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Explicit Time Marching Schemes for Solving
the Magnetic Field Volume Integral Equation
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Abstract— A method for constructing explicit marching-on-in-
time (MOT) schemes to solve the time-domain magnetic field vol-
ume integral equation (TD-MFVIE) on inhomogeneous dielectric
scatterers is proposed. The TD-MFVIE is cast in the form of an
ordinary differential equation (ODE) and the unknown magnetic
field is expanded using curl conforming spatial basis functions.
Inserting this expansion into the TD-MFVIE and spatially testing
the resulting equation yield an ODE system with a Gram matrix.
This system is integrated in time for the unknown time-dependent
expansion coefficients using a linear multistep method. The Gram
matrix is sparse and well conditioned for Galerkin testing and
consists of only four diagonal blocks for point testing. The
resulting explicit MOT schemes, which call for the solution of
this matrix system at every time step, are more efficient than
their implicit counterparts, which call for inversion of a fuller
matrix system at lower frequencies. Numerical results compare
the efficiency, accuracy, and stability of the explicit MOT schemes
and their implicit counterparts for low-frequency excitations. The
results show that the explicit MOT scheme with point testing is
significantly faster than the other three solvers without sacrificing
from accuracy.

Index Terms— Explicit solvers, magnetic field volume inte-
gral equation (MFVIE), predictor-corrector scheme, time-domain
analysis, transient analysis.

I. INTRODUCTION

ANALYSIS of electromagnetic scattering from inhomo-
geneous dielectric objects finds applications in numer-

ous areas ranging from medical diagnostics to geophysical
surveys. Simulation tools developed for these applica-
tions often rely on finite difference time-domain (FDTD)
techniques [1]–[4], frequency and time-domain finite element
methods (FEMs) [5]–[8], time-domain discontinuous Galerkin
(TD-DG) schemes [9]–[13], or frequency and time-domain
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volume integral equation (VIE) solvers [14]–[31]. VIE solvers
are often preferred over differential equation solvers (such
as FDTD, FEM, and TD-DG), for open-region scattering
problems, since they require only the scatterer to be discretized
and implicitly enforce the radiation condition without the need
for (approximate) absorbing boundary conditions to terminate
the computation domain [32]. Time-domain VIE (TD-VIE)
solvers are preferred over their frequency domain counterparts
(FD-VIE solvers) for broadband scattering problems [23]–[31]
and/or when the scatterer’s permittivity is a (nonlinear) func-
tion of the fields [30], [31].

VIEs on dielectric scatterers are constructed by enforc-
ing the fundamental field relation (the total field is equal
to the summation of the scattered and incident fields) in
the (volumetric) support of the scatterer. The scattered field
is represented in terms of the equivalent (unknown) total
field/flux induced inside the scatterer. If the electric field is
used in the fundamental field relation, then the resulting VIE
is termed the electric field VIE (EFVIE) [23]–[31] and the
unknown is either the electric flux or the electric field induced
inside the scatterer. On the other hand, if the magnetic field is
used in the fundamental field relation and the unknown is the
total magnetic field, then the magnetic field VIE (MFVIE) is
obtained [14].

It is well known that the MFVIE has better conver-
gence characteristics than the EFVIE [16]–[22]. It has also
been shown that Galerkin discretization of the EFVIE using
Schaubert–Wilton–Glisson (SWG) functions [33] yields a
more accurate solution than the MFVIE Galerkin-discretized
using the lowest order curl-conforming Nedelec funct-
ions [34], [35]. However, this accuracy bottleneck has
been circumvented for all practical purposes by using
recently developed fully linear curl-conforming (FLC) basis
functions to expand the unknown magnetic field [17],
[35], [36]. In this case, one can also use point testing, which
significantly reduces the computational cost (in comparison to
Galerkin testing) without sacrificing from accuracy.

Recent research on FD-VIE solvers has mostly focused
on spatial discretization techniques and their effects on
the accuracy and conditioning of the resulting matrix
systems [14]–[22]. On the other hand, research on TD-VIE
solvers has been geared toward developing accurate, efficient,
and stable marching-on-in-time (MOT) schemes. TD-VIEs
are usually solved using implicit MOT schemes [23]–[26]
that call for solution of a matrix system (termed MOT
matrix system here) at every time step. These schemes are
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not subject to a Courant–Friedrichs–Lewy (CFL) constraint;
their time step size is determined only by the maximum
frequency of the excitation. For high-frequency excitations,
i.e., when the product of the speed of light and the time
step size is comparable to the discretization length, the MOT
matrix system is sparse and it is solved efficiently using an
iterative method. However, for low-frequency excitations,
the MOT matrix system becomes fuller and it cannot be
solved efficiently using an iterative method.

Depending on the spatial and temporal discretization
schemes and the time step size, the MOT scheme can also be
explicit. Even though classical explicit MOT schemes do not
call for a matrix solution at every time step, they suffer from
stability issues [27], [28], which might be remedied using a
small time step size at the cost of increased computation time
(i.e., they are subject to a CFL constraint).

This article describes a method for constructing explicit
MOT schemes, which do not suffer from these shortcom-
ings, to efficiently and accurately solve the TD-MFVIE. The
proposed method casts the TD-MFVIE in the form of an
ordinary differential equation (ODE) that relates the unknown
magnetic field induced inside the scatterer to its temporal
derivative [37]. The magnetic field is expanded using the
FLC basis functions [35], [36]; inserting this expansion in
the TD-MFVIE and spatially testing the resulting equation
yields a time-dependent ODE system. A predictor-corrector
algorithm, PE(CE)m , is used to integrate this system in time
for the unknown coefficients of the expansion. To facilitate the
computation of the retarded-time integrals, which express the
scattered magnetic field in terms of the unknown magnetic
field induced inside the scatterer, at discrete time steps as
required by the PE(CE)m , the piecewise Lagrange polynomial
interpolation functions [38]–[40] are used. The resulting time
marching algorithm calls for the solution of a system with
a (spatial) Gram matrix at the evaluation (E) step. When
Galerkin testing is used, the Gram matrix is sparse and
well conditioned, and the solution is obtained using an iterative
solver. When point testing is used, the Gram matrix consists
of four diagonal sub-matrices. Its inverse (which also consists
of four diagonal sub-matrices) is computed and stored before
the time marching starts. Consequently, the matrix solution
required at the evaluation step is obtained with a simple
multiplication of the right-hand side with the inverse of
the Gram matrix. The resulting MOT schemes are expected
to be more efficient than their implicit counterparts, which
call for the inversion of a matrix system that gets fuller
as the time step size gets larger with decreasing frequency.
Indeed, the numerical results demonstrate that the explicit
MOT schemes use the same time step sizes as the implicit
MOT schemes without sacrificing from stability, and they
are more efficient under low-frequency excitations. Especially,
the explicit MOT scheme with point testing is significantly
faster than the other three solvers without sacrificing from
accuracy.

The rest of this article is organized as follows: Section II
provides the details of the formulation underlying the explicit
and implicit MOT schemes with Galerkin and point testing
and derives expressions for their computational complexity

estimates. Section III compares the efficiency, stability, and
accuracy of the explicit MOT schemes and their implicit coun-
terparts for low-frequency excitations via numerical experi-
ments and demonstrates that the explicit scheme with point
testing is significantly faster than the other three without
sacrificing from accuracy. In Section IV, conclusions and
future research directions are drawn.

II. FORMULATION

A. TD-MFVIE

Let V represent the volumetric support of a linear,
non-dispersive, non-magnetic, isotropic, and possibly inho-
mogeneous dielectric scatterer with permittivity ε(r) and
permeability μ0. The scatterer resides in an unbounded and
homogenous medium with permittivity ε0 and permeabil-
ity μ0. An incident magnetic field Hinc(r, t), which is essen-
tially band limited to fmax and vanishingly small ∀r ∈ V and
t ≤ 0, excites the scatterer. Upon excitation, an equivalent
electric current J(r, t) is induced inside V , which in return
generates a scattered magnetic field Hsca(r, t). Hsca(r, t) is
expressed in terms of retarded-time magnetic vector potential
A(r, t) as

Hsca(r, t) = 1

μ0
∇ × A(r, t)

= ∇ ×
∫

V

J(r′, t − R/c0)

4π R
dv ′. (1)

Here R = |r − r′| is the distance between source point r′ and
observation point r, and c0 = 1/

√
ε0μ0 is the speed of light

in the background medium. J(r, t) is expressed in terms of
the total magnetic field H(r, t) as

J(r, t) = κ(r)∇ × H(r, t) (2)

where κ(r) = 1 − ε0/ε(r) is the contrast. Substituting (1)
and (2) in the temporal derivative of H(r, t) = Hinc(r, t) +
Hsca(r, t) yields the TD-MFVIE

∂t Hinc(r, t) = ∂t H(r, t) + 1

4π

∫
V

κ(r′)R̂ (3)

×
(

∂2
t ′∇′ × H(r′, t ′)

c0 R
+ ∂t ′∇′ × H(r′, t ′)

R2

)
t ′=t−R/c0

dv ′

where R̂ = (r − r′)/R.

B. Spatial Basis Functions and Temporal Interpolation

To numerically solve the TD-MFVIE (4), V is divided
into a mesh of tetrahedrons. Assume that this mesh has N
edges. H(r, t) is approximated in terms of the FLC basis
functions [35], [36], each of which is defined along one of
these edges as

H(r, t) =
N∑

n=1

{H1(t)}nf1
n (r) +

N∑
n=1

{H2(t)}nf2
n (r). (4)

Note that this expansion follows the description in [36], where
the FLC basis functions are separated into solenoidal and
irrotational edge basis functions. In (4), f1

n (r) and f2
n (r) are the
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first-order irrotational edge basis functions [36] and the lowest
mixed-order solenoidal edge basis functions [34], and {H1(t)}n
and {H2(t)}n are their unknown time-dependent coefficients,
respectively. fs

n(r), s ∈ {1, 2} are expressed as

fs
n(r) =

{
λ

d1
n

n (r)∇λ
d2

n
n (r) ± λ

d2
n

n (r)∇λ
d1

n
n (r), r ∈ Sn

0, r /∈ Sn
(5)

where “+” and “−” signs should be selected for s = 1 and
s = 2, respectively, Sn = ∪Qn

q=1 Sq
n is the combined support

of all Qn tetrahedrons sharing edge n, d1
n and d2

n represent
the two nodes of this edge, and λd

n (r) and d ∈ {d1
n , d2

n } are
the barycentric coordinate functions that change linearly from
1 at d to 0 at the face opposite to d . Note that one can easily
show ∇ × f1

n (r) = 0 and ∇ × f2
n (r) 	= 0.

To facilitate the discretization and computation of the
retarded-time integral in the right-hand side of (4), {Hs(t)}n ,
s ∈ {1, 2} are approximated using (shifted) Lagrange interpo-
lation functions as

{Hs(t)}n =
Nt∑

i=1

{
Hs

i

}
n T (t − i�t). (6)

Here Nt is the number of time steps, �t is the time step
size, T (t) is a piecewise polynomial Lagrange interpolation
function [38]–[40], and Hs

i is the sample of Hs(t) at t = i�t ,
i.e., Hs

i = Hs(i�t).

C. Explicit MOT Scheme

Inserting (4) in (4) and testing the resulting equation with
functions t1

m(r) and t2
m(r), m = 1, . . . , N , yield an ODE

matrix system of dimension 2N ×2N , which relates unknown
vectors Hs(t) to their temporal derivatives Ḣs(t) = ∂t Hs(t),
s ∈ {1, 2}[

G11 G12

G21 G22

] [
Ḣ1(t)
Ḣ2(t)

]
=

[
Ḣinc,1(t)
Ḣinc,2(t)

]
+

[
Ḣsca,1(t)
Ḣsca,2(t)

]
. (7)

Here Gps , p, s ∈ {1, 2} are N × N blocks of the Gram
matrix G. Their elements are given by

{Gps}m,n =
∫

P p
m

t p
m(r) · fs

n(r)dv (8)

where P p
m is the support of t p

m(r), p ∈ {1, 2}. Two sets of
choices are considered for t1

m(r) and t2
m(r), which result in

Galerkin and point testing, respectively. The specific choice
of the testing scheme changes the sparseness structure of G
and consequently affects the efficiency and accuracy of the
time marching scheme (see Section II-E).

In (7), Ḣinc,p(t) and Ḣsca,p(t), p ∈ {1, 2} are vectors
of spatially tested incident and scattered magnetic fields,
respectively. Their entries are given by

{Ḣinc,p(t)}m =
∫

P p
m

t p
m(r) · ∂t Hinc(r, t)dv (9)

{Ḣsca,p(t)}m = 1

4π

N∑
n=1

∫
P p

m

t p
m(r) ·

Qn∑
q=1

κ
q
n

∫
Sq

n

R̂ (10)

×∇′×f2
n (r′)

(
∂2

t ′ {H2(t ′)}n

c0 R
+ ∂t ′ {H2(t ′)}n

R2

)
t ′=t−R/c0

dv ′dv.

In (10), κ(r) is assumed to be constant in Sq
n , i.e., κ

q
n = κ(rq

n ),
where rq

n is the center of the tetrahedron Sq
n . Also note that

since ∇ × f1
n (r) = 0, the only contribution to Ḣsca,p(t) comes

from ∇ × f2
n (r).

The samples of the unknown coefficient vectors Hs
j =

Hs( j�t), s ∈ {1, 2} are obtained by integrating the sys-
tem of ODEs in (7) in time using a PE(CE)m-type lin-
ear k-step scheme. This approach calls for sampling (7) in
time [

G11 G21

G12 G22

][
Ḣ1

j
Ḣ2

j

]
=

[
Ḣinc,1

j

Ḣinc,2
j

]
+

[
Ḣsca,1

j

Ḣsca,2
j

]
(11)

where j = 1, . . . , Nt , Ḣs
j = Ḣs( j�t), s ∈ {1, 2}, Ḣinc,p

j =
Ḣinc,p( j�t), and Ḣsca,p

j = Ḣsca,p( j�t), p ∈ {1, 2}. Ḣinc,p
j are

computed using (9), where ∂t Hinc(r, t) is known. To compute
Ḣsca,p

j , one has to account for the time retardation in (10); this
is done by using temporal interpolation on samples of H2(t).
Inserting (6) with s = 2 in (10) and evaluating the resulting
expression at j�t yield

Ḣsca,p
j =

j∑
i=0

Mp
j−i H

2
i , p ∈ {1, 2} (12)

where the elements of the MOT matrices Mp
j−i are given

by

{
Mp

j−i

}
m,n

= 1

4π

∫
P p

m

t p
m(r) ·

Qn∑
q=1

κ
q
n

∫
Sq

n

R̂ × ∇′ × f2
n (r′)

×
(

∂2
t ′ {T (t ′)}n

c0 R
+ ∂t ′ {T (t ′)}n

R2

)
t ′=( j−i)�t−R/c0

dv ′dv. (13)

Substituting (12) into (11) yields[
G11 G12

G21 G22

]
︸ ︷︷ ︸

G

[
Ḣ1

j

Ḣ2
j

]
︸ ︷︷ ︸

Ḣ j

=
⎡
⎣Ḣinc,1

j

Ḣinc,2
j

⎤
⎦

︸ ︷︷ ︸
Ḣinc

j

+
j∑

i=0

[
0 M1

j−i

0 M2
j−i

]
︸ ︷︷ ︸

Mexp
j−i

[
H1

j

H2
j

]
︸ ︷︷ ︸

Hi

. (14)

Note that to have a more compact notation, (14) is rewritten as

GḢ j = Ḣinc
j +

j∑
i=0

Mexp
j−i Hi . (15)

The matrix system (15) is integrated in time using a PE(CE)m-
type linear k-step method (similar to the one used in [37]
to solve the time-domain magnetic field surface integral
equation). Therefore, it requires the values of Hi and Ḣi ,
i = j − k, . . . , j − 1 to compute H j . Assuming Hi and Ḣi ,
i = 0, . . . , k − 1 are known, the steps of the resulting explicit
MOT scheme are detailed below.

At each time step, j = k, . . . , Nt .
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Step 1: The components of the right-hand side of (15),
which are not updated within the time step j , are
computed

Ḣfixed
j = Ḣinc

j + Ḣexp
j (16)

= Ḣinc
j +

j−1∑
i=0

Mexp
j−i Hi .

Note that Ḣexp
j does not include the contributions

from H j , i.e., the matrix–vector product Mexp
0 H j .

Step 2: Predictor (P) step. H j is predicted using k
past (known) values of Hi and Ḣi , i = j − k, . . . , j −1,
respectively

H j =
k∑

l=1

[{p}lH j−1+l−k + {p}k+l Ḣ j−1+l−k]. (17)

Here p is a vector of dimension 2k, which stores the
predictor coefficients.
Step 3: Evaluation (E) step. First compute the right-hand
side using the predicted H j

R j = Mexp
0 H j + Ḣfixed

j . (18)

Then compute Ḣ j by solving

GḢ j = R j . (19)

Step 4: Set Ḣ(0)
j = Ḣ j . Repeat Steps 4.1 and 4.2 until

convergence (m = 1, . . . , mmax).

Step 4.1: Corrector (C) step.
H(m)

j corrected/updated using k past values of

Hi and Ḣi , i = j − k, . . . , j − 1, and Ḣ(m−1)
j

H(m)
j =

k∑
l=1

[{c}lH j−1+l−k + {c}k+l Ḣ j−1+l−k
]

+ {c}2k+1Ḣ(m−1)
j . (20)

Here c is a vector of dimension 2k+1, which stores
the corrector coefficients.
Step 4.2: Evaluation (E) step. First compute the
right-hand side using the corrected H(m)

j

R(m)
j = Mexp

0 H(m)
j + Ḣfixed

j . (21)

Then compute Ḣ(m)
j by solving

GḢ(m)
j = R(m)

j . (22)

Step 5: Once convergence is reached, solutions are
stored to be used at the next time step: H j = H(m)

j

and Ḣ j = Ḣ(m)
j .

The predictor and corrector coefficients, p and c used in
the above scheme can be obtained by polynomial interpolation
between time samples (resulting in well-known schemes such
as Adam-Moulton, Adam-Bashfort, or backward difference
methods [41]) or numerically under the assumption that the
solution can be represented in terms of decaying and oscillat-
ing exponentials [42]. In this article, p and c obtained through

polynomial interpolation are preferred since k associated with
these coefficients is much smaller resulting in a more time-
and memory-efficient scheme.

At the beginning of time marching, it is assumed that
Hi = 0 and Ḣi = 0, i = 0, . . . , k − 1. This assumption
does not introduce any significant error since Hinc(r, t) is
vanishingly small ∀r ∈ V and t ≤ 0. For other types of
excitations, the Euler method or spectral-deferred correction-
type methods can be used to initialize Hi and Ḣi , i =
0, . . . , k − 1 [43], [44].

The method used for solving (19) and (22) is selected based
on the sparsity structure of G, which depends on the type of
spatial testing used as detailed in Section II-E.

D. Implicit MOT Scheme

Inserting (4) and (6) in (4) and testing the resulting equation
with functions t1

m(r) and t2
m(r), m = 1, . . . , N , yield a linear

system of equations

Mimp
0 H j = Ḣinc

j − Ḣimp
j

= Ḣinc
j −

j−1∑
i=0

Mimp
j−i Hi . (23)

Here H j and Ḣinc
j are same as those in (14), and Mimp

l ,
l = j − i can be expressed in terms of Mexp

l and G as

Mimp
l = G∂t T (t)|t=l�t − Mexp

l

=
[
G11 ∂t T (t)|t=l�t G12 ∂t T (t)|t=l�t − M1

l
G21 ∂t T (t)|t=l�t G22 ∂t T (t)|t=l�t − M1

l

]
. (24)

The implicit MOT scheme operates as briefly described
next. For j = 1, H1 is found by solving (23) with right-hand
side Ḣinc

1 . For j = 2, H1 is used to compute the matrix–vector
product Mimp

1 H1, which is subtracted from Ḣinc
2 to yield the

complete right-hand side. H2 is found by solving (23) with this
right-hand side. For j = 3, H1 and H2 are used to compute
the summation Mimp

2 H1 + Mimp
1 H2, which is subtracted from

Ḣinc
3 to yield the complete right-hand side. This permits the

computation of H3 and so on.
Unlike the explicit MOT scheme, the method used for

solving (23) at every time step of the implicit MOT scheme
does not depend on the sparsity structure of G. The solution
of this matrix equation is always obtained using an iterative
solver.

E. Spatial Testing Functions

Two different approaches are used to spatially test the
TD-MFVIE: Point and Galerkin testing schemes [36]. The
choice of testing functions t p

m(r), p ∈ {1, 2}, changes the
sparsity structure of G in (8) as explained next.

1) Point Testing: For point testing, t p
m(r) = q̂mδ(r − r p

m),
p ∈ {1, 2}, where q̂m is a unit vector that points from node
d1

m to d2
m (along edge m) and rp

m are selected from Gaussian
quadrature points defined on edge m. Inserting the expressions
for t p

m(r) into (8) and using the facts that, on edge n,
the tangential component of f1

n (r) linearly increases from −1
to 1 and the tangential component of f2

n (r) stays constant at 1,
yield
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G12 = G22 = I

G11 = −G21 = − 1√
3

I. (25)

The inverse of G can be expressed as

G−1 = 1

2

[
I I√
3I −√

3I

]
. (26)

G−1 is stored using O(N) memory before the time marching
starts. Using the pre-computed G−1, the solution of (19)
and (22) is obtained only in O(N) operations. This makes the
explicit MOT scheme with point testing significantly faster
than the other explicit and implicit MOT schemes under
low-frequency excitations (for large �t) as shown by the
computational complexity analysis carried out in Section II-G
(as also demonstrated by the numerical results presented in
Section III).

2) Galerkin Testing: For Galerkin testing, t1
m(r) = f1

m(r)
and t2

m(r) = f2
m(r). Inserting the expressions for t p

m(r) into (8),
one obtains a summation of integrals, each of which has a
second-order polynomial integrand defined over a tetrahedron.
These integrals are evaluated exactly using a Gaussian quadra-
ture rule specifically designed for tetrahedrons [45], [46].
Analytical expressions can be derived for these integrals but
evaluating those would be more computationally expensive
than using a quadrature rule.

When Galerkin testing is used, G is sparse and
well conditioned regardless of �t . Therefore the solution
of (19) and (22) is obtained very efficiently using an iterative
scheme. The resulting MOT scheme with Galerkin testing
is faster than its implicit counterpart under low-frequency
excitations (for large �t). This is because M1

0 and M2
0 become

fuller (see Section II-F) as �t increases and the computational
cost of solving (23) increases. Implicit and explicit schemes
have similar computational costs under high-frequency exci-
tations (for small �t). These are shown by the computational
complexity analysis carried out in Section II-G (also by the
numerical results presented in Section III).

F. Comments

Several comments about the formulation and implementa-
tion of the explicit and implicit MOT schemes are in order.

1) In (4), temporal derivative form of H(r, t) =
Hinc(r, t)+ Hsca(r, t) is used. This additional derivate is
needed to cast the TD-MFVIE in the form of an ODE.
In this form, the derivative of the unknown ∂t H(r, t)
has to be set equal to a function of H(r, t). Here this
function is ∂t Hinc(r, t) + ∂t Hsca(r, t) and is integrated
in time by the explicit MOT scheme to yield H(r, t).
The effect of the additional temporal derivative has
been studied in the context of the MOT solution of the
time-domain electric field surface integral equation [47].
When the derivative of a time-domain integral equation
is solved by an MOT scheme, a dc component is often
observed in the solution even if the zero initial condition
is enforced at the beginning of time marching. The
reason for this dc component is attributed to numerical
errors, especially those arising from the solution of the

MOT matrix system as discussed in [47]. The numerical
results presented in Section III-B demonstrate that a
similar discussion applies in the case of the MOT
schemes developed in this article to solve (4). The
results show that the dc component is stable with a
small amplitude, and this amplitude can be reduced by
increasing the accuracy of the matrix solution and/or
correction updates.

2) Temporal interpolation function T (t) is discretely
causal: T (t) = 0 for t ≤ −�t . This means that, during
time marching (as executed by both the explicit and
implicit MOT schemes), Hi , i > j ["future" samples
of H(t)] are not required to compute H j . Additionally,
T (t) is of finite duration: T (t) = 0 for t > tmax�t ,
where tmax is the order of the polynomial interpolation.
Note that T (t) can be a noncausal interpolation function.
For example, one can use the approximate prolate spher-
oidal wave functions (APSWFs) [48], [49] since they can
interpolate band-limited functions with exponentially
increasing accuracy and they have continuous derivatives
everywhere along their support. A non causal T (t)
means that Mp

j−i 	= 0, i > j and consequently the time
marching requires Hi , i > j to be able to compute H j .
The causality of the time marching can be restored using
various extrapolation schemes that estimate Hi , i > j
using Hi , i ≤ j [26], [49].

3) The MOT matrices Mp
j−i = 0 for j − i >

Dmax/(c0�t) + tmax, where Dmax is the maximum dis-
tance between any two points in V . Consequently, as �t
increases (for low-frequency excitations), the number
of nonzero Mp

j−i decreases. However, these nonzero
matrices become fuller. For example, for Mp

j−i to be
completely full, tmax > j − i > Dmax/(c0�t)−1, which
can only be satisfied when Dmax < c0�t since j � i .

4) A closer look at (24) reveals that G contributes to
Mimp

l only when its entries are nonzero [see (8)] and
when ∂t T (t)|t=l�t 	= 0. Note that the second condition
is satisfied only for l ∈ {0, 1, . . . , tmax}. Addition of
G12 and G22 to M1

0 and M2
0, respectively, does not

affect the sparsity structure of Mimp
0 . On the other hand,

inclusion of G11 and G21 in Mimp
0 reduces its sparsity

level; however, this difference can be ignored in the
computational complexity analysis as �t gets larger for
low-frequency excitations since M1

0 and M2
0 become

fuller while G11 and G21 stay sparse.

Note that inclusion of G11 and G21 in Mimp
j−i makes the cost of

computing Ḣimp
j [see (24)] higher than that of Ḣexp

j [see (16)].
However, since tmax 
 Dmax/(c0�t) for small �t (under
high-frequency excitations) and G11 and G21 are sparser than
M1

j−i and M2
j−i for large �t (under low-frequency excita-

tions), this difference can be ignored in the computational
complexity analysis.

G. Computational Complexity

In this section, computational complexity of the explicit
MOT scheme described in Section II-C is analyzed in detail
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and compared to that of its implicit counterpart described in
Section II-D. Let the computational costs of explicit schemes
with point and Galerkin testing and the implicit scheme be
represented by Cexp

PT Nt + C , Cexp
GT Nt + C , and C imp Nt + C ,

respectively. Note that the implicit MOT scheme can also be
implemented using Galerkin or point testing, but the expres-
sions for these implementations’ computational complexity
would be the same. That is why C imp does not distinguish
between these two implementations.

Here C represents the total cost of computing Ḣfixed
j for

all time steps j = 1, . . . , Nt and is dominated by the cost
of computing Ḣexp

j . As explained in Section II-F, the cost
of computing Ḣexp

j (by the explicit MOT schemes) is same

as that of Ḣimp
j (by the implicit MOT schemes). Therefore,

C is assumed same for all schemes. Note that this compu-
tation could be accelerated using the time-domain adaptive
integral method [40], [50]–[54] or (multilevel) plane wave
time-domain algorithm [24], [25], [28], [39], [55], [56].

The differences between the explicit schemes and their
implicit counterparts are the other operations executed at a
given time step. The computational costs of these operations
are represented by Cexp

PT , Cexp
GT , and C imp for explicit schemes

with point and Galerkin testing and the implicit scheme,
respectively. The estimates for Cexp

PT and Cexp
GT are obtained

by following (17)–(22) step by step.
The k-step predictor update in (17) and the k-step corrector

update in (20) require O(2k[2N]) and O(mmax[2k + 1][2N])
operations, respectively. Updating the right-hand sides of (18)
and (21) requires the computation of Mexp

0 H j once and
Mexp

0 H(m)
j mmax times. Assuming γ represents the sparseness

factor of M1
0 and M2

0, these updates require O([mmax + 1]
2[γ N]) operations in total for predictor and corrector steps.
Solution of (19) and (22) has two different complexities
depending on the testing procedure used. For point testing,
computing the solution requires multiplying the right-hand
side with pre-computed sparse G−1 (see Section II-E), result-
ing in O([mmax + 1][4N]) operations in total for predictor
and corrector steps. For Galerkin testing G is sparse without
a specific structure (see Section II-E) and the solution is
obtained using an iterative solver. This results in O([mmax+1]
NG

iter Fiter2[δN]) operations in total for predictor and corrector
steps. Here NG

iter is the number of iterations, Fiter is the number
of matrix–vector multiplications required at each iteration, and
δ is the sparseness factor of G.

The implicit MOT scheme always uses an iterative method
to solve (24), which results in C imp ∼ O(N imp

iter Fiter2
[(γ + δ)N]). Here N imp

iter is the number of iterations and Fiter
is the number of matrix–vector multiplications required at a
given iteration (it is assumed that the explicit and implicit
schemes use the same iterative solver).

In the complexity estimates above, k depends on the
order/type of the PE(CE)m ; therefore, it is considered as a
user-defined input. Also, NG

iter is always small since G is
well conditioned and sparse regardless of �t . Assuming mmax
is the same for explicit schemes with point and Galerkin
testing, the former scheme is faster since 4 
 NG

iter Fiter2δ.
Numerical results in Section III show that the value of

mmax averaged over all time steps is similar for both the
schemes.

Under high-frequency excitations when c0�t is comparable
to the spatial discretization length, γ 
 N and a direct
comparison of Cexp

PT and Cexp
GT to C imp becomes challenging

since it is difficult to accurately estimate which contributions
discussed above are dominant.

Under low-frequency excitations when c0�t is comparable
to or larger than the size of the scatterer, γ ∼ N , which
means that M1

0 and M2
0 become fuller. Consequently, C imp ∼

O(N imp
iter Fiter N2) (assuming γ ∼ N � δ), Cexp

PT ∼ O(mmax N2)
(assuming γ ∼ N � k) and Cexp

GT ∼ O(mmax N2) (assuming
γ ∼ N � k and γ ∼ N � NG

iter Fiter2δ). This means that
the explicit schemes are faster than their implicit counterparts
as long as mmax < N imp

iter Fiter. Numerical results presented in
Section III show that this condition is indeed satisfied.

Note that one can use the low-frequency extension of the
time-domain adaptive integral method [57] to accelerate the
matrix–vector multiplication Mimp

0 H j required by the iterative
method to solve (23). However, the same extension can also
be used to accelerate the computation of the matrix–vector
multiplication Mexp

0 H j required by the explicit scheme during
the predictor updates. Therefore, the conclusions drawn above
are still applicable even when acceleration methods are used.

III. NUMERICAL RESULTS

This section presents numerical examples to demonstrate
the advantages of the proposed explicit MOT schemes. In all
examples, the scatterer is illuminated by a plane wave traveling
in the ẑ direction with a ŷ-directed magnetic field

Hinc(r, t) = ŷH0G(t − r · ẑ/c0) (27)

where H0 = √
ε0/μ0 A/m is the amplitude and G(t) =

cos[2π f0(t − tp)]e−(t−t p)
2/(2σ 2) is the modulated Gaussian

pulse. Here σ = 3/(2π fbw) is the duration, fbw is the effective
bandwidth, f0 is the center frequency, and fmax = f0 + fbw
is the maximum frequency of the pulse. It is assumed that
the scatterer resides in free space. In all examples, the order
of the piecewise polynomial Lagrange interpolation function
T (t) tmax = 4 [40], and the volume integrals present in the
entries of the matrices in (8) and (13), and the vector in (9)
are computed using the third-order Gauss-Legendre quadrature
rule [45], [46].

The accuracy, efficiency, and stability of the four MOT
schemes are compared. The implicit scheme with point testing,
the explicit scheme with point testing, the implicit scheme
with Galerkin testing, and the explicit scheme with Galerkin
testing. For the sake of briefness, in the rest of this section,
these schemes are referred to using the notations [MOT]imp

PT ,
[MOT]exp

PT , [MOT]imp
GT , and [MOT]exp

GT , respectively.
[MOT]imp

PT , [MOT]imp
GT , and [MOT]exp

GT use the transpose-free
quasi-minimal residual (TFQMR) method [58] to iteratively
solve the relevant matrix equations. All TFQMR iterations
are diagonally preconditioned. [MOT]imp

PT and [MOT]imp
GT start

the TFQMR iterations at time step l with initial guess Hl =
2Hl−1 − Hl−2. The TFQMR iterations and the correction
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updates of the [MOT]exp
PT and [MOT]exp

GT are terminated when
the following stopping criterion is satisfied:∥∥Iu

l − Iu−1
l

∥∥ < χ‖Il−1‖. (28)

Here Iu
l represents the solution vector at the lth time step

and the uth TFQMR iteration or at the lth time step and
the uth correction update, and χ is the convergence thresh-
old. χ = 10−6 unless specified otherwise. The PE(CE)m

scheme uses the fourth-order Adam-Bashworth and backward
difference coefficients at the prediction and correction steps,
respectively [41].

After the time-domain simulations are completed, the solu-
tions are Fourier transformed and divided by the Fourier
transform of G(t) to yield the time harmonic magnetic field,
H̃(r, f ). Time harmonic electric field Ẽ(r, f ) and the time
harmonic current density J̃(r, f ) are computed by taking the
curl of (4). The radar cross section (RCS) is computed using
J̃(r, f ). Let σ

imp
PT (θ, φ, f ), σ

exp
PT (θ, φ, f ), σ

imp
GT (θ, φ, f ), and

σ
exp
GT (θ, φ, f ) represent the RCS obtained from J̃(r, f ) com-

puted by the [MOT]imp
PT , [MOT]exp

PT , [MOT]imp
GT , and [MOT]exp

GT ,
respectively, along the direction defined by θ and φ. To com-
pare the accuracy of [MOT]imp

PT , [MOT]exp
PT , [MOT]imp

GT , and
[MOT]exp

GT , L2-norm error in RCS, which is defined as

errRCS =
√√√√∑360

n=0

∣∣σ ref(n�θ, φ, f )−σ
type
test (n�θ, φ, f )

∣∣2∑360
n=0 |σ ref(n�θ, φ, f )|2

(29)

is used. Here type ∈ {imp, exp}, test ∈ {GT, PT}, ref ∈
{Mie, FD}, �θ = 0.5◦, and φ = 0◦. In (29), σMie(θ, φ, f ) and
σ FD(θ, φ, f ) refer to the RCS obtained from the Mie series
solution or J̃(r, f ) computed by an FD-EFVIE solver. The
FD-EFVIE solver uses the same mesh as the MOT schemes
but discretizes the electric flux density using SWG basis and
testing functions [33]. The entries of the resulting method of
moments (MoM) matrix are computed using the third-order
Gauss-Legendre quadrature rule [45], [46]. The MoM sys-
tem is solved using the TFQMR method. The iterations are
truncated when ‖Z̃Ĩu − Z̃Ĩu−1‖ < 10−6‖Ṽinc‖, where Ĩu , Z̃,
and Ṽinc represent the solution at the uth iteration, the MoM
matrix, and the right-hand side vector, respectively.

A. Accuracy of the FLC and Nedelec Basis Functions

In this example, the scatterer is a sphere with radius 2 m and
permittivity ε0. Since κ(r) = 0, Hsca(r, t) = 0 and H(r, t) =
Hinc(r, t), i.e. the solution should match the incident field. The
excitation parameters f0 = 10 MHz and fbw = 5 MHz. Six
different meshes are used. The average edge length of these
meshes, lav, changes from 134.37 cm (λ0/22.32) to 38.58 cm
(λ0/77.75). Here, λ0 = c0/ f0 is the free-space wavelength
at f0. Three different �t are considered: 6.667 ns (0.1/ fmax),
10 ns (0.15/ fmax), and 13.333 ns (0.2/ fmax). Two sets of
simulations are carried out using the [MOT]exp

GT for every
combination of lav and �t . In the first set, H(r, t) is expanded
using the Nedelec functions [only f2

n (r) in (4)]; while in
the second set, FLC basis functions are used [both f1

n (r) and
f2
n (r) in (4)]. To compare the accuracy of the simulations,

L2-norm errors in Ẽ(r, f ) and H̃(r, f ), which are
defined as

errE =
√√√√∑Nv

k=1 |Ẽ(rk, f ) − Ẽinc(rk, f )|2∑Nv
k=1 |Ẽinc(rk, f )|2

(30)

errH =
√√√√∑Nv

k=1 |H̃(rk, f ) − H̃inc(rk, f )|2∑Nv
k=1 |H̃inc(rk, f )|2

(31)

are used. Here rk represent the centers of the tetrahedrons
and Nv is their number, {Ẽinc(r, f ), H̃inc(r, f )} are the time
harmonic incident electric and magnetic fields, and f = f0.
Fig. 1(a) and (b) plot errH and errE versus λ0/ lav, respec-
tively, for the simulations with only f2

n (r) executed for three
different �t . Fig. 1(a) and (b) show that errH decreases
with increasing mesh density and decreasing �t , while errE

remains high even for the densest mesh and the smallest �t .
Fig. 1(c) and (d) do the same comparison for simulations with
f1
n (r) ∪ f2

n (r). Both errH and errE decrease with increasing
mesh density and decreasing �t . Fig. 1(c) and (d) clearly show
that using only f2

n (r) results in an inaccurate representation of
E(r, t), while using f1

n (r)∪f2
n (r) renders E(r, t) as accurate as

H(r, t). In other words, f2
n (r) accurately represent the solution,

but the curl of the resulting solution is not accurate. When
κ(r) 	= 0, the curl of the solution is needed to compute
Ḣsca,p

j , p ∈ {1, 2} [see (10)]. This means that using only
f2
n (r) makes the MOT solution inaccurate (and consequently

unstable). The results and the discussion presented in this
section clearly justify why f1

n (r)∪ f2
n (r) are used by the MOT

schemes developed in this article.
Fig. 1(c) and (d) also show that errH and errE decrease

with a rate roughly between (lav)
−1 (for large �t) and (lav)

−2

(for small �t) for λ0/32 > lav > λ0/45 and with a
rate around (lav)

−1 for lav < λ0/45. This decrease in the
convergence rate can be explained by the fact that for small lav,
the dominant error comes from the temporal discretization.
This is demonstrated in Fig. 1(c) and (d); for smaller �t ,
the “flattening” of errH and errE curves starts at smaller lav.
In other words, for small lav, the accuracy can further be
increased by reducing �t .

B. Late Time Stability

For this example, scattering from a sphere with radius
1 m and permittivity 10ε0 is analyzed for different values of
the convergence threshold χ . The sphere is discretized using
5350 tetrahedrons resulting in N = 13 494 unknowns. The
excitation parameters f0 = 10 MHz and fbw = 5 MHz. The
average, minimum, and maximum edge length of the mesh are
lav = λmin/33.28, lmin = λmin/62.0, and lmax = λmin/19.76,
respectively. Here λmin = c0/(

√
10 fmax) is the wavelength at

fmax inside the scatterer. All four MOT schemes are executed
for Nt = 1200 with �t = 6.667 ns (0.1/ fmax) and three differ-
ent χ ∈ {10−6, 10−8, 10−10}. Fig. 2(a)–(c) plot H(r, t) com-
puted by these schemes at point r = (0.51,−0.64, 0.12) m for
χ = 10−6, χ = 10−8, and χ = 10−10, respectively, and show
that all four schemes provide stable results with a very small
dc component and that the amplitude of the dc component can
be further reduced by decreasing χ .
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Fig. 1. Comparison of the accuracy of the Nedelec basis functions f2
n (r) and

the FLC basis functions f1
n (r)∪ f2

n (r). (a) errH and (b) errE versus λ0/ lav for
simulations using f2

n (r) with three different �t . (c) errH and (d) errE versus
λ0/ lav for simulations using f1

n (r) ∪ f2
n (r) with three different �t .

C. Unit Sphere

In this section, the efficiency and accuracy of [MOT]imp
PT ,

[MOT]exp
PT , [MOT]imp

GT , and [MOT]exp
GT are compared. To this

end, scattering from a sphere with radius 1 m is analyzed.
First, the permittivity of the sphere is set to 10ε0. The sphere

Fig. 2. Analysis of scattering from a sphere with radius 1 m and permittivity
10ε0. H(r, t) computed at point r = (0.51, −0.64, 0.12) m by all four MOT
schemes with (a) χ = 10−6, (b) χ = 10−8, and (c) χ = 10−10.

is discretized using 5350 tetrahedrons resulting in N =
13 494 unknowns. The excitation parameters f0 = 10 MHz
and fbw = 5 MHz. The average, minimum, and maximum
edge length of the mesh are lav = λmin/33.28, lmin =
λmin/62.0, and lmax = λmin/19.76, respectively. Here λmin =
c0/(

√
10 fmax) is the wavelength at fmax inside the scatterer.

All four schemes are executed three times for Nt = 210 with
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Fig. 3. Analysis of scattering from a sphere with radius 1 m and permit-
tivity 10ε0. (a) H(r, t) computed at point r = (0.51, −0.64, 0.12) m by all
four MOT schemes. (b) mmax/N imp

iter required by the explicit/implicit MOT
schemes. (c) Comparison of RCS computed for 0◦ < θ < 180◦ and φ = 0◦
at f = 10 MHz by the MOT schemes to that computed from the Mie series
solution.

�t = 6.667 ns (0.1/ fmax), Nt = 140 with �t = 10 ns
(0.15/ fmax), and Nt = 105 with �t = 13.333 ns (0.2/ fmax).
For all simulations, the sparseness factor of M1

0 and M2
0 is

γ = N and the sparseness factor of G is δ = 0.0031N .

Fig. 4. Analysis of scattering from a sphere with radius 1 m and per-
mittivity 50ε0. (a) H(r, t) computed at point r = (0.51, −0.64, 0.12) m by
[MOT]exp

GT . (b) Comparison of RCS computed for 0◦ < θ < 180◦ and φ = 0◦
at f = 10 MHz by [MOT]exp

GT to that computed from the Mie series solution.

Fig. 3(a) plots H(r, t) computed by all four schemes at
point r = (0.51,−0.64, 0.12) m for the set of simulations
with �t = 6.667 ns. Fig. 3(a) shows that all four schemes
provide practically the same result. For the same set of
simulations, Fig. 3(b) plots the number of correction updates
mmax required by the [MOT]exp

PT and [MOT]exp
GT as well as

the number of TFQMR iterations N imp
iter required by the

[MOT]imp
PT and [MOT]imp

GT to achieve the convergence criterion
in (28) at every time step. For [MOT]imp

PT and [MOT]imp
GT , N imp

iter
reaches roughly 1500 and 50, respectively. For [MOT]exp

PT and
[MOT]exp

GT , mmax reaches roughly 40. The number of iterations
required to solve (19) and (22) is NG

iter = 22. Inserting these
values in the computational complexity estimates described in
Section II-G shows that [MOT]exp

PT is faster than [MOT]exp
GT ,

which is faster than both [MOT]imp
GT and [MOT]imp

PT . Indeed,
measured computation times, which are presented in Table I’s
first group of rows, verify this result. Note that in Table I,
the fourth column Tfill is the time required to compute all
relevant matrices, the fifth column TMOT refers to Cexp

PT Nt +C ,
Cexp

GT Nt + C , or C imp Nt + C (see Section II-G) depending on
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the scheme used, and the sixth column Ttot is the sum of the
previous two.

For the same set of simulations with �t = 6.667 ns,
Fig. 3(c) compares σ

imp
PT (θ, φ, f ), σ

exp
PT (θ, φ, f ), σ

exp
GT

(θ, φ, f ), and σ
imp
GT (θ, φ, f ) to σMie(θ, φ, f ), all of which

are computed for 0◦ < θ < 180◦ and φ = 0◦ at f = f0,
and shows that all four MOT schemes practically have the
same accuracy. Additionally, the last column of the first group
of rows in Table I provides errRCS computed using (29) for
this set of simulations and confirms that all four MOT schemes
have the same level of accuracy.

Table I’s second and third groups of rows compares the
efficiency and accuracy of the MOT schemes for the sets of
simulations with �t = 10 ns and �t = 13.333 ns. Same
conclusions can be drawn: All four MOT schemes have the
same level of accuracy, and [MOT]exp

PT is significantly faster
than the other three. Table I also shows that the accuracy of
all schemes increases with decreasing �t .

Next, the permittivity of the sphere is set to 50ε0. The
sphere is discretized using 11697 tetrahedrons, resulting in
N = 28970 unknowns. The average, minimum, and maximum
edge length of the mesh are lav = λmin/19.51, lmin =
λmin/39.34, and lmax = λmin/11.55, respectively. Here λmin =
c0/(

√
50 fmax) is the wavelength at fmax inside the scatterer.

[MOT]exp
GT is executed three times for Nt = 600 with �t =

6.667 ns (0.1/ fmax), Nt = 400 with �t = 10 ns (0.15/ fmax),
and Nt = 300 with �t = 13.333 ns (0.2/ fmax).

Fig. 4(a) plots H(r, t) computed at point r =
(0.51,−0.64, 0.12) m for the simulation with �t = 6.667 ns.
Note that for this problem, the other three schemes do not
produce stable results. For the same simulation, Fig. 4(b)
compares σ

exp
GT (θ, φ, f ) to σMie(θ, φ, f ), both of which are

computed for 0◦ < θ < 180◦ and φ = 0◦ at f = f0. Results
agree very well. Table II provides the computation times and
accuracy of [MOT]exp

GT for all three simulations. It shows that
the accuracy increases with decreasing �t .

D. Piecewise Slab

In the last example, scattering from a piecewise dielectric
slab is analyzed. The slab consists of two equal volumes
with permittivities 3ε0 and 9ε0 [as shown in the inset of
Fig. 5(a)]. The slab is discretized using 7905 tetrahedrons
resulting in N = 20 570 unknowns. The excitation parameters
f0 = 10 MHz and fbw = 5 MHz. The average, minimum,
and maximum edge length of the mesh are lav = λmin/31.7,
lmin = λmin/66.6, and lmax = λmin/19, respectively. Here
λmin = c0/(

√
9 fmax) is the wavelength at fmax inside the

right side of the slab. All four schemes are executed three
times for Nt = 210 with �t = 6.667 ns (0.1/ fmax), Nt = 140
with �t = 10 ns (0.15/ fmax), and Nt = 105 with �t =
13.333 ns (0.2/ fmax). For all simulations, the sparseness factor
of M1

0 and M2
0 is γ = N and the sparseness factor of G is

δ = 0.0033N .
Fig. 5(a) plots H(r, t) computed by all four schemes at

point r = (0.23, 0.14, 0.57) m for the set of simulations with
�t = 6.667 ns. The results agree very well. For the same
set of simulations, Fig. 5(b) plots the number of correction

Fig. 5. Analysis of scattering from the piecewise slab shown in the inset of
(a) H(r, t) computed at point r = (0.23, 0.14, 0.57) m by all four MOT
schemes. (b) mmax/N imp

iter required by the explicit/implicit MOT schemes.
(c) Comparison of RCS computed for 0◦ < θ < 180◦ and φ = 0◦ at
f = 10 MHz by the MOT schemes to that obtained from solution computed
by the FD-EFVIE solver.

updates mmax required by the [MOT]exp
PT and [MOT]exp

GT as well
as the number of TFQMR iterations N imp

iter required by the
[MOT]imp

PT and [MOT]imp
GT to achieve the convergence criterion

in (28) at every time step. The number of iterations required
to solve (19) and (22) (NG

iter) is 21. Inserting these values
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TABLE I

EFFICIENCY AND ACCURACY OF THE FOUR MOT SCHEMES IN ANALYZING SCATTERING FROM THE UNIT SPHERE WITH PERMITTIVITY 10ε0

TABLE II

EFFICIENCY AND ACCURACY OF [MOT]exp
GT IN ANALYZING SCATTERING FROM THE UNIT SPHERE WITH εr = 50

TABLE III

EFFICIENCY AND ACCURACY OF THE FOUR MOT SCHEMES IN ANALYZING SCATTERING FROM THE PIECEWISE SLAB

and the ones provided in Fig. 5(b) in the computational
complexity estimates described in Section II-G shows that the
[MOT]exp

PT is faster than the [MOT]exp
GT , which is faster than

both the [MOT]imp
GT and [MOT]imp

PT . This result is verified by
the computation times provided in Table III’s first group of
rows.

For the same set of simulations with �t = 6.667 ns,
Fig. 5(c) compares σ

imp
PT (θ, φ, f ), σ

exp
PT (θ, φ, f ), σ

exp
GT

(θ, φ, f ), and σ
imp
GT (θ, φ, f ) to σ FD(θ, φ, f ), all of which

are computed for 0◦ < θ < 180◦ and φ = 0◦ at
f = f0. Results agree very well. Additionally, the last column

of the first group of rows in Table III provides errRCS

computed using (29) for this set of simulations and con-
firms that all four MOT schemes have the same level of
accuracy.

Table III’s second and third groups of rows compares the
efficiency and accuracy of the MOT schemes for the sets
of simulations with �t = 10 ns and �t = 13.333 ns. The
results show that all four MOT schemes have the same level

of accuracy, and [MOT]exp
PT is significantly faster than the other

three. Also, as expected, the accuracy of all schemes increases
with decreasing �t .
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IV. CONCLUSION

A method for constructing explicit MOT schemes to
solve the TD-MFVIE enforced on dielectric scatterers is
developed. The TD-MFVIE is first cast in the form of an
ODE and the unknown magnetic field is expanded using
the FLC basis functions. The expansion is inserted into the
TD-MFVIE and the resulting equation is Galerkin or point
tested in space. This yields an ODE matrix system, which is
integrated in time using a PE(CE)m scheme for the (unknown)
expansion coefficients. The resulting MOT scheme calls for the
solution of a Gram matrix system at the evaluation (E) steps
of every time step. This can be done very efficiently since
the Gram matrix is always well conditioned and sparse (for
Galerkin testing) or consists of only four diagonal blocks (for
point testing). Numerical results demonstrate that the explicit
MOT scheme with point testing is significantly faster without
sacrificing from accuracy for low-frequency problems.

An extension of the proposed MOT scheme to enable the
analysis of electromagnetic scattering from nonlinear dielectric
objects is underway.
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