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An Efficient 3-D Stochastic HIE-FDTD Algorithm for Investigation of

Statistical Variation in Electromagnetic Field
Kaikun Niu , Zhixiang Huang , Xingang Ren , Ke Xu, Minquan Li, Xianliang Wu,

Ping Li , Lijun Jiang, and Hakan Bagci

Abstract— We propose a stochastic hybrid implicit–explicit finite-
difference time-domain method (S-HIE-FDTD) to compute the mean and
variance of the electromagnetic (EM) fields using a single simulation,
given those of the conductivity and permittivity in the computation
domain. The mean and variance field update equations underlying the
proposed method are derived from the field update equations of the
“traditional” deterministic HIE-FDTD. The Courant–Friedrichs–Lewy
condition of the S-HIE-FDTD depends on the spatial discretization sizes
only in two dimensions; therefore, for computation domains with fine
geometric features only in the remaining dimension, it uses a time step size
that is larger than that of fully explicit schemes. Indeed, numerical results
demonstrate that the proposed method is faster than the previously devel-
oped stochastic FDTD in computing the mean and variance of the EM
fields in two different problems: wave propagation through a multilayer
human tissue and transmission through a frequency selective surface.

Index Terms— Hybrid implicit–explicit finite-difference time-domain
(HIE-FDTD) method, statistical analysis, stochastic parameter, weakly
conditional stability.

I. INTRODUCTION

The statistical electromagnetic (EM) analysis [1] is indispensable
in various fields of engineering and physics, including, but not limited
to, bioelectromagnetics [2]–[4], atmospheric wave propagation [5],
remote sensing [6], [7], and integrated circuit design [8], where mate-
rials’ electrical properties are not deterministically known (often due
to measurement limitations) and/or scatterer and antenna dimensions
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are only known within a range of values (often due to fabrication
tolerances). The purpose of such an analysis is to predict the mean
and variance [and, sometimes, the probability distribution function
(pdf)] of a quantity of interest (QoI) (e.g., induced voltage and
transmitted power) when the mean and variance (and the pdf) of
input/simulation parameters (e.g., conductivity, permittivity, scatterer,
and antenna dimensions) are provided.

A common way to statistically characterize a QoI is the Monte
Carlo (MC) method [9]. The MC method samples the domain of
input parameters and computes the QoI at every sampling point using
a deterministic EM solver. These samples of the QoI are then used
to compute its mean, variance, and pdf. The MC method is easy to
implement since it does not call for any modifications to existing
EM solvers (i.e., it is nonintrusive), but it requires a large number of
samples (EM solver executions) to produce accurate results.

To avoid sampling in the domain of input parameters, recently,
a novel stochastic finite-difference time-domain method (S-FDTD)
has been developed [10]. This method is built upon the deterministic
FDTD [11]–[13], but it is reformulated and implemented to pro-
duce the mean and variance of the EM fields given those of the
conductivity and permittivity in the simulation domain. However,
just like its deterministic counterpart, the time step size of the
S-FDTD is determined by the finest spatial discretization size through
the Courant–Friedrich–Levy (CFL) condition [11], [14] but not the
desired level of accuracy, especially for structures that have fine and
coarse geometric features at the same time.

To this end, various unconditionally stable (deterministic) FDTD
schemes [15]–[17] have been developed to remove the CFL restric-
tion. These schemes can use larger time step sizes, but their
computational cost per time step is increased due to the implicit
field updates. Therefore, they might unnecessarily increase the over-
all computational cost for problems involving structures with fine
geometric features only in one or two dimensions (e.g., radiation
from patch antennas, transmission through thin layers, and scat-
tering in a layered medium). To address this shortcoming, sev-
eral FDTD schemes, such as weakly conditionally stable (WCS)
method [18], [19] and hybrid implicit–explicit method [20]–[23],
have been developed. These schemes use implicit updates only in
one or two dimensions (ideally where fine geometric features exist).
This has two consequences: 1) the spatial discretization size along
these dimensions does not “contribute” to the CFL condition, which
results in a larger time step size compared with fully explicit schemes
and 2) their computational cost per time step is lower compared
with fully implicit schemes. Therefore, the overall computational
cost of these schemes is expected to be lower than that of the fully
explicit or fully implicit FDTD methods when analyzing structures
with fine geometric features only in one or two dimensions.

In this communication, we develop a stochastic hybrid implicit–
explicit FDTD (S-HIE-FDTD) to efficiently compute the mean and
variance of the EM fields given those of the conductivity and
permittivity in a simulation with fine geometric features in one or
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two dimensions. To come up with the update equations of the
S-HIE-FDTD, we reformulate the update equations of the determin-
istic HIE-FDTD to take the mean and variance of the conductivity
and permittivity as inputs. A short stability analysis shows that the
S-HIE-FDTD has a CFL condition similar to that of the HIE-FDTD,
and as a result, the S-HIE-FDTD has the same computational benefits
as its deterministic counterpart as described in the previous paragraph.
Indeed, the numerical results demonstrate that the S-HIE-FDTD is
more efficient than the S-FDTD in the statistical analysis of wave
propagation through a multilayer biological tissue and transmission
through a frequency selective surface (FSS).

II. FORMULATION

The full set of equations, which are solved/updated by the
HIE-FDTD for all electric and magnetic field components, can be
found in [23]. In this communication, only the equations, which
update the x-component of the electric field and the z-component of
the magnetic field, namely, Ex and Hz, are used to demonstrate how
the HIE-FDTD is adopted to compute the mean and variance of the
fields given those of the relative permittivity εr and conductivity σ .
The HIE-FDTD updates Ex and Hz using

Ex |n+1
i+1/2, j,k − ν1 Ex |ni+1/2, j,k

= − ν2

�z

(
Hy

∣∣n+1/2
i+1/2, j,k+1/2 − Hy

∣∣n+1/2
i+1/2, j,k−1/2

)

− ν2

2�y

(
Hz|n+1

i+1/2, j+1/2,k − Hz|n+1
i+1/2, j−1/2,k

+ Hz|ni+1/2, j+1/2,k − Hz|ni+1/2, j−1/2,k

)
× Hz|n+1

i+1/2, j+1/2,k − Hz|ni+1/2, j+1/2,k (1)

= − ν3

�x

(
Ey

∣∣n+1/2
i+1, j+1/2,k − Ey

∣∣n+1/2
i, j+1/2,k

)

+ ν3

2�y

(
Ex |n+1

i+1/2, j+1,k − Ex |n+1
i+1/2, j,k + Ex |ni+1/2, j+1,k

− Ex |ni+1/2, j,k

)
. (2)

Here, ε0 and μ0 are the permittivity and permeability in free space,
ν1 = (2ε0εr − σ�t)/(2ε0εr + σ�t), ν2 = 2�t/(2ε0εr + σ�t),
ν3 = �t/μ0, �t is the time step, and �x , �y, and �z are the space
steps. In (1) and (2) and in the rest of the text, the superscript n
and the subscript i, j, k mean that the pertinent field variables are
sampled at time n�t and location (i�x, j�y, k�z).

A. Stochastic Model

Let g(X1, . . . , X N ) represent a function of random variables
X1, . . . , X N with mean values μX1 , . . . , μX N . Using the linearity of
expected value operator E[.], i.e., E[∑N

i=1 ai Xi ] = ∑N
i=1 ai E[Xi ],

where ai are constants, the Delta method [24], and following the
derivation in [10], we obtain:

E[g(X1, . . . , X N )] = g([μX1 , . . . , μXn ]). (3)

The variance of g(X1, . . . , X N ) is expressed as

S
2[g(X1, . . . , X N )] = E[{g(X1, . . . , X N )}2]

−{E[g(X1, . . . , X N )]}2 (4)

where S[.] and S2[.] represent the standard deviation and variance
operators. Similarly, using the Delta method [24] and following the
derivation in [10], we obtain:

S
2[g(X1, . . . , X N )]

=
N∑

i=1

N∑
j=1

(∂Xi g|μX1 ,μX2 ,...,μX N
∂X j g|μX1 ,μX2 ,...,μX N

× E[(Xi − μXi )(X j − μX j )]). (5)

In addition, the following identity is available for the variance
operation [10]:

S
2

⎡
⎣ N∑

i=1

ai Xi

⎤
⎦ =

N∑
i=1

a2
i S

2[Xi ] +
∑

1�i� j�N

ai a j C[Xi , X j ]. (6)

where C[Xi , X j ] = ρXi ,X j S[Xi ]S[X j ] is the covariance and ρXi ,X j
is the correlation coefficient between Xi and X j .

Update (1) and (2), and equalities (3)–(6) are used together to
derive the update equations for the S-HIE-FDTD, namely, the mean
and variance field equations, as described in Sections II-B and II-C,
respectively. This derivation assumes that the samples of Ex , Ey , Hy ,

and Hz, namely, Ex |ni+1/2, j,k , Ey
∣∣n+1/2
i+1, j+1/2,k , Hy

∣∣n+1/2
i+1/2, j,k+1/2,

and Hz|ni+1/2, j+1/2,k , the permittivity εr , and the conductivity σ

are random variables. In addition, it is assumed that the same type
(electric or magnetic) field samples separated by a single time step
and/or a single space step in any direction (including those multiplied
with coefficients ν1, ν2, or ν3) are highly correlated, i.e., the relevant
correlation coefficient is equal to 1 [10]

ρ Ex |ni+1/2, j,k , Ex |n+1
i+1/2, j,k= ρ

Ey |n+1/2
i+1, j+1/2,k , Ey |n+1/2

i, j+1/2,k= ρ
Ex |n+1

i+1/2, j+1,k , Ey |n+1/2
i+1, j+1/2,k

= ρ
Hy |n+1/2

i+1/2, j,k+1/2 , Hy |n+1/2
i+1/2, j,k−1/2= ρ

Hy |n+1/2
i+1/2, j,k+1/2 , Hz|ni+1/2, j+1/2,k

= ρ Ex |n+1
i+1/2, j,k ,ν1 Ex |ni+1/2, j,k

= ρ ν2
�z Hy

∣∣n+1/2
i+1/2, j,k+1/2 ,

ν2
2�y Hz

∣∣∣n+1

i+1/2, j+1/2,k

= 1. (7)

As a result, the mean and variance field update equations of the pro-
posed S-HIE-FDTD involve only the correlation coefficients between
field samples, εr , and σ (i.e., ρεr ,E , ρσ,E , ρεr ,H , ρσ,H , and ρεr ,σ ).
The values of these coefficients can be predicted using the methods
described in [25]–[27].

B. Mean Field Equations

Let the function g(·) be defined by (1) or (2). Using (3) in (1)
and (2), we obtain

E
[

Ex |n+1
i+1/2, j,k

] − μv1E
[

Ex |ni+1/2, j,k
]

= −μv2

�z

(
E

[
Hy

∣∣n+1/2
i+1/2, j,k+1/2

] − E
[

Hy
∣∣n+1/2
i+1/2, j,k−1/2

])

+ μv2

2�y

(
E

[
Hz|n+1

i+1/2, j+1/2,k

] − E
[

Hz|n+1
i+1/2, j−1/2,k

]

+ E
[

Hz|ni+1/2, j+1/2,k
] − E

[
Hz|ni+1/2, j−1/2,k

])
(8)

E
[

Hz|n+1
i+1/2, j+1/2,k

] − E
[

Hz|ni+1/2, j+1/2,k
]

= − ν3

�x

(
E

[
Ey

∣∣n+1/2
i+1, j+1/2,k

] − E
[

Ey
∣∣n+1/2
i, j+1/2,k

])

+ ν3

2�y

(
E

[
Ex |n+1

i+1/2, j+1,k

] − E
[

Ex |n+1
i+1/2, j,k

]

+ E
[

Ex |ni+1/2, j+1,k

] − E
[

Ex |ni+1/2, j,k

])
(9)

where μν1 = (2ε0μεr − μσ �t)/(2ε0μεr + μσ �t), μν2 =
2�t/(2ε0μεr +μσ �t), and μεr and μσ are the mean values of εr
and σ . Comparing (8) and (9) with (1) and (2), we can see that the
mean field equation update is the same as the “classical” field update
equation with the variables replaced by their mean values. In (8)
and (9), the mean values of the field samples are the unknowns to
be updated during marching in time.
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C. Variance Field Equations

Let the function g(·) be defined by (1). The first step in the
derivation of the variance field equation for Ex is to take the variance
of both sides of (1)

S
2[ Ex |n+1

i+1/2, j,k − ν1 Ex |ni+1/2, j,k
]

= S
2
[

− ν2

�z

(
Hy

∣∣n+1/2
i+1/2, j,k+1/2 − Hy

∣∣n+1/2
i+1/2, j,k−1/2

)

+ ν2

2�y

(
Hz|n+1

i+1/2, j+1/2,k − Hz|n+1
i+1/2, j−1/2,k

+ Hz|ni+1/2, j+1/2,k − Hz|ni+1/2, j−1/2,k

) ]
. (10)

Applying (6) to the left-hand side of (10) and using (7) while noticing
ν1 is a function of random variables εr and σ , we obtain

S
2[ Ex |n+1

i+1/2, j,k − ν1 Ex |ni+1/2, j,k
]

=
(
S
[

Ex |n+1
i+1/2, j,k ] − S[ν1 Ex |ni+1/2, j,k

])2
. (11)

Applying (5) into S2[ν1 Ex |ni+1/2, j,k ] and using (7), we obtain

S
[
ν1 Ex |ni+1/2, j,k

]=μν1 S[Ex |ni+1/2, j,k ]+κ1E
[
Ex |ni+1/2, j,k

]
. (12)

Applying (5) and (6) multiple times to the right-hand side of (10)
and using (7), we obtain

S2{ν2h}=(μν2 hS)2+2μ2
ν2

κ2E[h]hS+μ2
ν2

κ3E[h]2. (13)

In (12) and (13)

κ1 = 4�tε0
(
μσ ρεr ,E sεr − μεr ρσ,E sσ

)
/(2ε0μεr + μσ �t)2

κ2 = (
2ε0ρεr ,H sεr + �tρσ,H sσ

)
/
(
2ε0μεr + μσ �t

)

κ3 = �t2s2
σ + 4ε2

0s2
εr

+ 4ε0�tρεr ,σ sεr sσ(
2ε0μεr + μσ �t

)2

κ4 = 0.5μν2 ν3/�y2

h = − 1

�z

(
Hy

∣∣n+1/2
i+1/2, j,k+1/2 − Hy

∣∣n+1/2
i+1/2, j,k−1/2

)

+ 1

2�y

(
Hz|n+1

i+1/2, j+1/2,k − Hz|n+1
i+1/2, j−1/2,k

+ Hz|ni+1/2, j+1/2,k − Hz|ni+1/2, j−1/2,k

)

hS = − 1

�z

(
S
[

Hy
∣∣n+1/2
i+1/2, j,k+1/2

] − S
[

Hy
∣∣n+1/2
i+1/2, j,k−1/2

])

+ 1

2�y

(
S
[

Hz|n+1
i+1/2, j+1/2,k

] − S
[

Hz|n+1
i+1/2, j−1/2,k

]

+ S
[

Hz|ni+1/2, j+1/2,k
] − S

[
Hz|ni+1/2, j−1/2,k

])

where sεr and sσ are the standard deviations of εr and σ . Adding
μ2

ν2
κ2

2 E[h]2 to the right-hand side of (13) and subtracting it yield

S
2[ν2h]=(

μν2 hS+μν2κ2E[h])2−μ2
ν2

κ2
2 E[h]2+μ2

ν2
κ3E[h]2. (14)

Assuming (μν2 hS + μν2κ2E[h])2 � μ2
ν2

κ2
2 E[h]2 − μ2

ν2
κ3E[h]2 in

(14) and taking the square-root of the resulting equation, we obtain

S[ν2h] = μν2 hS + μν2κ2E[h]. (15)

Using (11) and (12) in the left-hand side of (10) and (15) in its
right-hand side, we obtain

S
[

Ex |n+1
i+1/2, j,k

] = μν1 S
[
Ex

∣∣n
i+1/2, j,k

]
+ κ1E

[
Ex |ni+1/2, j,k

] + μν2 hS

+ μν2κ2E
[
h
]
. (16)

In (16), the standard deviation values of the field samples are the
unknowns to be updated during marching in time.

We follow a similar procedure to obtain the variance field equation
for Hz. Let the function g(·) be defined by (2). The first step is to
take the variance of both sides of (2)

S
2[ Hz|n+1

i+1/2, j+1/2,k − Hz|ni+1/2, j+1/2,k
]

= S
2
[

− ν3

�x

(
Ey

∣∣n+1/2
i+1, j+1/2,k − Ey

∣∣n+1/2
i, j+1/2,k

)

+ ν3

2�y

(
Ex |n+1

i+1/2, j+1,k − Ex |n+1
i+1/2, j,k

+ Ex |ni+1/2, j+1,k − Ex |ni+1/2, j,k

) ]
. (17)

Applying (6) to the left- and right-hand sides of (17) and using (7)
in the resulting equation, we obtain

(
S
[

Hz|n+1
i+1/2, j+1/2,k

] − S
[

Hz|ni+1/2, j+1/2,k
])2

= ν2
3

{
− 1

�x

(
S
[

Ey
∣∣n+1/2
i+1, j+1/2,k

] − S
[

Ey
∣∣n+1/2
i, j+1/2,k

])

+ 1

2�y

(
S
[

Ex |n+1
i+1/2, j+1,k

] − S
[

Ex |n+1
i+1/2, j,k

]

+ S
[

Ex |ni+1/2, j+1,k

] − S
[

Ex |ni+1/2, j,k

]) }2
. (18)

Note that ν3 is a constant (not a function of a random variable).
Taking the square root of (18) and rearranging the terms yield

S
[

Hz|n+1
i+1/2, j+1/2,k

]
= S

[
Hz|ni+1/2, j+1/2,k

]
− ν3

�x

(
S
[

Ey
∣∣n+1/2
i+1, j+1/2,k

] − S
[

Ey
∣∣n+1/2
i, j+1/2,k

])

+ ν3

2�x

(
S
[

Ex |n+1
i+1/2, j+1,k

] − S
[

Ex |n+1
i+1/2, j,k

]
+ S

[
Ex |ni+1/2, j+1,k

] − S
[

Ex |ni+1/2, j,k

)
. (19)

In (19), the standard deviation values of the field samples are the
unknowns to be updated during marching in time.

A closer look at (16) and (19) reveals that the unknowns that are
most advanced time, i.e., S[Hz|n+1

i+1/2, j+1/2,k] and S[Ex |n+1
i+1/2, j,k ],

are “coupled.” To “decouple” them, we insert (19) into (16) and an
explicit equation in S[Ex |n+1

i+1/2, j,k ]

(1 + κ4)S
[

Ex |n+1
i+1/2, j,k

]
− 0.5κ4

(
S
[

Ex |n+1
i+1/2, j+1,k

] + S
[

Ex |n+1
i+1/2, j−1,k

])
= (μν1 − κ4)S

[
Ex |ni+1/2, j,k

]
+ 0.5κ4

(
S
[

Ex |ni+1/2, j+1,k
] + S

[
Ex |ni+1/2, j−1,k

])
+ κ1Ex

∣∣∣ni+1/2, j,k + μν2κ2hS

+ μν2

{
−

(
1

�z
S
[

Hy
∣∣n+1/2
i+1/2, j,k+1/2

] − S
[

Hy
∣∣n+1/2
i+1/2, j,k−1/2

])

+ 1

2�y

(
S
[

Hz|ni+1/2, j+1/2,k
] − S

[
Hz|ni+1/2, j+1/2,k

])}

+ μν2

{
− ν3

2�x�y

(
S
[

Ey
∣∣n+1/2
i+1, j+1/2,k

] − S
[

Ey
∣∣n+1/2
i, j+1/2,k

])

− (
S
[

Ey
∣∣n+1/2
i+1, j−1/2,k

] − S
[

Ey
∣∣n+1/2
i, j−1/2,k

])}
. (20)

D. Numerical Stability Analysis

For the sake of simplicity of the numerical stability analysis,
the conductivity is assumed deterministic and set to zero. Following
the Fourier method [10], the CFL condition of the S-HIE-FDTD is



8230 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 68, NO. 12, DECEMBER 2020

TABLE I

μεr AND μσ FOR HUMAN TISSUE [10]

Fig. 1. Simulation domain used for the analysis of wave propagation through
a multilayer human tissue.

derived as:

�t � √
μεr /(c

√
(�x)−2 + (�z)−2) (21)

where c denotes the speed of light in free space. This CFL condition
uses only the mean value of the permittivity but not its variance.
In other words, the CFL of the S-HIE-FDTD is the same as that
of the deterministic HIE-FDTD with permittivity replaced with its
mean.

III. NUMERICAL EXAMPLES

In this section, the accuracy and efficiency of the S-HIE-FDTD
are compared with those of a traditional MC method [9] and/or the
S-FDTD [10] for two numerical examples. In both the examples,
absorbing boundaries enforce the first-order standard Mur absorbing
boundary condition (ABC), as described in [10] and [11], and the
plane wave excitation is introduced using the total-field/scattered-
field (TF/SF) technique described in [11]. All the computations
are performed on a desktop computer with a 32-GB RAM and
a 3.90-GHz Intel Core i7-3770 processor.

A. Wave-Propagation Through Multilayer Biological Tissue

For the first example, we use the proposed method to analyze
EM wave propagation through human tissue consisting of three
layers: skin, fat, and muscle (see Fig. 1). The mean and standard
deviation of the conductivity and permittivity of these layers are
given in Table I. The simulation domain used in this problem is
shown in Fig. 1. The dimensions of the simulation domain are
x ∈ [0, 10] mm, y ∈ [0, 500] mm, and z ∈ [0, 10] mm. The ABCs
and the periodic boundary conditions (PBCs) are used along the y-,
x-, and z-directions, respectively. A plane wave propagating along
the y-direction with x-polarized and unit-amplitude electric field is
incident on the tissue layers. The time signature of the excitation is a
sine function with a frequency of 2 GHz. Two sets of simulations are
carried out using this setup. For both of the sets, the S-HIE-FDTD
and S-FDTD are executed for ρ = 0.5 and ρ = 1. Here, ρ is the
correlation coefficient between the permittivity/conductivity and the
field samples.

In the first set, all three layers of tissue have the same thick-
ness of 54 mm. The spatial mesh uses �x = �y = �z = 1 mm
and �t = 6.67 × 10−4 ns for the S-HIE-FDTD and S-FDTD. The
MC method executes the (deterministic) FDTD for 10 000 times.
For each execution, the permittivity and conductivity of the tissue
layers are selected independently of the Gaussian distributions with
the mean and standard deviation, as provided in Table I. The
S-HIE-FDTD, S-FDTD, and MC method are used to compute the
mean and variance of the electric field’s x-component at x = 5 mm,
y ∈ [0, 500] mm, and z = 5 mm. Fig. 2(a) and (b) shows the

Fig. 2. (a) Amplitude and (b) phase of the (frequency-domain) mean of the
electric field’s x-component computed at x = 5 mm, y ∈ [0, 500] mm, and
z = 5 mm by the MC method, S-FDTD, and S-HIE-FDTD.

Fig. 3. Time-domain amplitude of the variance of the electric field’s x-
component computed at x = 5 mm, y ∈ [0, 500] mm, and z = 5 mm by the
MC method, S-FDTD, and S-HIE-FDTD.

plots of the amplitude and phase of this mean (after transformed
into frequency domain at 2 GHz) versus y and demonstrates
that all three methods produce practically the same mean values
everywhere in the simulation domain. The fact that the result
from the MC method matches those obtained by the S-FDTD and
S-HIE-FDTD shows that the assumption of the high correlation
between the samples of the electric field and between the samples of
the magnetic field [see (7)] is accurate. Fig. 3 shows the plots of the
time-domain amplitude of the variance versus y. The results obtained
by the S-HIE-FDTD and S-FDTD agree very well with each other
for both values of ρ. However, results with ρ = 0.5 agree better with
the result obtained by the MC method. We believe this means that
setting ρ = 1 overestimates the correlation.

In the second set of simulations, the thickness of the skin, fat, and
muscle layers is 5.4, 54, and 42 mm, respectively. The spatial mesh
uses �x/3 = �y = �z/3 = 0.5 mm and �t = 3 × 10−3 ns for the
S-HIE-FDTD and �t = 1 × 10−3 ns for the S-FDTD. Note that
�y is smaller than �x and �z because the layers are located along
the y-direction and skin layer is very thin. Also, note that the CFL
condition of the S-HIE-FDTD has no constraint in the y-direction,
that is why �t of the S-HIE-FDTD does not have to be reduced
and is larger than �t of the S-FDTD. The rest of the simulation
parameters is the same as those used in the first set of simulations.
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Fig. 4. (a) Amplitude and (b) phase of the (frequency-domain) mean of the
electric field’s x-component computed at x = 5 mm, y ∈ [0, 500] mm, and
z = 5 mm by the MC method, S-FDTD, and S-HIE-FDTD.

TABLE II

SIMULATION EFFICIENCY OF THREE METHODS

The S-HIE-FDTD, S-FDTD, and MC method are used to compute
the mean and variance of the electric field’s x-component at x = 5
mm, y ∈ [0, 500] mm, and z = 5 mm. Fig. 4(a) and (b) shows the
plots of the amplitude and phase of this mean (after transformed in
to the frequency domain at 2 GHz) versus y. The same methods
are used to compute the variance of the electric field’s x-component
at x = 5 mm, y ∈ [0, 500] mm, and z = 5 mm. Fig. 5 shows the
plots of the time-domain amplitude of this variance versus y. The
conclusions drawn for the results of the first set of simulations are
also valid here.

Table II presents the computational requirements of the MC
method, S-HIE-FDTD, and S-FDTD. The S-FDTD and S-HIE-FDTD
are significantly faster than the MC method. Here, the number of
(total) iterations is equal to the number of time steps multiplied by
the number of executions. The number of executions is 1 for the
S-FDTD and S-HIE-FDTD and 10 000 for the MC method. The
S-HIE-FDTD is roughly 1.7 times faster than the S-FDTD with
only a 20% increase in the memory requirement. The memory
requirement of the MC method is significantly larger than those of the
S-HIE-FDTD and S-FDTD since it stores field samples needed to
compute the mean and variance.

We note here that the Fourier transform of the variance of a time-
domain field is not equal to the variance of its frequency-domain
counterpart (variance is nonlinear in field values). That is why we
plot the variance in the time domain in Figs. 3 and 5. This is also
the approach adopted in several other communications [10], [25].

B. Transmission Through an FSS

In the second example, we use the proposed method to analyze
transmission through an FSS [21] supported by a dielectric substrate
(see Fig. 6). The top view of FSS unit cell is shown in Fig. 6(a),

Fig. 5. Time-domain amplitude of the variance of the electric field’s x-
component computed at x = 5 mm, y ∈ [0, 500] mm, and z = 5 mm by the
MC method, S-FDTD, and S-HIE-FDTD.

Fig. 6. (a) Top view of the FSS unit cell. (b) Simulation domain used for
the analysis of transmission through the FSS.

Fig. 7. Transmission coefficient of the FSS calculated by the S-HIE-FDTD
and the S-FDTD.

where D = 14 mm, g = 10 mm, a = 10 mm, and w = 1 mm, and
the thickness of the substrate is 2 mm. The simulation domain used in
this problem is shown in Fig. 6(b). The dimensions of the simulation
domain are x ∈ [0, 160] mm, y ∈ [0, 10] mm, and z ∈ [0, 14] mm.
The ABCs and PBCs are used along the x-, y-, and z-directions,
respectively. A plane wave propagating along the x-direction with y-
polarized and unit-amplitude electric field is incident on the FSS. The
time signature of the excitation is given by G(t) = e−4π(t−t0)2/τ 2

,
where τ = 6.67 × 10−2 ns and t0 = 0.8τ .

The spatial mesh uses �x/5 = �y = �z/5 = 0.2 mm and
�t = 2.22 × 10−3 ns for the S-HIE-FDTD and �t = 5.56×10−4 ns
for the S-FDTD. Note that �y has to be smaller than �x and �z
since the slot on the surface of the FSS is very thin along the
y-direction. Also, note that the CFL condition of the S-HIE-FDTD
has no constraint in the y-direction, that is why �t of the
S-HIE-FDTD is larger than that of the S-FDTD.

Four sets of simulations are carried out, where S-FDTD and S-
HIE-FDTD are executed for four different values of the substrate
permittivity’s mean μεr ∈ {1.9, 2.2, 2.4, 2.6}. Its variance is set
to 0.1 for all simulations. The mean and the standard deviation of
the transmission coefficients are computed in the frequency domain
from the results obtained using the S-FDTD and S-HIE-FDTD.
Let “M” and “S” denote the mean and the standard deviation,
respectively. Fig. 7 shows the plots of M, M-S, and M+S obtained
using the S-FDTD and S-HIE-FDTD (a total of six curves) with
μεr = 2.2. The results obtained by the two methods match very well.
Moreover, the figure shows that the uncertainty in the permittivity
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Fig. 8. Transmission coefficient of the FSS calculated by the S-HIE-FDTD
with different means of substrate’s permittivity.

TABLE III

SIMULATION EFFICIENCY OF TWO METHODS

of the substrates results in a shift in the resonance frequency of
the transmittance. Fig. 8 shows the plots of M obtained using the
S-HIE-FDTD with μεr ∈ {1.9, 2.2, 2.4, 2.6}. A red/blue shift is
observed with the increase/decrease of the permittivity that coincides
with the results of M+S/M−S. It should be noted that the shift of
the peak in Fig. 8 is more obvious than that in Fig. 7. The reason is
that μεr is fixed, and the plus and minus S (see Fig. 7) only leads to
a weak influence compared with the change of mean (see Fig. 8).
Table III presents the computational requirements of the S-HIE-
FDTD and S-FDTD and shows that the S-HIE-FDTD is roughly
2.3 times faster with only 20% increase in the memory requirement.

IV. CONCLUSION

An S-HIE-FDTD to compute the mean and variance of the
EM fields by a single simulation given those of the conductivity and
permittivity in the computation domain is presented. The mean and
variance field update equations are derived. The CFL condition of
the S-HIE-FDTD method resembles that of the HIE-FDTD method,
resulting in a time step size larger than that would be used by an
explicit scheme.

Two numerical examples are provided to show the accuracy,
efficiency, and applicability of the proposed S-HIE-FDTD. In the
first example, EM wave propagation through a human tissue con-
sisting of three layers is analyzed. In each layer, the permittivity
and conductivity are defined by their mean and standard deviation.
In the second example, transmission through an FSS supported by a
dielectric substrate is analyzed. The permittivity of this substrate is
defined by its mean and variance. The results show that the proposed
method can dramatically reduce the computation time without any
reduction in the accuracy level compared with the S-FDTD method.
However, the variance of the EM fields still demonstrates a difference
with respect to results obtained using the MC method; we believe this
is due to the approximation of the correlation coefficient between the
field samples and the permittivity/conductivity.
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