1 , Z̃exp
2 =

3/(2�t)G+Zexp
2 , Z̃exp

3 = −1/(3�t)G+Zexp
3 , and Z̃exp

h−l = Zexp
h−l , l =

1, . . . , h − 4.
Assume that T (t) is constructed using third-order Lagrange poly-

nomials [13] [the same order as the one used for backward difference
in (17)], then ∂t T (t)|t=0 = 11/(6�t), ∂t T (t)|t=�t = −3/�t ,
∂t T (t)|t=2�t = 3/(2�t), and ∂t T (t)|t=3�t = −1/(3�t). Inserting
these expressions in (16) yields Zimp

0 = 11/(6�t)G + Zexp
0 , Zimp

1 =
−3/(�t)G+Zexp

1 , Zimp
2 = 3/(2�t)G+Zexp

2 , Zimp
3 = −1/(3�t)G+

Zexp
3 , and Zimp

h−l = Zexp
h−l , l = 1, . . . , h − 4, which demonstrates that

the system in (19) is the same as the I-MOT system. Then, one can
argue that, on convergence, the corrector updates produce the same
result as the iterative solution of the I-MOT system. This statement
is verified by the numerical examples in Section III. Note that the
numerical results also show that E-MOT can use the same �t as
I-MOT without sacrificing the stability of the solution.

F. Computational Complexity Analysis

Before comparing the computational complexity of I-MOT and
E-MOT, three observations are noted.

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G|uu
11,11 G|uv

11,11
G|vu

11,11 G|vv
11,11

G|uu
21,21 G|uv

21,21
G|vu

21,21 G|vv
21,21

. . .

. . .

G|uu
Nn Np,Nn Np

G|uv
Nn Np,Nn Np

G|vu
Nn Np,Nn Np

G|vv
Nn Np,Nn Np

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

Zexp
h−l =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Zexp
h−l

∣∣uu
11,11 Zexp

h−l

∣∣uv
11,11 Zexp

h−l

∣∣uu
11,21 Zexp

h−l

∣∣uv
11,21 · · · · · · Zexp

h−l

∣∣uu
11,Nn Np

Zexp
h−l

∣∣uv
11,Nn Np

Z
exp
h−l

∣∣vu
11,11 Z

exp
h−l

∣∣vv
11,11 Z

exp
h−l

∣∣vu
11,21 Z

exp
h−l

∣∣vv
11,21 · · · · · · Z

exp
h−l

∣∣vu
11,Nn Np

Z
exp
h−l

∣∣vv
11,Nn Np

Z
exp
h−l

∣∣uu
21,11 Z

exp
h−l

∣∣uv
21,11 Z

exp
h−l

∣∣uu
21,21 Z

exp
h−l

∣∣uv
21,21 · · · · · · Z

exp
h−l

∣∣uu
21,Nn Np

Z
exp
h−l

∣∣uv
21,Nn Np

Zexp
h−l

∣∣vu
21,11 Zexp

h−l

∣∣vv
21,11 Zexp

h−l

∣∣vu
21,21 Zexp

h−l

∣∣vv
21,21 · · · · · · Zexp

h−l

∣∣vu
21,Nn Np

Zexp
h−l

∣∣vv
21,Nn Np

...
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

Zexp
h−l

∣∣uu
Nn Np,11 Zexp

h−l

∣∣uv
Nn Np,11 Zexp

h−l

∣∣uu
Nn Np,21 Zexp

h−l

∣∣uv
Nn Np,21 · · · · · · Zexp

h−l

∣∣uu
Nn Np,Nn Np

Zexp
h−l

∣∣uv
Nn Np,Nn Np

Z
exp
h−l

∣∣vu
Nn Np,11 Z

exp
h−l

∣∣vv
Nn Np,11 Z

exp
h−l

∣∣vu
Nn Np,21 Z

exp
h−l

∣∣vv
Nn Np,21 · · · · · · Z

exp
h−l

∣∣vu
Nn Np,Nn Np

Z
exp
h−l

∣∣vv
Nn Np,Nn Np

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)
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1) The E-MOT matrices Zexp
h−l = 0 for h − l > 	Dmax/(c�t)
 +

Tmax. Here, Tmax is the order of Lagrange polynomials used for
constructing T (t), and Dmax is the largest distance possible on
S. Consequently, the number of Zexp

h−l , which is not completely
zero, decreases with increasing �t (for lower frequency excita-
tions), whereas at the same time, they become denser matrices.
For example, for Dmax/(c�t) < 1, every nonzero Zexp

h−l is
a fully dense matrix. For smaller �t (for higher frequency
excitations), the opposite happens: the number of Zexp

h−l , which
are not completely zero, increases, whereas, at the same time,
they become sparser matrices.

2) Zexp
h−l and Zimp

h−l have the same sparsity structure since

the entires of G contribute to entries of Zimp
h−l when

∂t T (t)|t=(h−l)�t �= 0 and r j q = rip (test and source interpo-
lation nodes are the same), and the entries of Zexp

h−l are already
nonzero for these cases.

3) Let C
exp
fix and C

imp
fix represent the cost of computing Vfix

h =
Vi

h − ∑h−1
l=1 Zexp

h−lIl [see (10)] by E-MOT and Vi
h −∑h−1

l=1 Zimp
h−lIl [see the right-hand side of (15)] by I-MOT,

respectively, at a given time step. Since the sparseness levels
of Zexp

h−l and Zimp
h−l are the same (even though not all entries of

these matrices are the same—see comment (ii) above), the cost
of computing the summations

∑h−1
l=1 Zexp

h−lIl and
∑h−1

l=1 Zimp
h−lIl

is the same, which means that Cexp
fix = C imp

fix . Note that, regard-

less of �t , the computation of
∑h−1

l=1 Zexp
h−lIl or

∑h−1
l=1 Zimp

h−lIl

at any time step h > 	Dmax/(c�t)
 + Tmax requires O(N2
s )

operations. Here, Ns = 2Np Nn is the number of unknowns.
However, depending on �t , cost of this computation relative
to overall cost of E-MOT or I-MOT changes.

Let C imp
tot = C imp

sol +C imp
fix and Cexp

tot = Cexp
sol +Cexp

fix denote the total
computational cost per time step for I-MOT and E-MOT, respectively.
Here, Cexp

sol is the computational cost for Steps 2–4 of the PE(CE)m

method used by E-MOT and is obtained as

Cexp
sol ∼ O({m[2K + 1] + 2K }Ns) + O([m + 1]γ Ns)

+ O([m + 1]2Ns)

where m is the number of corrector updates, and γ is defined
as the average number of nonzero entries in rows of Zexp

0 . The
first term is the total cost of summations in Step 2 (once)
and Step 4.1 (m times), respectively. The second term is the
total cost of matrix-vector products Zexp

0 Ih in Step 3 (once) and

Zexp
0 I(n)

h in Step 4.2 (m times). The last term is the total cost of
matrix-vector products involving G−1 in Step 3 (once) and Step 4.2
(m times).

I-MOT uses an iterative method to solve the matrix system (15).
Let C imp

sol represent the cost of this solution

C imp
sol ∼ O

(
N imp

iter F imp
iter γ Ns

)
where N

imp
iter and F

imp
iter are the numbers of iterations and matrix-vector

products Zimp
0 I(n)

h carried out at every iteration, respectively. Note

that Zimp
0 and Zexp

0 have the same γ [see comment (ii) above].

When �t 
 Dmax/c (high-frequency excitation), Zexp
0 and Zimp

0
are both very sparse, i.e., γ 
 Ns (see comment (i) above).
Therefore, C imp

sol and Cexp
sol scale as C imp

sol ∼ O(N imp
iter F imp

iter γ Ns)

and C
exp
sol ∼ O(mK Ns) + O(mγ Ns), respectively. Comparing these

estimates with Cexp
fix and C imp

fix (see comment (iii) above), one can see

that C imp
sol 
 C imp

fix and Cexp
sol 
 Cexp

fix , which consequently results

in C imp
tot ≈ C imp

fix and Cexp
tot ≈ Cexp

fix , respectively. This means that
both solvers have similar total execution times under high-frequency
excitations as also shown by results presented in Section III.

Fig. 1. (a) |{I(t)}u
ip | and (b) |{I(t)}v

ip |, p = 1014, i = 6 calculated by the
MOT schemes at rip = (0.97, −0.245, 0.005) m.

As the frequency of excitation decreases (for large �t , �t ≈
Dmax/c), Zexp

0 and Zimp
0 become denser (and even full), resulting

in γ ≈ Ns (see comments (i) above). Consequently, C imp
sol ∼

O(N imp
iter F imp

iter N2
s ) and Cexp

sol ∼ O(mN2
s ) result in C imp

fix 
 C imp
sol and

C
exp
fix 
 C

exp
sol , respectively (see comment (iii) above). In summary,

under low-frequency excitations, C
imp
tot ≈ C

imp
sol and C

exp
tot ≈ C

exp
sol

and E-MOT is faster than I-MOT for m < N
imp
iter F

imp
iter . In Section III,

it is shown by numerical results that this condition is satisfied.
It is well-known that C imp

fix can be reduced using PWTD
[10]–[13] or FFT-based schemes [14]–[16]. However, the same algo-
rithms can be applied to Cexp

fix without any modifications, ensuring

that Cexp
fix = C imp

fix would still hold. Similarly, FFT-based methods
have been developed to reduce the cost of matrix-vector product
Zimp

0 I(n)
h required by I-MOT [17]. E-MOT can utilize this method

in the same way to compute the matrix-vector products Zexp
0 Ih and

Zexp
0 I(n)

h .

III. NUMERICAL RESULTS

In this section, E-MOT and I-MOT are used to analyze transient
electromagnetic scattering from a unit sphere centered at the origin.
The sphere is excited by a planewave with magnetic field

Hi(r, t) = ŷ
√

β/μG(t − k̂ · r/c) (20)

where k̂ = ẑ is the direction of propagation, and G(t) =
cos[2π f0(t − t0)]e−(t−t0)2/(2w2) is a Gaussian pulse, where w =
7/(2π fbw), fbw, f0, and t0 = 3.5w + 10/( f0 + fbw) are the pulse
duration, bandwidth, modulation frequency, and delay, respectively.
Note that fmax = f0+ fbw is the effective maximum frequency. In all
examples, the order of �ip(r) used by the Nyström method is two
(Nn = 6) [21], and the order of Lagrange polynomials used for con-
structing T (t) is three (Tmax = 3). The predictor coefficients p and
the corrector coefficients c are obtained using the Adams–Bashforth
and backward difference methods, respectively, resulting in K = 4
for the PE(CE)m scheme [24]. Convergence thresholds for corrector
updates and the TFQMR scheme are χPECE = χTFQMR = 10−13.

For the first set of simulations, Np = 1126 (Ns = 13512),
f0 = 300 MHz, fbw = 200 MHz, Nt = 1600, and �t =



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 69, NO. 2, FEBRUARY 2021 1217

TABLE I

EXECUTION TIMES OF THE MOT SCHEMES’ DIFFERENT STAGES

Fig. 2. σMie(θ, ϕ, f ), σ imp(θ, ϕ, f ), and σ exp (θ, ϕ, f ) versus θ for ϕ = 0◦
and f ∈ {230, 300, 350} MHz.

0.1 ns [1/(20 fmax)]. Fig. 1(a) and (b) shows the comparison of
|{I(t)}u

ip | and |{I(t)}v
ip | computed by I-MOT and E-MOT at rip =

(0.97, −0.245, 0.005) m (p = 1014, i = 6), respectively. The results
agree very well.

Let σMie(θ, ϕ, f ), σ imp(θ, ϕ, f ), and σ exp(θ, ϕ, f ) denote the
radar cross section (RCS) values computed using the Mie series
solution and the Fourier transform of the solutions obtained by I-MOT
and E-MOT, respectively. Fig. 2 shows the plots of σMie(θ, ϕ, f ),
σ imp(θ, ϕ, f ), and σ exp(θ, ϕ, f ) versus θ for ϕ = 0◦ and f ∈
{230, 300, 350} MHz. The figure clearly shows that the solutions
obtained by I-MOT and E-MOT are accurate within the band of the
excitation.

For the second set of simulations, two spatial discretizations are
considered: Np = 202 (Ns = 2424) and Np = 622 (Ns = 7464).
For each discretization, seven sets of excitations are considered:
f0 = {5, 10, 25, 50, 100, 200, 400} MHz and fbw = 0.75 f0. E-MOT
and I-MOT are both executed for Nt = 500 time steps with
�t = 1/(17.5 f0) = 1/(10 fmax). The “denseness” level in Zexp

0
and Zimp

0 for these values of �t and two different discretizations
are γ = {2424, 1777, 303, 143, 61, 38, 13} for Np = 202 and
γ = {7464, 5471, 881, 340, 116, 54, 32} for Np = 622, respectively.
For each excitation and discretization, RCS values σ imp(θ, ϕ, f ) and
σ exp(θ, ϕ, f ) are computed for θ = [0◦, 180◦], ϕ = 0◦, and f = f0
using the Fourier transform of the solutions obtained by I-MOT and
E-MOT, respectively. The L2-norm error in RCS is defined as

σ
type
err =

√√√√∑360
n=0 |σ type(n�θ, ϕ, f ) − σMie(n�θ,ϕ, f )|2∑360

n=0 |σMie(n�θ,ϕ, f )|2
(21)

Fig. 3. L2-norm error in RCS obtained from the solutions computed by the
MOT schemes versus 1/�t .

where type ∈ {imp, exp}, f = f0, �θ = 0.5◦, and ϕ = 0◦. Table I
shows σ

imp
err and σ

exp
err and shows that the error level in the solutions

obtained by I-MOT and E-MOT is the same.
The execution times of the different stages of MOT schemes are

compared in Table I. Here, T imp
fix and T exp

fix are the total times required

for computing Vi
h − ∑h−1

l=1 Zimp
h−lIl and Vi

h − ∑h−1
l=1 Zexp

h−lIl for h =
1, . . . , Nt , by I-MOT and E-MOT, respectively. T imp

TFQMR is the total
time required to iteratively solve the I-MOT system in (15) by the
TFQMR method for h = 1, . . . , Nt . T exp

PECE is the total time required

by the PE(CE)m method for h = 1, . . . , Nt . T imp
tot and T exp

tot are the
total execution times of I-MOT and E-MOT, respectively. Finally,
{N imp

iter F imp
iter }avg and mavg are the average values of N imp

iter F imp
iter and

m over Nt time steps, respectively.
Table I shows that, as expected, T imp

fix and T exp
fix are almost

the same. Furthermore, for all values of �t , T exp
PECE < T imp

TFQMR

since mavg 
 {N imp
iter F imp

iter }avg. This has different consequences for
simulations with large and small �t . For large �t (low-frequency
excitation), T imp

TFQMR � T imp
fix , T exp

PECE � T exp
fix , and T imp

fix ≈ T exp
fix ,

therefore, T imp
tot > T exp

tot . Indeed, the results show that the E-MOT is
roughly four times faster than I-MOT. As �t gets smaller (frequency
gets higher), T imp

fix and T exp
fix become larger than T imp

TFQMR and T exp
PECE,

and the fact that T
exp
PECE < T

imp
TFQMR does not reflect on the total MOT

times T exp
tot and T imp

tot anymore. Indeed, the results show that both
schemes require almost the same time to complete the simulations
as �t gets smaller. The CPU times shown in Table I confirm the
computational complexity analysis in Section II-F.



1218 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 69, NO. 2, FEBRUARY 2021

For the last set of simulations, Np = 622 (Ns = 7464), f0 =
50 MHz, and fbw = 37.5 MHz, and I-MOT and E-MOT are executed
for the different values of �t changed between 2.29 ns [1/(5 fmax)]
and 0.29 ns [1/(40 fmax)]. RCS L2-norm error values σ

imp
err and σ

exp
err

are computed for f ∈ {35, 50, 65} MHz, �θ = 0.5◦, and ϕ = 0◦
using (21). Fig. 3 shows the plots of σ

imp
err and σ

exp
err versus 1/�t for

f ∈ {35, 50, 65} MHz. This figure clearly shows that E-MOT has the
same accuracy as I-MOT (as discussed in Section II-E). In addition,
Fig. 3 shows that the accuracy of the schemes follows the convergence
curve of O(�t3) for larger values of �t (note that the order of
Lagrange polynomials constructing T (t) is Tmax = 3), but, for the
smaller values of �t , the accuracy is limited by the second-order
spatial discretization, and as a result, the convergence with respect to
1/�t becomes slightly slower than O(�t3).

IV. CONCLUSION

An explicit MOT scheme to efficiently solve the TD-MFIE for
large time step sizes (under low-frequency excitations) is developed.
The current is spatially expanded using high-order nodal functions
defined on curvilinear triangles discretizing the scatterer surface.
Applying Nyström discretization, which uses this expansion, to the
TD-MFIE yields a system of ODEs in time-dependent expansion
coefficients. This system is integrated in time using a PE(CE)m

method to compute the samples of these coefficients. The Gram
matrix arising from the Nyström discretization is block-diagonal with
2 × 2 blocks, and its inverse is constructed from the inverse of the
blocks before the time marching. Therefore, the matrix inversion
needed at each time step is replaced by the product of the inverse
block-diagonal Gram matrix and the right-hand side vector. Numer-
ical results show that the resulting MOT scheme can use the time
step sizes as large as those would be used by its implicit counterpart
without sacrificing the stability, has the same level of accuracy, and
is more than four times faster for low-frequency excitations.

The explicit MOT scheme can be extended to solve the
TD-CFIE obtained by combining the TD-MFIE with the Calderón-
preconditioned TD-EFIE. The Calderón-preconditioning ensures that
the TD-CFIE is a second-kind surface integral equation [26]–[29].
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